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In this paper we describe how several results of finite group theory were ap- 
plied in a computer study of the distribution of the orders of finite simple groups. 
Besides being of some small interest in themselves, the results obtained here may 
hopefully give some hint as to what might be proved in general about the dis- 
tribution of finite simple group orders. 

The results used in this study are three in number: 
(i) A characterization of the orders of finite simple groups with 2-Sylow sub- 

groups of order < 16. 
(ii) Thompson's characterization of the minimal finite simple groups. 
(iii) Sylow's second and third theorems. 
Result (i) is stated precisely as follows: 
LEMMA. Let G be a finite simple (nonabelian) group. Then IGI2 > 4. If /G12 = 4, 

then G - PSL(2, q), where q 3 or 5 (mod 8). If IGI2 = 8, then G PSL(2, 8) 
or PSL(2, q), where q = 7 or 9 (mod 16), or J (Janko's group), or IGI = 

q3(q - 1)(q3 + 1), where q = 32n+1. 

Proof. That IGl2 > 4 is the result of Feit and Thompson [51. If IGI2 = 4, 
Theorem 2 of [6] applies. Let CGI2 = 8. There are five nonisomorphic groups of 
order 8. One, the quaternion group, is never the 2-Sylow subgroup of a finite simple 
group [3]. The other nonabelian group of order 8 is dihedral, and if this is the 2- 
Sylow subgroup of G, by [6], G - PSL(2, q) for q =7 or 9 (mod 16). If the 2- 
Sylow subgroup is abelian, then either G-- PSL(2, 8) or J or else the centralizer 
of an involution in G is of the form Z2 X PSL(2, 32n+1) [9]. In this last case, Janko 
and Thompson [8] show that G satisfies the hypotheses from which Ward [10] 
computed the character tables of the Ree groups. Therefore G certainly has the 
same order as a Ree group. 

Result (ii) may be found in [1]. As yet, the proof is unpublished. 
These three results were used to test numbers <10". By (i) and (ii), any 

simple group order which is not the order of a known simple group must be divis- 
ible by 48 or by the order of a Suzuki group. Multiples of 48 were tested for divisi- 
bility by the order of a minimal simple group. Those divisible were then tested for 
existence of a prime divisor p for which a p-Sylow subgroup must be normal. 
Similarly, multiples of the orders of the two smallest Suzuki groups were tested by 
Sylow's theorems. 

All natural numbers up to 8,000,000 were tested, and thereafter, due to limita- 
tions in time, 100,000 numbers were tested in each of the intervals 10i < n < 2 X lOs, 
2 x lOi < n < 4 x lO, 4 x lOi < n < 7 x lO, 7 X 10i < n < 10i+l, for 
i = 7, 8, 9, 10. Each set of 100,000 numbers consisted of ten intervals of 10,000 
numbers each, the intervals being chosen at random within the prescribed bounds. 
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FIGURE I 

Fig. 1 shows in a histogram the number of integers out of 100,000 which re- 
mained as possible orders of simple groups after the eliminations from the tests. 
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In all likelihood, results about the distribution of simple group orders will be 
stated in terms of bounds on ir(n)/n, where 2r(n) is defined to be the number of 
simple group orders less than n. If we assume the number of integers left in each 
of the sets of 100,000 numbers to be proportional to the number which would be 
left if the entire interval were examined, we can plot certain points along an upper 
bound for ir(n). This is done in Fig. 2. From the appearance of the graph, one 
would guess that ir(n)/n -* 0 as n -- o. This surmise was very recently proved 
correct [4]. The regular appearance of Fig. 2 gives hope that much more might be 
proved. 

In the course of the work, two other results besides the three listed above 
were implemented on a trial basis. They were Burnside's transfer theorem [7] and 
a theorem of Brauer [2]. As neither one produced significant reductions, and each 
increased the running time tenfold or more, they were not included in the final 
program. This suggests a question in closing: Are there any other results whose 
ease of use and effectiveness would be comparable to those used here? 
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