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Introduction. In this note we develop a multistep formulation of the optimized 
Lax-Wendroff method for hyperbolic systems. This scheme was derived by Strang 
[6], [7]. The present formulation extends in a natural way, the two-step formula- 
tion of Richtmyer [5] for systems in one-space variable. We summarise this case 
in the next section. 

One Space Dimension. We consider the first-order conservation 'law 

(1) aul/at + af(u)/ax = 0 

together with appropriate initial and boundary conditions. Let A _f/au denote 
the Jacobian matrix A of the derivatives of the vector function f with respect to 
the components of the unknown vector u. 

The two-step Lax-Wendroff scheme for the numerical integration of (1) is 
given by 

(2) = 
2 (uT+1/2 + ut-1/2) - (p/2) (f 1/2 _ f-1/2) 

n+1 n 1 ui = us ~P (f ?+1/2 _ f-12 vn 

where Un = u(ih, nk), h, k being the mesh spacings in the space and time direc- 
tions respectively, and where p = k/h. In (2) we regard u,*n+l as an intermediate 
value in the calculation. 

For ease of writing we define the following finite-difference operators in the 
x direction 

Ju-pr - 2 + U1/2) , 5x - U+1/2 - Ui-1/2 - 

Therefore (2) may be written in the form 

(3) u*n+1 = Mxun - (p/2) xfn Un+1 Un - paxf*n+l 

where we have omitted lower suffices. If X is an eigenvalue of the Jacobian matrix 
A then it is well Inown that (3) is stable (in the linearized sense) if pjXI ? 1 (by 
von Neumann's criterion), and that it has second-order accuracy. A generaliza- 
tion of the scheme (3) is considered in Gourlay and Morris [3]. 

Two Space Dimensions. Consider now the two-dimensional conservation law 

(4) au/at + af(u)/ax + ag(u)/ay = 0, 

together with suitable initial and boundary conditions. As in the preceding sectiont 
we define A a df/au, B ag/au, and the difference operators ,uz, 3, in the y-diree- 
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tion. Then Richtmyer's two-step version [5] of the Lax-Wendroff scheme [4] is 
given by 

*n+ = 1 
(Ax + Ay) Un - (p/2) [&xfn + Sgfl] 

u+1 = Un - p[axf*n+l + S1g*n+l] 

Scheme (5) is stable (in the linearized sense) if 

(6) PIXAJI _ (8) -1 12, P|XBI <? (8)-112 

where XA, XB are the eigenvalues of A, B respectively. The stability restrictions 
(6) are much more severe than those of the one-dimensional Lax-Wendroff method. 
Scheme (5) again has second-order accuracy, and a generalization is considered in 
[3]. In order to alleviate such severe stability restrictions, several authors have 
considered modifications of scheme (5). However, such modifications usually re- 
quire the evaluation of the Jacobian matrices A, B and therefore the simple form 
of the two-step formulation is destroyed. We mention the work of Lax and Wen- 
droff [4] and Burstein [1], [2], in this context. In [6], Strang showed how the best 
stability characteristics 

(7) PIXAI < 1, PIXBI < 1, 

for an explicit scheme, could be obtained. If we denote by MX the Lax-Wendroff 
difference operator in the x direction, then Strang's scheme consists of using 

Un+1 = I [MXMy + MyMx]Un. 

As pointed out by Burstein [1], this amounts to adding to the Lax-Wendroff op- 
erator in two dimensions the pseudo-viscous term 

-8P3 { (AB2 + B2A) (Ax + VX) AyVy + (BA2 + A2B) (Ay + V) AxVx } Unv 

+ P4{A2B2 + B2A21} AxVxAVYUn 

where A, V are the usual forward and backward difference operators, and where 
we have assumed for ease that A, B are constant matrices. Obviously the compu- 
tation of such a term is time-consuming in the extreme. We shall now derive a 
multistep version of Strang's scheme which requires nothing more than the evalua- 
tion of the functions f and g. 

Multistep Strang Scheme. We consider first of all the linear system 

au/at + Aau/ax + Bau/ay = 0, 

where A and B are constant matrices. 
Strang's scheme is 

(8) ,>,n+l = U [MXMy + MyMx]un 

where Mx, My are Lax-Wendroff difference operators in the x and y directions 
respectively. We introduce the quantities vn'+ and Wn+) defined by the relations 

(9) v8( n1= M wy = 
n 

and the quantities vn+1 and Wnj+ by means of 

(10) n= = Mn1w(' . 
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Then we have that 

(11) U = 12 (v8(' + W(4) 

Each of the equations in (9) and (10) is "locally one-dimensional" in character 
and we therefore may employ the one-dimensional Richtmyer method (3) for each 
definition. For the nonlinear conservation law system 

du/at + df(u)/ax + ag(u)/ay = 0, 

this leads to the following scheme: 

(12) vpi+1 = n - (p/2)a , wj(1) = - (p/2) 

n+1 n_a,n+1 n+1 =n_ f(+ V(2) = P6y (1) 2 W(2) U Pax J1 + 

vn?1 = n+1 axn+l n+1 n+1 /~\n? 

(13) V(3) = MXV(2) ( (p/2)f W(3) = AyW(2) - 
(pIs g(2) 

vn+1 =Vn?1 _Pxfnl? n+1 ?n+1 _a,n?1 V(4) V(2) p (xJ3) , W(4) = P(2 g(3) 

(14) u = 2 (v(41 + we($) 

It is straightforward to verify that (12), (13), (14) have second-order accuracy. 
(We note the notation gn = g(un), gn()1 = g(vn+)) etc.) 

Since the majority of computing time in such problems is taken in the evalua- 
tion of the vector functions f and g we will compare the algorithms on this basis. 
It is then easily seen that the multistep algorithm requires roughly twice as much 
computing time as does the Lax-Wendroff method (5), but the stability character- 
istics of (12), (13), (14) are - 8 times better than those of the method (5). Apart 
from this advantage, the multistep Strang method is very easy to program, requir- 
ing only a single procedure equivalent to a one-dimensional Lax-Wendroff algo- 
rithm. Moreover, if it is required to add in a pseudo-viscous term, this merely takes 
its normal place in the respective one-dimensional algorithm and will itself be a 
one-dimensional quantity. Therefore the results (empirical or otherwise) obtained 
for scheme (3) may be carried through to two space dimensions with ease. 

It would appear therefore that the multistep formulation of Strang's scheme 
has a great deal to offer in its simplicity and its stability. 

Generalizations. We briefly note a few extensions of the above results to more 
general first-order systems. The two-step Lax-Wendroff method for the system 

au/at + Af(x, t, u)/ax = z(x, t, u) 

may be written in the form, 

u( ) = /uXa- (p/2) [ -J hz- 

u + = u~ -p[Sx -fl( ) ] 

where h is the mesh spacing in the space direction and where 

=n_ f(x, (n + 1)k Us) 7U i ' f(x, (n + 1)k, U(j'), etc. 

Therefore, for the two-dimensional system 

(15) au/at + af(x, y, t, u)/ax + ag(x, y, t, u)/ay = z(x, y, t, u), 
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we have the multistep Strang scheme: 

v(l) =n - (p/2) L v -nq , W(h) = Mu.U - (p/2)[bxf -n hn , 

n(+1 =n _ p[[aUn+ - hn+1 , n+1 n 
_ nP[.7n1 ( 1_ h_n+ 1 V(2) (1) ~~~~~~~W(2) = U h (J1) 

n+1 n+1 ( /2) [-+1 _n 
+ 

hgi] 
Wn+1 n+1 (p/2)o[\2n+l n+-fli] V(3) = /.xV (2) - p 2) [f2-16(2) , (3) =/tyW (2) - P~ILy(2) f&(2) 

vn(1 = Vn(+) _ [6(n) _hn+l] gn 1 =gn2+1 p^9n 1 _ hn+1 =4 - p[S.Tnil - h4)]W = W(21 -P[ayg(3) n- 3 

U 2(vn$ + wn1 ), 
where 

(16) z(x, y, t, u) = q(x, y, t, u) + s(x, y, t, u) . 

It is somewhat surprising that an arbitrary splitting of z in the form (16) maintains 
second-order accuracy of the above scheme. Notice finally that we may even allow 
z to include second-order derivatives ux, uyy, ux, and thus we can write the full 
Navier-Stokes equations in the form (15) (see Thommen [8]). 

A numerical example. A simple comparison of the multistep Strang scheme and 
Richtmyer's two-step Lax-Wendroff scheme [5] was undertaken for the problem 

du + a 1 u2) + a 1 = Z(U, X,y ), 
where 

z(u, x, y) = 50uxy[y(1 -y)(2 - 3x) + x(l - x)(2 - 3y)], 

subject to the initial condition 

u(x, y, 0) = 10Ox2(1 - x)y2(1 - y) 

and zero boundary conditions on [0 < x, y < 1] X [0 < t < T]. This problem: 
has the time-independent solution 

u(x, y, t) = J00x2y2(J - X)(1 - y). 

It may be easily verified that the maximum value of the function u(x, y, t) is ap- 
proximately 2.2. It follows that the stability conditions for the schemes are ap- 
proximately as follows: 

Two-step Lax-Wendroff: p < .32, 
Multistep Strang: p < .90. 
In practice it was found that the multistep Strang scheme did become unstable 

for p > .90 but that the two-step Lax-Wendroff scheme remained stable for p < .60. 
This result is in agreement with previous authors who have noted that the Lax- 
Wendroff stability characteristics are too severe. If such a result is typical, the Lax- 
Wendroff scheme would appear to be competitive with the multistep Strang formu-. 
lation. However, the case of programming of the latter scheme, and the ability to 
incorporate pseudo-viscous terms in a one-dimensional manner, must make it more 
attractive in practice. 
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