
Stability Theory for Difference Approximations 
of Mixed Initial Boundary Value Problems. I* 

By Heinz-Otto Kreiss 

0. Introduction. Consider a first-order hyperbolic system of partial differential 
equations 

(0.1) au/at = Aau/lx 

with constant coefficients in the quarter space, x > 0, t _ 0. Here u(x,t)' = 

(u(1)(x, t), *, U(n)(X, t))** is a vector function of the real variables (x, t), and 
A is a constant matrix of order n. Without restriction we can assume that A has 
diagonal form. Furthermore we make the 

Assumption 1. A is nonsingular. The unknowns u(p)(x, t) are ordered so that A 
has the form 

a,0 * O.0 at+, 0 -0 

(0~~~ ~ 2) A2 = 0AI ... , AI=I 0 al+2 0 ... 
(0. 2) AA=~u ,A'( 0 0), A" (0 a 20 

O ... 0 a, O 0 ...0 an 

with 

(0.3) a, < a2 < . a < 0 < a,+, < an 

We will study difference methods for solving initial boundary value problems 
for (0.1). Therefore we suppose that initial values u(x, 0) = f(x) and boundary 
conditions 

(0.4) u (O, t) = Su(, t) 

are given. u' and u"l are defined according to the partition of A, i.e. 
ul = (u(0), , u('))', u"l = (u(+l), *, u(n))', and S is a given constant rec- 
tangular matrix. 

It is well known that the above problem is correctly posed in L2 (see for ex- 
ample Thomee [4]). The present treatment of the case when A is a constant matrix 
can be extended, as in [1], to the case when A depends on (x, t) in a sufficiently 
smooth fashion. 

In the earlier paper [1], we considered the case when the coefficient matrices 
of the difference schemes were diagonal. The same class of problems has also been 
treated in an interesting paper by Osher [2]. The assumption of diagonality would 
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be adequate for practical purposes, if we were interested only in the one-dimen- 
sional case. In a forthcoming paper we will consider approximations for hermitian 
systems of partial differential equations 

m 

au/at = Aau/lax + E Bjau/axj = P(a/ax)u 
j=2 

with constant coefficients in the quarter space xi _ 0, - co < xi < Go, j = 

2, 3, ***, m; t _ 0. Fourier transformation of the difference approximation with 
respect to the "tangential-variables" X2, * *, xm will lead us to difference equa- 
tions of the kind discussed in this paper, where the coefficient matrices depend on 
m - 1 parameters 42, * * *, (m and are nondiagonal matrices. We will establish the 
stability of such difference schemes by making all our estimates uniform with 
respect to 2, 

1. Statement of Results. We want to solve the initial boundary value problem 
by using a difference approximation. We therefore introduce a time-step k > 0 
and a mesh-width h > 0 and divide the x-axis into intervals of length h. As usual 
we assume that k/h = X = const. Using the notation xv = vh, v,(t) = v(x,, t), 
we approximate the differential equation for x > 0 by a consistenl difference 
scheme 

v (t + k) = Qv,(t) = 1, 2, 
vV(O) =f=, 

where 
V 

(1.2) Q =EA,E'j Ev. = VV+l, 
j=-r 

and the A j are constant matrices of order n. 
For convenience only we make 
Assumption 2. p > 1 and Ap, Ar are nonsingular. 
Let 

(1.3) Q = E Ajeij treal 

denote the symbol (or amplification matrix) of Q. We now require that Q(t) satis- 
fies the following two assumptions: 

Assumption 3. There exist a constant a > 0 and a natural number 2s > 0 
such that for all t with 0 < rj ? X the eigenvalues j(4) of Q(t) satisfy the estimate 

(1.4) I.(t)j ' 1 _ 51t12a, 

i.e. the approximation is dissipative. 
Assumption 4. Q() I ? 1. 
Assumption 4 guarantees that if the scheme (1.1) were used to solve the pure 

initial-value problem (i.e. for - oo < v < + oo) then the scheme would be stable. 
Stability for the pure initial value problem is obviously a necessary condition for 
the stability of the mixed problem. Assumption 3 is introduced to make sure that 
high frequencies (i.e. t bounded away from zero) have no influence. 
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From the nature of Q, defined by (1.2), we see that the solution of (1.1) can 
be carried out only if we specify boundary conditions to eliminate the values of 
v, at v = 0,-1, * * *, -r + 1. These shall be of the type 

(1.5) vl(t) ZCj,vj(t)0, 2 A = 0,-I, ** *, -r+ 1, 
j=l 

where the Cj, are constant square matrices of order n. 
Our aim is to derive algebraic stability conditions. Let us denote by H the 

space of all grid-functions w^, defined for v > -r, which fulfill the boundary con- 
ditions (1.5) and for which 

Z 120 h < 00 

H is a Hilbert space if norm and scalar product are defined by 

co 

(u, V)h = E u,*vvh, IIUIIh = (u, U)h 

(Observe that u E H, jIulih = 0 implies that 0 = U-r+l = U-r+2 = O= U = 

ul .) Stability is defined in the usual way: 
Definition 1. The difference approximation is stable if there is a constant K, 

independent of k, such that 

jvV(t)jjh ? Kjjv(O)Ijh 

for all t = mk and all initial values v(x, 0) in H. 
We may write the difference approximation in operator form 

(1.6) v(t + k) = (iv(t) , v(t), v(t + k) C H , 

where (5 is a bounded operator in H defined by (1.1) and (1.2). It is now easy to 
derive a necessary stability condition: 

LEMMA 1. A necessary condition for stability is that 5 has no eigenvalues zo with 

Izol > 1. 
Proof. Assume that (5 has an eigenvalue zo with Izol > 1, i.e. there is a g E H 

with 

(1.7) zog = 6g, g E H. 

Then zotlkg is a solution of (1.6) with initial values belonging to H and which in- 
creases exponentially with the number of time-steps. 

Our sufficient conditions for stability will be stated in terms of the eigenvalues 
and (generalized) eigenvectors of 6. We therefore have to understand how one 
determines the eigenvalues and eigenfunctions of 6. We start with 

LEMMA 2. Consider the (generalized) matrix eigenvalue problem 

p 

E AjKj = Z 
r=- 

and let Assumption 3 be fulfilled. Then for every z with Iz > 1, z 5- 1 there are pre- 
cisely rn eigenvalues Kj with |Kj| < 1 and np eigenvalues with Kjl > 1, i.e. there are 
no eigenvalues with Kj| = 1. 
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Proof. The eigenvalues are the solutions of the characteristic equation 

p 

(1.8) Det - AjK'-zI = 0. 
j=-r 

If K = 5; 7 1 then EJ= A jKj = Q(t) and by Assumption 3 the eigenvalues jAQ) 
of Q(t) cannot be equal to z, with lzl ? 1. By consistency Ej=_r Aj = I, and 
therefore K = 1 is ruled out for z 5 1. Since the eigenvalues are continuous func- 
tions of z, we can determine the number of eigenvalues Kj with lKjl < 1 by con- 
sidering large values of lzl. For lzl - oo these eigenvalues converge to zero and 
therefore the leading term of E A jKj is A-rK-r. By assumption, A_r is nonsingular 
and the lemma follows without difficulties. 

Let zo with Izol _ 1, zo 7d 1 be a fixed value. We want to determine whether 
(1.7) has a corresponding eigensolution g E H. Equation (1.7) is equivalent to 

(1.9) (Q-zo)g9 = O, v = 1, 2, ... , 

(1. Io) 91, = ECj1'9j I I = 0-12 *1 *-r + 1. 

Equation (1.9) is an ordinary difference equation with constant coefficients and 
its most general solution in H can be written in the form: 

(1.11) g,v = gv(ZO) = X Pj(V)Kj = X Pj(VI zo) (Kj(Zo)) 
IKjl<l IKj1<1 

Here Ki are the solution of (1.8) with IKjl < 1 and Pj(v) are polynomials in v with 
vector coefficients. The degree of Pj(v) is one less than the multiplicity of the cor- 
responding Kj. There are precisely nr such linearly independent solutions, thus (1.11) 
depends on nr parameters aj, j = 1, 2, * , nr. (This is obvious if all Kj are differ- 
ent. Then gv = E 0-jPjKj" where Pj are constant vectors. In the same way as in 
the scalar case the general formula (1.11) can then be obtained by a continuity 
argument.) 

Inserting (1.11) into the boundary conditions (1.10) we get a system of nr 
linear homogeneous equations in the nr parameters o-j which we may write as 

(1.12) E(zo)o- = 0 , o = (0r1, * 0*,nr) 

where E(zo) is a matrix of order nr, This gives us 
LEMMA 3. z0 with Izol _ 1, zo 7 1 is an eigenvalue of 5 if and only if 

Det E(zo) = 0. 
Now consider (1.11) for zo -> 1. The general solution given by (1.11) converges 

to a solution 

(1.13) gq (1) = Pj (V 1) (KJ (1) 
v 

which again depends on nr parameters o(j. However, in general, gv(l) does not 
belong to H because (as we shall show) there are precisely 1 indices j with 
Kj(I) = 1. Inserting (1.13) into the boundary conditions (1.10) the parameters (-J 
are determined by a linear system of equations: 

(1.12') E(l)o = 0. 

This leads us to 
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Definition 2. zo = 1 is a generalized eigenvalue of 6 if (1.12') has a nontrivial 
solution, i.e. if Det E(1) = 0. The corresponding solution (1.13) is called a gen- 
eralized eigenfunction. 

We can now formulate our 
MAIN THEOREM (THEOREM 0). The approximation to the initial boundary value 

problem is stable if 
(1) the Assumptions 1-4 are fulfilled. 
(2) zo = 1 is not a generalized eigenvalue of 65. 
(3) 6 has no eigenvalue zo with Izo > 1, zo 7 1. 
A proof of this theorem is given in Section 3. 
Remark. In [1] we have treated the case that the Aj are diagonal matrices. In 

that case the above conditions are equivalent with those assumed there. For ex- 
amples, we refer to [1]. 

Conditions (1) and (2) of the Main Theorem are relatively easy to check by 
analytic methods. To decide whether (3) is also satisfied requires further study. 
We shall show that if zo = 1 is not a generalized eigenvalue of 6, then there is a 
constant p > 0 such that 6 has no eigenvalues zo with Izo - 1 ? p and Izo > 1. 
However it is often very difficult to find out by analytic methods whether a value 
of z, bounded away from 1, is an eigenvalue or not. To decide this matter, we con- 
sider the following reduced problem: 

(1.14) u (t + c) = Qu,(t), = 1, 2, ,N-1, 

with boundary conditions 

(1.15) u,L(t) = ZCjiuj(t), = O,-1, .. ,-r +1, 

(1.16) UN (t) = UN+1 (t) = = UN+1 (t) = 0, 

with N some sufficiently large natural number. 
We write this scheme as an operator equation: 

u (t + k) = 5Nu (t) 

where ON is a matrix of order n(N - 1). We shall prove the following theorem: 
THEOREM 2. For every p > 0 there exist constants e > 0; Kj > 0, j = 1, 2; and 

r with 0 < r < 1 all independent of h such that: 
(1) If 6 has no eigenvalue with Izl >? 1, Iz - 11 >-p then O5N has no eigenvalue 

for Iz ?I - I-, I z -1 I p provided N > K, I log (1 -) 1. 
(2) If 6 has an eigenvalue zo of multiplicity p with Izol > I - en Izo - 11 > p 

then O5N has an eigenvalue XN with I N- zo < K2rTNfP. 

A proof of Theorem 2 is given in Section 4. 
With the help of Theorem 2, one can detect eigenvalues of 6 by computing 

the eigenvalues of O5N for an increasing sequence of values of N. If any eigenvalue 
XN of 'ON converges to a value zo with Izol > 1, zo 5 1 then zo is an eigenvalue of 6. 

2. The Resolvent of 6. It is well known (see for example Kato [3]) that we 
can write the solution of (1.6) in the form: 

(2.1) v(t) = -2 'z'(65-zI)-ldzv(O) t = nk 
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where Ir is any contour (for example Izl = 61 + 1) which includes the spectrum 
of 6 in its interior. We are therefore going to study ( -zI)-', the resolvent of 
6. Let us explicitly compute 

f = (65-ZI)-'v 

which is equivalent to finding the solution of 

(2.2) (Q - zI)f, = v^, v = 1, 2, 

(2.3) fcH, 

i.e. f fulfills the boundary conditions (1.5). 
By using Assumption 2, we write (2.2) as 

SP-1 

fv+p = -A r-1 A jf+j - zfv -v. 
2=r 

Upon introducing the vector 

Yv = (fv+p-1, fv+p_?-21 . * fv-r)' 

we get a one-step formula 

(2.4) yV+l = Myv + gv, v = 1, 2, 3, . I 
where 

Ap1 Ap_1 ... Ap71 (Ao - zI) ... A 1 A vv 

- I 0 
0 

Furthermore the boundary conditions (2.3) can be written as nr linear relations 
between the components of yi, * Y,+? and we write them formally as 

(2.5) - Ljy = O, j = 1, 2, rn. 

The eigenvalues K determined by the characteristic equation (1.8) are also the 
eigenvalues of M and the eigenvectors of M have the form (KP+r-lq5, K +-2 ,**Y 
where c5 is a solution of 

(2.6) A jKjb = Z4 . 

The eigenvalues Kj = Kj(Z) of M are functions of z. For zI > 1, z 5 1 they form 
by Lemma 2 two separate sets: S1, S2, where Si contains the Kj with I Kjl < 1 and 
S2 the Kj with I KjI > 1. Therefore we may use the following well-known lemma 
(see Kato [3, Chapter 2]). 

LEMMA 4. There exist a nonsingular matrix T = T(z) which is analytic in z for 
zjI > 1, z 7 1 such that 

(2.7) T(z)MT'l(z) = 
0 o) 

Here Ml, is of order nr and has eigenvalues I Kj| < 1 and M22 is of order np and has 
eigenvalues |Kj| > 1. 
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Introduce now in (2.4) 

(2.8) w, = T(z)yv 

as a new variable. Then we get 

(2.9) wV+1 = (M11 M)W + Tg, 

and its general solution w, with II wh < oo is given by 

j_1 

wj= j M v1 (Tg) + MIw11 w, 
(2.10) j =1, 2,3,*. 

00 

Wj =-EM2j2-1-(Tg9), )I 
V=j 

wI, wii are defined according to the partition of TMT-'. 
By introducing (2.8) into the boundary conditions (1.5) and eliminating wjI, 

j = 2, 3, ***, s, with help of (2.10) we get 

8+1 

(2.11) Ci(z)wI = E Fj(z)wj" + Gj(z)gj. 
j=1 

Here Cj(z), Fj(z), Gj(z) are analytic for Izi ? 1, z 5 1. By using the representa- 
tion (2.8)-(2.11) of ((M - zI)-l we will establish 

LEMMA 5. Let T denote the set of complex numbers z with izi ? 1, z 5 1. If 
z E and zo is not an eigenvalue of 5, then (O5 - z0I)-1 exists in all of H and is 
bounded. 

Proof. If Cl(zo)-l exists, then w is uniquely determined by (2.10) and (2.11) 
and by Lemma 4 the resolvent (6 - zoI)-l exists in all of H and is bounded. If 
Cj(zo)-' does not exist then the set of equations Cl(zo)w,I = 0 has a nontrivial 
solution iv1I and 

II I 
Wi =0, Wi jl 

is a solution of (2.10) with Tg _ 0. Therefore the homogeneous equation (2.9) has 
a nontrivial solution which by Lemma 4 defines a solution of the homogeneous 
equations (2.2), (2.3), and zo is an eigenvalue of 6. From Lemma 5 we get im- 
mediately 

LEMMA 6. Assume that O5 has no eigenvalue z . 91; then for any constant p > 0 
there exists an e > 0 such that z(I)- ZI)' is uniformly bounded for IZ ? 1 - 

IZ - 11 ? P. 
Proof. If (6 - zoI)-l exists and is bounded then (6 - zI)-l exists and is 

bounded in a whole neighborhood of zo. 

3. Proof of the Main Theorem. We start with a variant of Lemma 4. 
LEMMA 7. There exist a p > 0 and a nonsingular matrix T(z) which is analytic 

for Iz - i1 < p such that 

(3.1) T(z) MT(z) (0 0A) 

where the M7i have, for IzI > 1, the properties of the Mii of Lemma 4. 
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Proof. As we know, the eigenvalues K of M are the solutions of the eigenvalue 
problem 

p 

(3.2) E AjKjo = Zq/. 
j=-r 

Consistency implies that this equation can be written in the form 

(3.3) (XA(K - 1) + (K - 1)2D((K - 1)))4 = (z - 1)cp2 X = l/h, 

where D is a rational function in (K -1) with matrix coefficients. Therefore there are 
precisely n eigenvalues Kj with lim Kj = 1 for z -> 1. Introduce a new variable I = 

(K -1)/(-1). Then (3.3) becomes 

(XA. + /-22(z _ 1)D(M(z - 1)))p = 0 

which implies that the eigenvalues of the last equation are 

(3.4) IA = (Xaj)-' + O((z - 1) /n) 

and therefore 

(3.5) Kj= 1+ (Z - I)lj 1 + (z - 1) (Xaj) 1+ 0((z- 1)1+1/n) 

Observing that (Xaj)-l < 0 for j = 1, 2, *, l we get for z = 1 + 3, 3 > 0 and 
sufficiently small, that 

(3.6a) |Kj| < 1 forj = 1,2, 2 , 

and correspondingly 

(3.6b) |Kjl > I forj = l + 12.. , n . 

By Lemma 2 these inequalities hold for all z with Izi > 1. 
Now, consider M in a neighborhood of z = 1. There is certainly an analytic 

transformation Tl(z) which transforms M into 

Tl(z)MTl(z)-l = M22 ) 

0 0 3I33 

where the eigenvalues of Ml, (M33) are strictly smaller (larger) than 1 in absolute 
value; M22 is of order n and all its eigenvalues converge to 1 for z -* 1, i.e. they 
are given by (3.5). Furthermore M22(1) = I because for z = 1 and K = 1 the Eq. 
(3.2) has n linearly independent eigenvectors. (Observe that consistency inmplies 
that 2: A = I.) Therefore we can write the eigenvalue problem for M22 in the 
form 

(3.7) I221t = 4A, with IA = (K - 1)/(Z-1) , 22 = (M22 - ZI)/ -1) 

and the eigenvalues of M22 are given by (3.4). These eigenvalues therefore split 
into two separate groups: {u jwithj = 1, 2, .,1} and {.j with j = I+1, , l}. 
Hence there exists in a neighborhood of z = 1 an analytic transformation T2 which 
transforms M22 into block diagonal form and which separates these two sets. 

Since Mi, is of order a = nr - 1 and M33 is of order b = np - n + 1, we define 
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T3= 0 T2 0Ib 

\O O Ib/ 

where Ia is a unit matrix of order a. We now set T = T3T1 and observe that the 
proof is complete. 

Assume that 5 has no eigenvalue for Izi ? 1, z F 1 then by Lemma 6 we get 
the solution of the difference equation in the form 

v (t) = 051V (o) = - I- znQ~ zI)'v(O)dz 
( ) ( ) ~27ri 1rlr2 

if we choose the contour as shown in the following figure: 

lzl 
=r 

1-e 1z - l - 11 =p 

IGUE 1 

Again by Lemma 6 there exists a constant K (depending on p only), such that 

1 f z(5 - zI) v(O)dz ? K(1 - E)njIv(0)ffh. 2- 2i p1h 

Therefore we have only to estimate the integral over r2. Consider now initial 
values which are different from zero only in a finite number of points near the 
boundary, i.e. there is a natural number q such that 

(3.8) Iv'(O)I = 0 forv > q. 
By Lemma 7 we can use the representation of (5 - zI)-l derived in the preceding 
section in a neighborhood of z = 1. We find 

j_1 

v=l 

(3.9) w I _ M1(Tq II for] 2 q, 
v=q 

Wj =0 forj > q, 
where wil is determined by the boundary conditions (2.11) when Cj(z) has an in- 
verse. Assume now that z = 1 is not a generalized eigenvalue of 5. Then Cj(z)- 
exists in a neighborhood of z = 1. Therefore for every fixed j: (( -zI)-lv(0)) 
is analytic in a neighborhood of z = 1. This is so because the representation (3.8) 
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consists, for every fixed j, of only a finite number of terms and all functions and 
transformations are analytic. Therefore we get (see Fig. 1) 

rn (((M-ZIV)v(O))jdz n= Z ((( I -zI) 'v(0) j dz 
q-1 

< const (1 E)n E Iv,(0) I 
r=1 

For initial values satisfying (3.8) we get the estimate 

q-1 

(3.10) Ivj(t)I < Kj(1 - E)n >i: v(0)I , t = nk 
r=1 

i.e. the solution decreases exponentially near the boundary. 
It should be pointed out that the estimate (3.10) does not depend on Assump- 

tion 4. We have therefore proved 
THEOREM 1. If the Assumptions 1-3 are fulfilled, then the estimate (3.10) holds 

for all initial values of type (3.8). 
In Theorem 3 of [1],* we have shown that a difference scheme, which 
(a) has the property described in Theorem 1 (i.e. estimate (3.10) holds for 

special initial value problems) and which 
(b) also satisfies Assumption 4, must be stable for the initial boundary value 

problem given in (1.1), (1.2) and (1.5). 
This completes the proof of the Main Theorem. 
In a later paper we shall generalize the above theorem of [1] by weakening As- 

sumption 4. This enables us to get more general stability theorems for the initial 
boundary value problem. 

4. Proof of Theorem 2. We start with 
LEMMA 8. Consider the difference approximation (1.5) with boundary conditions 

v,,(t) = 0, ,u = 0,-1, . . ., -r +1, 

and assume that the Assumptions 1-4 are fulfilled. Then for every p > 0 there exists 
an e > 0 such that the corresponding operator 01 has no eigenvalue z with Iz ?> 1- 

z- i > p. 
Proof. Assume there is an eigenvalue z with lzi _ 1, z # 1 and denote by g 

the corresponding eigenfunction. Consider now the Cauchy problem for (1.1) with 
initial values 

vv(0) = g, forv > 0, 

= 0 forv < 0. 

Let vO denote the smallest index for which gv # 0, i.e. 

gv = O forv <vo, gvo# O. 

By remembering that Ap-' exists, we find, vO < p. Compute now one step of the 
Cauchy problem, then there is certainly a v,(k) # 0 for v < 0. Therefore, we get 
from Assumption 4 and the observation that v,(k) = zgv for v = 1, 2, the 
inequality 

* See also Osher's [2] abstract version of the theorem in [1]. 
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IzI2'Igllh2 < Ej jV(h)12h <E Iv(0)12h = jig jh2 

which is impossible. Therefore there is no eigenvalue z with Izi _ 1, z # 1. By the 
same argument as in Lemma 6 we get the above lemma. 

Now we can prove the first part of Theorem 2: Assume that 5N has an eigen- 
value z with I zj I 1 - I z - i > p and let n be the corresponding eigenfunction: 

ONU = ZU . 

This equation is equivalent with (see (2.4)) 

YV+1 = my, V = ,2, ... )N -1, 

where y has to fulfill boundary conditions corresponding to (1.15) and (1.16). Upon 
introducing again the variable w = Ty, we get 

(4.1) W+= ( 11 M22) v = 1, 2, *. N-i, 

with boundary conditions of the form 

s+l 

Cl(z)wli Fjwj 
(4.2) j=1 

C2 (Z)WN-1 = GWN_1 

The general solution of (4.1) is 

(4.3) WV = Mijw11, WIi 
_ 

MVWN+wUII 

If e > 0 is sufficiently small, then the absolute value of the eigenvalues of M11 are 
strictly smaller than one and those of M22 are strictly larger than one. Further- 
more, by assumption Cf-'(z) exists and from Lemma 8 it follows that C2'-(z) exists 
as well. If we insert (4.3) into the boundary conditions (4.2) then we can derive 
homogeneous systems of linear equations for w1I, wII i which are nonsingular for 

sufficiently large N. Therefore the first part of the theorem follows without diffi- 

culties. 

Let us now prove the second part: Assume that 5 has an eigenvalue zo with 

Izol ? 1 - e and let v be a corresponding eigenfunction: i.e. 5v = zov. 
This equation is equivalent with Y,+?= My, which after transformation can 

be written as 

WI = MjX w1iX w7 I 0 Ci(z0)wl = 0 v = 1, 2, 

The eigenvalues Kj of M11 fulfill the inequality IKjl ? -r < 1. Therefore the 

eigenfunction vv decreases exponentially with v and we can find a constant d1 such 

that 

(4.4) (ON - zoI)v = f with |f(N) < d rN V(N)| 

Here v (N) is the function which we get from v by setting v, = 0 for v = 

N, N + 1, . Assume now that O5N -zI is nonsingular for Iz - zol ? o- and that, 

O5 has no other eigenvalue than zO in this neighborhood. Then |Cj-1(z)j < d2o-p 

for Iz - zol =-. Here p is the multiplicity of the root zo of Det Cl(z) = 0 which 
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is equal to the multiplicity of the eigenvalue. Furthermore, by Lemma 9, C2-'(z) 
exists and the eigenvalues of M22 are strictly larger than 1 in absolute value. 
Therefore 

I (@A, - zl)- ? d3aF-P for Iz - zol = 

This gives 

I ( I)l (OA - @ ZI) d 3P 
I (R5 - Z0W1r' = (z <Nd- d _ 

" 

and by (4.4) 

i v _I d1d3aPorNr IvN|, 

i.e. o- ? (d1d3)r 7rV'NIp = K2TN IP. Therefore 5N has an eigenvalue XN with 
XN - zoj ? K2 rN'P. This proves the theorem. 
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