
Global Convergence of the Basic QR Algorithm 
on Hessenberg Matrices* 

By Beresford Parlett 

0. Introduction. The QR algorithm was developed by Francis (1960) to find the 
eigenvalues (or roots) of real or complex matrices. We shall consider it here in the 
context of exact arithmetic. 

Sufficient conditions for convergence, listed in order of increasing generality 
have been given by Francis [1], Kublanovskaja [3], Parlett [4], and Wilkinson [8]. 
It seems that necessary and sufficient conditions would be very complicated for a 
general matrix. 

One of the many merits of Francis' paper was the observation that the Hessen- 
berg form (aij = 0, i > j + 1) is invariant under the QR transformation and the 
algorithm is usually applied to Hessenberg matrices which are unreduced, that is 
aij 5 0, i = j + 1. The properties of this form combine with those of the algo- 
rithm in such a way that a complete convergence theory can be stated quite simply. 
The aim is to produce a sequence of unitarily similar matrices whose limit is upper 
triangular. 

Elementwise convergence to a particular triangular matrix is not necessary for 
determining eigenvalues; block triangular form with 1 X 1 and 2 X 2 blocks on 
the diagonal is sufficient. 

Definition. A sequence {H(8) - (h`8))), s = 1, 2, } of n X n Hessenberg 
matrices is said to "converge" whenever h(?1 .h'?)-1 0, for each j = 2, n *, - 1. 

THEOREM 1. The basic QR algorithm applied to an unreduced Hessenberg matrix 
H produces a sequence of Hessenberg matrices which "converges" if, and only if, 
among each set of H's eigenvalues with equal magnitude, there are at most two of even 
and two of odd multiplicity. 

This is a special case, tailored to computer programs, of the main theorem. In 
general let wi1 > W2 > .*. .> Wr> 0 be the distinct nonzero magnitudes occurring 
among the roots of H. Of the roots of magnitude coi let p(i) have even multiplicities 

Min > m2i ? *-- ?m (i) > m (+lO0, 

and let q(i) have odd multiplicities, 

nit > n2t > *- nq(j) > nfq( )1O. 

MAIN THEOREM. Let H(s) be the sth term of the basic QR sequence derived from an 
unreduced Hessenberg matrix H. If zero is a root of multiplicity m, then the last m 
rows of H (0 are null for s > m and they and the last m columns are discarded from 
H(8). As s -> H(s) becomes block triangular, (H(8)), and the spectrum of Hi8i) con- 
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verges to the set of eigenvalues with magnitude wi. Further H(s) itself tends to block 
triangular form. There emerge mji - m,+i unreduced diagonal blocks of order j 
[U = 1, , p (i)], the union of whose spectra converges to the eigenvalues of even 
multiplicity. Similarly, there emerge nji - n +i unreduced diagonal blocks of order 
i [j = 1, ***, q(i)], the union of whose spectra converges to the eigenvalues of odd 
multiplicity. 

Theorem 1 follows because if any p(i) or q(i) exceeds 2, then there will be a 
principal submatrix of order greater than 2, none of whose subdiagonal elements 
converge to zero. Conversely, if p(i) < 2, q(i) < 2 for all i then H(s) reduces to 
block triangular form with 1 X 1 and 2 X 2 diagonal blocks. 

The position of the unreduced blocks depends on how the mji, nki interlace 
when ordered monotonically. 

The rate of convergence is very slow (like s-1). This is not a disaster, because 
in Francis' program the basic algorithm is used only until at least one of the roots 
of the bottom 2 X 2 submatrix "settles down" to 1 binary bit (that is, to within 
50%). Then the extended algorithm is applied to hasten convergence. Theorem 1 
ensures that when the hypotheses hold, this test will be passed. Of more importance, 
the test will not be passed only if there are too many roots of equal modulus. This 
modulus is easily calculated from the determinant of the unreduced submatrix. 
The only problem is to decide early when the test will not be passed. 

Note that convergence is certain when the roots are real. 
A preliminary report of these results appeared as Necessary and Sufficient Con- 

ditions for Convergence of the QR Algorithm on Hessenberg Matrices, Proc. of the 
ACM National Meeting, Los Angeles, Calif., 1966, Thompson, Washington, D. C., 
1966, pp. 13-16. 

1. The Algorithm, its Essential Convergence and Known Properties. We shall 
assume that the reader has some familiarity with the QR algorithm of J. G. F. 
Francis. For expositions of it, see [1], [5], or [9, Chapter 8]. Here we shall give a 
brief outline of the algorithm and those convergence properties which are already 
known. 

From any given square matrix A1 the algorithm generates a sequence {A,} of 
matrices unitarily congruent to A l. Under certain mild conditions, it is known that, 
as s -> oo, A, tends to a form which is essentially triangular; namely a block tri- 
angular matrix whose diagonal blocks have orders one or two. When A1, and hence 
each A,, is real, complex eigenvalues will be found from real two-rowed principal 
submatrices. 

The Factorization. Any square matrix A can be expressed as the product, QR, 
of a unitary matrix Q and a right triangular matrix R. When A is real, Q can be 
taken orthogonal. It is customary to normalize the factorization by requiring that 
the diagonal of R have nonnegative elements. When A is nonsingular Q and R are 
unique and will be denoted by Q(A) (or QA) and R(A) (or RA) respectively. 

Without the normalization, Q and R are unique only to within a diagonal 
unitary factor. Thus for any diagonal unitary matrix D we have A = (QAD) (DRA) 
=QR. 

The Basic Algorithm. Given a nonsingular matrix Al, the algorithm is given by 
the rule 
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(1.1)for s = 1,2, ... factor As into Q8R8, 
form RJQ. and call it A,,+, 

It follows from (1.1) that 

(1.2) A = P8*A 1Pe (M* is the conjugate transpose of 11M) 

PS= Q(Al8)= Q... Q8, 

and so the convergence of A, as s -> oo depends on the unitary factor of A s. 
In practice we are interested in a less stringent property which Wilkinson calls 

essential convergence, namely the convergence of A, to within a diagonal unitary 
congruence. Thus if there is a sequence of diagonal unitary matrices D, such that 
P,Th converges then we say that P8, A8, and the algorithm all converge essentially. 
We shall extend the usage further in the real case by allowing D, to be orthogonal 
and block diagonal with blocks of order 1 and 2. 

Convergence. The fundamental result given in [1], [4], [8] is that when the eigen- 
values of A1 have distinct moduli, then {As} converges essentially to upper tri- 
angular form. Wilkinson showed that, under a certain assumption, if there is only 
one eigenvalue (of any multiplicity) of a given modulus, then the algorithm con- 
verges essentially. 

Hessenberg Form. It is a useful fact that any matrix may be put into upper 
Hessenberg form H (hij = 0, i > j + 1) by a finite sequence of similarity trans- 
formations [9, Chapter 5]. Indeed this form can be achieved in several ways (in- 
cluding orthogonal congruences). It was one of the many merits of Francis' article 
that it recognised the invariance of the Hessenberg form under the QR transforma- 
tion. 

The importance of the reduction of the given matrix to this form is not just 
the arithmetic economy in transforming Hessenberg matrices as against full ones, 
but the clever devices which Francis was able to use in calculating the transformed 
matrix. Moreover, we shall show in later sections that the QR algorithm has strong 
convergence properties when applied to Hessenberg matrices. 

Definition. An n X n Hessenberg matrix H is unreduced if hi i_1 z 0, 
i-= 2, ..* ,n. 

We recall that a matrix is called derogatory if the eigenspace of any eigenvalue 
has dimension greater than 1. 

LEMMA. An unreduced Hessenberg matrix is not derogatory. 
Proof. The minor of the (1, n) element of H - zI is nonzero and independent 

of z. Thus the null space of H - zI has dimension ? 1 for all z. Q.E.D. 
Is it possible that the basic algorithm might fail to resolve an unreduced Hessen- 

berg submatrix of order greater than 2? The answer is yes, but we shall see that 
this can only happen in cases which are easily remedied by the extensioni of the 
basic algorithm introduced by Francis. 

2. A Particular Case. The permutation matrix 

0 O 1\ 

P= I 0 0 
0 1 0 
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has spectrum { 1, co, cw2}7 co = exp (2ri/3). Like any unitary matrix it is inivariant 
under the QR transformation. Moreover it can be shown that no unreduced 3 X 3 
Hessenberg matrix with 3 equimodular simple eigenvalues yields a convergent QR 
sequence. Consequently it is surprising to discover that the spectrumn alone does 
not determine convergence but that the multiplicities of the eigenvalues do play a 
role. 

The proof of the main theorem is somewhat involved and in this section we 
analyze a 4 X 4 example which exhibits the crucial aspects of the general case. 
Consider any real unreduced 4 X 4 Hessenberg matrix H1 with the same spectrum 
as P above. The Jordan form of H1 = Y-'JY is given by 

I I 0 0 
0= O O coO . 

Lo 0 0 co2 

Since H,+l = P,*H,P,, Ps = Q(H1s), s = 1, 2, we must investigate the 
unitary factor of H18. By Theorem 2, Section 3, Y has a triangular decomposition 
Y = LyUy with 

Fy 1 1 
11= 132 1 

1t41 142 143 1 

See [9, Chapter 4] for a discussion of triangular (LU) factorization, L unit lower, 
U upper triangular. 

Thus 

He = y-lsy = Y-JsLyUy. 

Following an idea of Wilkinson, we wish to manipulate the factors of His into the 
form (unitary) (upper triangular). Although JPLy is unit lower triangular it is 
unbounded in s and this obstructs the analysis. However, a suitable permutation 
of the rows yields a matrix with an LU decomposition with L bounded as s -- oc. 

Our problem is to find a permutation matrix B, independent of s, such that BJsLy 
= LsUs with Ls bounded as s -- oo. 

On writing out JsLy in extenso, we see that row 2 should become row 1 of 
BJsLy. On checking all 2-rowed minors in the first two columns, we find that row 
1 should become row 4. Let B = (e4, el, e2, e3) where I = (el, e2, e3, e4). Then 

S + 121 1 0 0 
8 

(131 (0132 W8 
BJSt = @2szl @s 2s 28 2s L.U. 

co 141 C 142 C 143 j U 
whee t d0 0 t 

where the order of magnitude of the elements of L. is given below: 
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The (3, 2) element is 

s(142(S + 121) - 141 ) 

j42 s 

32(S + 121) - 131 132 

In a previous paper [7] we showed that 142, 132 and their analogues in the general 
case cannot vanish because Hi is an unreduced Hessenberg matrix. 

The major problem in the general case is to determine the matrix B. 
The surprising' point here is that the two rows corresponding to the double 

eigenvalue 1 have been separated as far as possible. 
Returning to the factorization of His we find 

H s= Y-1B1(BJSLy)Uy 

= Y-'B-'L,UUy 

Q Q?Ls5UsUy defining QI? = Y-IB-1 

(QQs) (RsUsUy) defining QsRs = RLsL. 

Since R is nonsingular upper triangular the strictly lower triangular part of Qs is 
determined by Ls (this is proved in Lemma 3.1). Thus as s -0oo 

I 0 0 0 

Qs 
0 x x O 

where the x represent elements which do not converge. By the uniqueness of the 
QR factorization P. = Q(H1s) = QQs, essentially and H.+, = Qs*Q*H,QQs. 

Thus, as s -> oo, 

QsHs+-Qs* (RBY)(Y-'JY)(Y-1B-'R-1) == R(BJB-1)R-', 

and 

Il O 0 11 
BJB-1=L 

1 
2 

? 
j 

3. The General Case. Any square matrix A = (aij) (with real or complex ele- 
ments) may be taken into upper Hessenberg form H by a similarity transforma- 
tion (see Section 2). Some subdiagonal elements h?j+1, may be zero. By partitioning 
with respect to these elements we may write H as a block upper triangular matrix 
(Hij) where each Hii is a Hessenberg matrix with nonzero subdiagonal elements. 
We will call such Hessenberg matrices unreduced. Typically, we might have 

I11 H12 H13\ 
(3.1) H O H22 H23). 

O 0 H33/ 

The QR transformation acts independently on each Hii. Indeed if Hti = QiRA 
and H = QR then Q is the direct sum of the Qi and the diagonal blocks- of RQ are 
just RiQi. Thus it suffices to restrict attention to unreduced Hessenberg matrices. 
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Suppose such a matrix is singular. We showed in an earlier paper [6] that each 
single QR transformation annihilates the bottom row. The algorithm then proceeds 
on the submatrix obtained by omitting the last row and column. After a finite 
number of steps all the zero eigenvalues will have been found. Thus it remains to 
consider nonsingular unreduced Hessenberg matrices. 

Nonsingular unreduced Hessenberg matrices. Let H be such a matrix. Then H is 
nonderogatory and so has only one Jordan block to each eigenvalue. 

Subsequent analysis will be simplified if we write the Jordan submatrix cor- 
responding to a nonlinear elementary divisor in the slightly unconventional form, 
illustrated below for a cubic divisor: 

'x O I' { O' O\ >0 1X 
IX 

o 
Il 0~?,Ix= 

> 

Geometrically, this amounts to a nonstandard selection of principal vectors to span 
the cyclic subspace associated with X. There is no loss of generality. Let 

(3.3) C1 > co2 > . > cor > O 

be the distinct magnitudes occurring among the roots of H. We shall write the 
Jordan canonical form of H as JW (= WJ) where 

(3.4) W = colGl ... corlr , J = Jl0 ... ( Jrr 

and each Jii is a direct sum of the Jordan blocks of the arguments of the eigen- 
values of magnitude wi. 

We wish to study the sequence, {H,s s = 1, 2, * } obtained by applying the 
basic QR algorithm to H1 = H. This depends (see Section 1) on the unitary factor 
Ps of Hs and we shall follow Wilkinson's idea of exhibiting P. explicitly by manipu- 
lating the canonical factorization of Hs. We begin with an essential result proved 
in [7]. 

THEOREM 2. Let the Jordan decomposition of H be H = Y-'JWY. Then Y per- 
mits a triangular decomposition without interchanges, Y = LyU, Ly unit lower 
triangular, Uy upper triangular. 

Our modification of the Jordan form does not invalidate this result since it corre- 
sponds to a premultiplication of Y by a positive diagonal matrix. So 

Hs = XJsWsY, whereX Y-X 

(3.5) = XJSWsLYUY, by Theorem 2, 

= XMWsUy, where M(s) JsWsLYW-s. 

One of the principal results of the next three sections is that there is a fixed permu- 
tation matrix B such that as s -* oo BM permits a triangular decomposition 
BM = LsU. with L. bounded. Then, for large enough s, 

(3.6) H - XB*L USW,UY, 

= QRL8U8W8UY, where QR is the Q - R factorization of XB*, 

(3.7) = (QQs) (A8UNWYU), where QsRs is the Q - R factorization of RLs. 

This is a unitary-triangular factorization of H8. Hence, (see Section 1) Ps = QQs 
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essentially, and, to within a similarity by a diagonal unitary matrix, 

(3.8) Hs+- Ps*HPs = Qs*(Q*HQ)Qs = Qs*(RBJWB-1R-1)0,. 

The usefulness of this analysis depends on the following observation. Let the 
matrices Ls = (Lij) and Qs- (Qij) of (3.6) and (3.7) be partitioned conformably 
in any manner which makes the diagonal blocks square. 

LEMMA 3.1. As s >0 ??, Qi >- O for all i, j (i F j) if, and only if, Lij -* 
for all i, j (i > j). 

Proof. Ls is unit lower triangular and bounded as s -* oo. Hence L.-1 has the 
same properties. Moreover, since Qs is unitary and QsRs = RLs, it follows that 
det R. = det R = I det XI > 0. For any unitarily invariant norm, we then have 

IIRsiI= I ?Qs fsll l LR1i fsl < -ylfll, 

||RS-111= lIls-1Qs*l _ IILs-ll1 IIR-111 y1R111 

where -y is a bound on I ILsl I and I ILs-1 Now partitioning all the matrices con- 
formably with L. and Q. we have, for i > j, 

Qij= E E RiiLv(R s- 1), =L I E (R-1)iMQMPR; 
,g,i v<j I'?i v<j 

Hence, ass +oo 

Q ij )>0 , all i, j (i >j) if, and only if, L ij - 0 , all i, j (i >j) . 

Equating corresponding blocks in the equations Qss~s = I yields the 
lemma. D 

To see that Qs, and therefore L., determines the block triangular structure to 
which H8+1 tends we consider (3.8) and use the corollary of Lemma 6.2, which 
states that 

BJWB-1 is upper triangular. 

These results will be proved in the following sections. Thus the matrix 
(RBJWB-1R-1) of (3.8) is upper triangular and the block triangular form of H. is 
completely determined by Q., and therefore by L., as s -> oo. The purpose of this 
section was to show that it suffices to consider the matrix L., the bounded lower 
triangular factor of some permutation of J8W8LyW-s. 

4. Eigenvalues of Different Magnitudes. The matrix M(s) = Js(WsLyW-S) is 
a product of two lower triangular matrices and, in general, Js is unbounded as, 
8s -* 00. Now partition M into blocks, one block for all eigenvalues with a common 
magnitude. Then 

(4.1) Ly= (Lij) (ij 1= *I r), 

where the partition conforms with (3.4). Then for i > j, as s -> oo, by (3.3), 

(4.2) M ij =J0Lij,( j1j) - > 

since sm(wl/&,j)s -O 0 for any fixed m. 
Thus M tends to block diagonal form. However, each diagonal block Mii(s) = 

J'iLii (i =1, * , r) is unbounded as s-* oo except in the trivial case when Jii> 
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is diagonal. We seek fixed permutation matrices Bi such that for i = 1, ***, r, 

(4.3) B,Mij = LUi 2 Li(s) bounded as s -0 oo0 

We define 

(4.4) B =B10( .. GBr 

and then the matrix L, of Section 3 tends to Lio * * ?3Lr as s > oo. 
It remains to study J'3jLjj and Li. It happens that Lij depends on all the 

eigenvalues with magnitude greater than or equal to coi. See [7] or Lemma 6.3. 
Thus the main theorem cannot be established by considering only matrices H all 
of whose eigenvalues have equal magnitude. 

In Section 6 we examine in detail a typical diagonal block Mii = J3iiLii and 
there we drop the index it 

5. Triangular Factorization. If A is a matrix and a = (al, ***, as), d = (1, ..., I j) 
are multi-indices let A O or A (a; A) denote the submatrix of A lying in rows 
al, *., Iaj and columns A1, * * , #j. Let det [Ara] be its minor. We shall need 

(5.1) A complex n X n matrix A permits a triangular factorization A = LU 
if and only if the first n - 1 leading principal minors do not vanish. See [2, p. 11]. 

(5.2) If L = (lij) in (5.1), then 

lij = det [A(1, * *, -1, i; 1, *..*, j)]/det [A(1, *,j; 1, * I j)] 

See [2, p. 11]. 
(5.3) If det [A] 7 0 there is a permutation matrix II such that HA = LU and 

the elements of L are bounded by 1 in magnitude. See [9, Chapter 1]. 
The arguments which yield (5.3) also show 
(5.4) If the elements of A are polynomials in one variable and det [A] 4 0 

then there is a permutation matrix B such that BA = LU and the elements of L 
are rational functions with the degree of the numerator bounded by the degree of 
the denominator. Thus the elements of L are bounded in a neighborhood of in- 
finity of the variable. 

Formula (5.2) shows that the permuted matrices HA, BA in (5.3), (5.4) are 
such that for each j = 1, - * , n -1, 

(5.5) det [BA(1, . ., j; 1, *, j)] is maximal among all 

det [BA (1, * ,j1, i; 1, PI *j), i >! j. 

In (5.3) the ordering is by absolute value, in (5.4) it is by (polynomial) degree. 
In the case of (5.4) let s be the variable. If the degrees of the minors of A are 

independent of s, then B may also be chosen independent of s. We shall study the 
matrix M(s) of (6.1). Nonzero minors of Js are products of nonzero minors of the 
Jis = (JiZ + Ni)s, 64i. = 1. Thus the coefficients of the powers of s do depend 
on the Oas. So to prove that B is independent of s we must prove that the degrees 
of certain minors of M are constant. 

6. Eigenvalues of Equal Magnitude. In Section 4 we reduced the problem of 
finding those subdiagonal elements of H. which tend to zero as s - oo to the study 
of the bounded triangular factorization of matrices of the form 
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(6.1) M=M(s)= J8L, 

where 

J=J1 D **0. J,t 

(6.2) Ji = OiIi + Ni, 10ii = 1, Ii =(el, .. *, emj), 
Ni = (e2, *. *, emi,O), (i = 1, ,t) 

L = the principal submatrix of Ly (see Theorem 2) corresponding to eigen- 
values with some common modulus co and arguments (or signa) 01, * *, Ot. 

For any matrix A and natural number v let Av, Av denote the matrices formed 
from the first v columns of A and last v columns of A respectively. Let Av, A- be 
similarly defined for the rows. 

We order the minors of il/ and Js by their degrees as polynomials in s. Let E xv 
denote summation of the xv, v = 1, ***, t. 

We begin with a crucial but simple result. 
LEMMA 6.1. The maximum v X v minor of Jis is det [(ji8s)j] is unique, and has 

degree v(mi - v). 
Proof. 

Ji= i( " ) Nis-w, where ( ) is a binomial coefficient. 

Consider the minor in rows a = (al, ***, av) and columns: = (f1, *, ). Replace 

(s) 

by so/o-! and observe that the determinant is homogeneous in s of degree 
jai - 1f1, where Jai = al + * * * + ao, and in 6i of degree s - jai + 1i3!. The 
coefficient of these terms is of Vandermonde type and is nonzero. 

The degree is maximized only when a = (mi - v + 1, *, mi), = (1, I , 

and the coefficient of sv(mi-v) is given by 

(6.3) M(V) = 0i8-v(mi-V)(mi - v + 1)!!(v -1)!!/(mi - 1)!!, 

where A!! = k!(k - 1)! *-* 2!. D 
Let Zj(k) = {a = (at, * *, a): 1 < al < < a3 < k, a i integers} and 

Zo(k) -0, the empty set. The order of M and J is ml =E mi. The indices of 
any set of j rows of M could be designated by a nmulti-index in Zj(jml). However,, 
J is block diagonal and it is more convenient to designate row indices by multi- 
multi-indices as follows. Let f = (03, * * *, At), Oi E Zyi(mi) and 1 1 = E gi. Then 
Ma is the submatrix of M obtained by taking the rows of M with indices 

j-l 

(6.4) f3k+Em^, M k * jj t 
P=1 

If !Lj = 0, then 3j does not exist and no rows of MOI involve the submatrix Jj. 
Example. Let m = (4, 3, 3), A = ((3, 4), (2, 3), (3)), 

f11 = 8 +I2 +IL3 =2 + 2?+ 1, M = JsL, 
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M50 is as indicated below. 

x x 
x x x x 0 

x xxx xx 

02 0 x x 0 x x x x x 
_____ _____ x xx ___ ___ x x x x x 

x x xx x x 
0 x x x x x x x 

O3- LX X X X X X X X 

Note that pui is the number of rows of Jis involved in the minor. 
We recall that if v is a natural number, A, designates the first v columns of A. 

If p is a polynomial, deg p denotes its degree. 
LEMMA 6.2 Let a = (al, *.*, a t), aCi E Z,i(m ). Then 

deg det [Ma'i] < ?E pi(m -pi) 
and equality occurs if, and only if, ac = m - (i1, , in), where p - 

(mi--,i + 1, , m%). 
Proof. Let j = l= Zii. By the theorem of corresponding minors (the Binet- 

Cauchy theorem) [2, p. 14], 

det [jLIi1] = z det [(Js)#c,] det [LjO] over all E ( Zj([mf) 

Since J is block diagonal, nonzero terms occur only when ,B yields exactly Ai indices 
corresponding to columns of Ji for each i. Such 3 may be rewritten = (=l1, * * , 
As E Z,,(mi) by using (6.4) and then 

t 
det [(J),`a] = E[ det [(Ji8)-i] (det [Ai] = 1 if ,i O) 

i=l 

By Lemma 6.2 

deg det [(Js)#a] < Z,i(mj - iii) 

with equality if and only if ao = (m -, i + 1, ***, mi), f# = (1, ** , ni).. Denote 
this maximal minor by a = u, ,B = /u. The coefficient of this minor in the expansion 
of det [Mj] is det [Lj]. By Lemma 6.3 det [Lj] 5? 0. The lemma follows. D 

We are now in a position to reorder the rows of M to get a new matrix BM 
with triangular factorization BM = LU where L is bounded as s -? oo. Let row 
-rx of M be row i of BM. Let 7r(j) denote the indices 7ri, 72, **, j arranged in 
increasing order. By (5.5), for j = 1, *.*. , t 

(6.2) deg det [Mjr(i)] ? deg det [Mj1r(F-l)r, i > j. 

COROLLARY. BJB-1 is upper triangular. 
Proof. We say that two indices i, j in i 1, ... , Iml I belong to the same block 

if row i and row j of J lie in the same principal submatrix Jk of J. Let i and j 
(i > j) be indices such that r 7irj are in the same block. Suppose Trj > Tr. Then, 
by Lemma 6.1, the degree of det [Mj(i)] is less than the degree of the minor ob- 
tained by replacing row -rx by row -x. This contradicts the maximality condition 
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(6.2). Hence 7r i < 7rj. But j,i7,i = (BJB-1)ij and the only nonzero off-diagonal 
elements of J have -rx = -rj + 1 and 7r , 7rj in the same block. It follows that i ? j 
for the nonzero elements. [II 

At this stage we have proved that, as s -> oo, the block structure to which H8 
tends is the same as the block structure to which L8 tends. We have seen that L, 
tends to block diagonal form, one block to all eigenvalues with the same magni- 
tude. We have not yet determined the structure to which each diagonal block 
Li tends (i = 1, ** *, r). See (4.4) for the definition of Li. 

The matrix L, is not to be confused with the matrix L of Lemma 6.3 which is 
a principle submatrix of Ly; see (6.2) and Section 4. 

LEMMA 6.3. det [Lji] # 0. 
Proof. Let V = V(X1, ..., X1, X2, ... , X2, X3, ..., * X,) be the confluent Vander- 

monde matrix associated with the eigenvalues Xi of H. For example, 

lI X X12 X13 X 14 

0 l 2X1 3 2 4X 
V(X1, X1, X1, X2, X2) =0 0 1 3X1 6X1 

I X2 X22 X23 X24 
L0 1 2X2 3X22 4X23_ 

Let V = LVUV be the triangular factorization of V. 
In [7] we proved that Ly = Lv and obtained explicit formulas for the elements 

of Lv. The principle submatrix L of Ly corresponds to all the eigenvalues of mod- 
ulus cok (say), see (3.3). Let us relabel these eigenvalues 1, . . ., t and their multi- 
plicities ml, * * *, mt. Let r be the monic polynomial whose zeros are all the eigen- 
values Xi (counting multiplicity) with fXil > COk, while pi, p pt are defined by 
pl(Z) = 1, 

j-l 

pj(Z) = zI (z - i 
i=l 

Let L = (Lii) be partitioned conformably with the Jordan blocks of the 
77 (i = 1, * , t). Then Lii = (lij) is of order mi X mj and in [7] we proved 

lai = (rp i) (a-? (q i) / (a- ! (7p i)( i) , i = j, a > f, 

= (dl/d i) al [ (fl i- -q i) {3-1 (7rp j) (fq i) ] / (a -1)! (p j)() , i > j 
Here (rp) (z) = gr(z)p(z). By omitting the gr in these expressions we obtain the 
elements 1 " of the lower triangular factor L of the Vandermonde matrix 
v = V(71ml, * n tmt) associated with the eigenvalues of magnitude COk. By using 
Leibnitz' rule for differentiating 7rp, we find that 

l't 
3 

(7r 

6 
i)) E 7r(V)," 

6 
t i >j 

To use this result, we define unit lower triangular matrices Ti by 

mi-1 

Ti = , ii(V (n-i)/v!r(rj)Nj`, Ni = (e2, e3, ..., em, 0) 
P=o 

and 

T = T1i * * Tt, D = 7r(ql)IGl . ** G7r(qt)It. 
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Then L = DTLD-1 and, since D is diagonal and T block unit lower triangular 

det [LjA] = det [D,A] det [T,] det [L s]/det [D ji]. 

Now we observe that V,A is itself the Vandermonde matrix associated with 
, ?titandso 

O ? H (na - ) det VjA = det [Li] det [Uj], 
a>: 

the last part following from the triangular structure of C. Since U is nonsingular 
det [Li] # 0 and the lemma follows. El 

7. Block Structure of L as s -> oo. We consider a typical block M = JLi 
(see (4.2)) and drop the subscript i. With the aid of Lemma 6.2 we can describe 
the permutation matrix B and the bounded unit lower triangular factor L in 
BM = LU. 

To determine B it suffices to describe the permutation ir characterized by con- 
dition (6.2). 

Observe first that, by (5.2), for i > j, as s 00, 

(7.1) deg det [M;(i)] > deg det [M.(i-1)r i] impliesL(i; j) -O0, 

and 

(7.2) deg det [M(i)] = deg det [Ml;(i-') r] impliesL(i; j) 4 0 . 

Recall that 7r(j) denotes the indices 7ri, ., 7rj arranged in increasing order. 
We now imagine that the rows of M are taken one by one in some order 

(1-1, 2, . . *) and placed in natural order (1, 2, * * -) in BM. At the ith step, we 
ask which of the remaining rows of M should be chosen as the ith row of BM. 
The process may be described by a Variable index A = (Al, ..., A t). Initially- 
A = (0, ..., 0). When a row is taken from block v (the rows of J which lie in J,) 
the index Au, is increased by 1. This simplification is possible because of 

LEMMA 7.1. The rows of each block in M are taken in decreasing order. Thus , 

indicates that the last A, rows of block v have been chosen and the first m,- p remain 
(v = I,2 ) 

Proof. By Lemma 6.2, ri must be the last index in a block of maximal order. 
As induction hypothesis suppose that at step JA1 the last A, rows from block v have 
been assigned to BM. By criterion (6.2) the next index chosen must make 
det [M7lr (1I++l)] maximal among all other possible choices. By Lemma 6.2 7r ,?+1 
must be the last remaining index of one of the blocks. By the principle of finite 
induction the lemma holds for JAI = 1, **, iml. Dg 

This proof shows that at each step there are at most t possibilities for the next, 
row. Let 

(7.3) d(,) = -,u(mi -u) = Z(mi/2)2 - Z(m,/2 - i)'. 

Then we seek the maximal value, K(AI, + 1), among 

d(li + Ily2 ? 1, ... , t) 

(7.4) ~~~~~~d (lui, ,2 + ly 1-3, .. * *,At) , 
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From the second term in (7.3) we obtain immediately 
LEMMA 7.2. -(I,AI + 1) = d(A) + maxi (mi - 2Ai - 1). 
This implicitly describes the permutation ir and the matrix B. At step I ,u we 

increase one of the ,ui (<mi) which satisfy 

(7.5) mi - 2s = max (mi, - 2,) -E(I,), 

where the maximum is over all v with t,u < m,. If, at step A 1, there is an r-fold 
choice of ,ui which achieve the maximum, then r - 1 steps later, at step 1 ? r - 1, 
there will be a unique Aj achieving the maximum because 

(7.6) E(iI.AI) = E(i, I + 1) = . . . = E(jIL ? r - 1) > E(j/uj + r) 

There is a unique choice for xi,,+, if, and only if, E(IIII) > E((I/L + 1). Hence, by 
(7.1), ass >oo 

(7.7) L(H?J + i; I,I + r) -> , i > r, 

and, by (7.2), 

(7.8) L(I 1.4 + i; 11.u1 + j) +> 0, i, j = I, .. * * r, i > j . 

We thus see that if, at step JAI - 1, there is only one possibility for wrI, and, at 
step JAI, an r-fold choice for 7rl-l+r, then the r X r principal submatrix of L in 
rows jA4- + 1, JAI, +j ? r has no subdiagonal elements which vanish at s = oo. 

We now observe that, at any step, if E(I/uI) = max, (m, - 2A,) is even then 
no i with mi odd could achieve it, and vice versa. Thus an r-fold choice occurs 
only among r blocks whose orders have the same parity. 

Consequently we relabel the multiplicities so that 

el = ml _ e2 =m2 > > ep =mp > ep+= 0 

are even and 

fl = Mp+l > f2 Mp+2 >_ > fq Mp+q > fq+l = O 

are odd, and p + q = t. 
LEMMA 7.3. For each i = I, ..., p, there are ei - ei+i steps when a unique choice 

for W 1r, 1 is followed by an i-fold choice for ir 1, I among the i largest blocks of even order. 
A similar result holds for the odd case. 

Proof. The selection begins with all , = 0. Select any i among {i, , p }. 
We ask when Ai increases to 1. By (7.5) Ai, *, ,p remain zero while at least one 
ej -2j > ei, j < i. On the other hand while Ai = 0 we cannot have ej - 2Zj < e, 
for any j < i. Thus at some stage ei -2j = ei, j < i. This situation obtains 
until the odd blocks satisfy m, - 2A, < ei, v > p. Thus when A is such that 
E(Ipj - 1) > ei, E(I/II) = ei an i-fold choice occurs; any one of l, ..., ,ui may 
be increased. 

By the same reasoning there will be an i-fold choice, following a unique choice, 
at each increase of Ai until ei -2Ai = e?+l at which step an (i + I)-fold choice 
occurs. This yields l(ei - ei+?) occurrences of an i-fold choice. 

However, d(u) = d(m - ,), m = (mi, M, t), and so the selection process 
is symmetric about lm. In detail, we ask when qj increases to l(ei + ei+i). By 
(7.5) again there must be some stage at which 
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e- 2/1k= -e?i+, v <i, 

Aup = ei, v i i+ I,**p, 
m. - 2,u < -ei+l, v > p, 

c-(IA -1-) > -ej+l. 

Again any of A, **, Ai is eligible for an increase. By the same reasoning there 
will be such a choice at each increase of A i until ei - 2/ = - e j, at which point 
an (i - I)-fold choice appears. This yields another '(ei -ei+) occurrences and 
proves the lemma. El 

Since 

(BJB-1) = J.-i, = ci 

it follows that the eigenvalues of the diagonal blocks of H8 whose subdiagonal 
elements fail to converge to zero do tend to eigenvalues whose multiplicities have 
the same parity. 

We have not determined the exact positions of these blocks. These follow 
readily from (7.5) once we know the interlacing of the multiplicities e1, * , e, 
and fi, * , fq when they are ordered monotonically. The details are left to the 
interested reader. 

8. An Example. Consider a 10 X 10 unreduced Hessenberg matrix, necessarily 
complex, with four distinct eigenvalues 01, 02, 03, 04 of modulus 1. Let their multi- 
plicities be m1 = 4, m2 = 3, m3 = 2, m1 = 1. Then 

J K2 
1 0 (8. 1) J1= 1 Oi Io0 1 02 JO\1 03/( 

0 

We give below a table showing , = (All, A2 A3, /4) and E(j1J) = max (mi, -2), 

AV, < n,. 

1Al A1 /2 /3 /14 e(AD 

0 0 0 0 0 4 
1 1 0 0 0 3 
2 1 1 0 0 2 
3 2 1 0 0 2 

(8.2) 4 2 1 1 0 1 
5 2 2 1 0 1 
6 2 2 1 1 0 
7 3 2 1 1 0 
8 3 2 2 1 -1 
9 3 3 2 1 -2 

10 4 3 2 1 

Consequently one choice for B is given by 

B* = (e4, e7, e3, e9, e6, eio, e2, e8, e5, el) 

and- 
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X1 0 1 0 0 0 0 0 0 0 
X2 0 0 1 0 0 0 0 0 

X1 0 0 0 1 0 0 0 

* X3 0 0 0 1 0 0 

(8.3) BJB-1 X2 0 0 0 1 0 

* X4 0 0 0 0 
Xi 0 0 1 

* X3 0 0 

X2 0 

X_- 

Here the asterisk indicates that although BJB-1 is triangular, the matrix Q8 tends 
to diagonal form except for 2 X 2 principal submatrices in rows 3, 4 and 5, 6 and 
7, 8. Since H8+? = Q8(RBJB-lR-l)Q8* it follows that h( s hUs) and h(s) are the only 
subdiagonal elements which fail to converge to zero as s oo. This does not con- 
tradict the convergence of the algorithm in our use of the word. 
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