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Abstract. An alternating direction iteration method is formulated, and con- 
vergence is proved, for the solution of certain systems of nonlinear equations. The 
method is applied to a heat conduction problem with a nonlinear boundary con- 
dition. e 

1. Alternating direction methods are often used for solving the sets of linear 
equations arising from the discretization of elliptic boundary value problems [11, 
[2], [3]. In this paper, an alternating direction method is formulated for a certain 
nonlinear system of equations. Convergence of the method is established in the 
case of a single iteration parameter. Finally, the method is applied to a set of equa- 
tions arising from a steady-state heat conduction problem with nonlinear boundary 
conditions. Such boundary conditions occur when energy is transmitted from the 
boundary of the region by means of radiation or by means of natural convection 
to a liquid [4, p. 21]. 

2. It is desired to solve the system of n equations in n unlnowns 

(1) AA(u) = 0, 

where A is a continuous, not necessarily linear, vector-valued function of the real 
n-dimensional vector u. Letting H(u) and V(u) be continuous vector functions such 
that A (u) = H(u) + V(u), the iterative scheme under consideration is 

(2) rufl+1/2 + H(unf+l/2) = ru n- V(u8) 

rufn+l + V(un+l) = run+/2 H(un+/2) , n 01, 

where u? is an arbitrary guess of the solution of (1), and where r > 0 is fixed through- 
out the rest of this paper. It will be shown that under certain conditions, (1) has a 
unique solution u, (2) may be solved uniquely for Un+l1/2 and un+l, and Un converges 
to u. 

Let (u, v) and liull denote respectively the usual inner product and norm ofthe 
real vectors u and v. A function B is called strongly monotone if there is a c > 0 such 
that 

(3) (B (u)-B (v), u-v) _ cllu-vll2, all u, v. 
If c = 0 in (3), B is called monotone. (In a complex space, (3) is modified by taking 
the real part of the inner product.) The analysis of (2) relies on the following theo- 
rem of Minty [5]. 

THEOREM 1. If B is continuous and strongly monotone, then Bu = f has a unique 
solution for any f. 
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This result is true, when properly stated, in infinite-dimensional spaces. A proof 
in the finite-dimensional case may be found, for example, in [6, p. 69]. 

It will be assumed that H and V are monotone, and either H or V is strongly 
monotone. Then A is strongly monotone and from Theorem 1, (1) has a unique 
solution. Also, letting I be the identity operator, Iu = u, the functions rI + H and 
rI + V are strongly monotone. This gives the following lemma. 

LEMMA 1. If H and V are continuous and monotone, (2) defines, for each u0, a se- 
quence U1/2, IUl. 

If B is continuous and monotone, Theorem 1 allows us to define (rI + B)-' to 
be the inverse operator to rI + B. We set TB = (rI - B) (rI + B)-'. B is said to 
satisfy a Lipschitz condition on a set S if there is a constant K > 0 such that 
IIB(u) - B(v)ii ? Klu - vi when u E S, v E S. Then we have the following 
result. 

LEMMA 2. If B is monotone, then TB satisfies a Lipschitz condition with constant 1. 
If B is strongly monotone and satisfies a Lipschitz condition on bounded sets, then on 
any bounded set, TB satisfies a Lipschitz condition with constant < 1. 

Proof. Let v, w be given, and let vi = (rI + B)-1v, w, = (rI + B)-'w. Then 

IiTB(v) - TB(W)112 - llrv, - B(v) -rw -r- B(wi)112 a- b < 

liv - wll2 llrv, + B(v) -rw, - B(w)ll2 a + b = 

where 

a = r' + 2 IB(v,) - B(w,) i b2 2r (B(v,) - B(w,), v1 - w,) 
llv, - will2 liv, - will2 

Hence TB satisfies a Lipschitz condition with constant 1. It is easily seen that 
a ? b ? 2rc, where c is the constant of (3). If v and w are restricted to a bounded 
set, then v, and w, lie in a bounded set of vectors. Suppose that, in this set, B satisfies 
a Lipschitz condition with constant K. Then a ? r2 + K2, and 

iiTB(V) - TB(W)ii2 - a - b r2+ K 2 - 2rc 

iV_-w1i2 a+ b r r2+K2+ 2rc . 

This completes the proof of the lemma. 

The convergence theorem for the alternating direction scheme (2) can now be 
given. 

THEOREM 2. If H and V are monotone and either H or V is strongly monotone and 
satisfies a Lipschitz condition on bounded sets, then for any u?, the sequence u1/2, ul, 
defined by (2) converges to the unique solution u of (1). 

Proof. Defining vn = (rI + V) (Un), vn+1 /2 = (rI + H) (U+112), (2) may be written 

(4) vn+1f/2 = Tv (Vn) , vnl? = TH(Vn+l/2) 

Similarly, defining v = (rI + V)(u), w = (rI + H), we have from (1) 

(5) W= Tv(v), v TH(w). 

From (4), (5), andLemma2, ilvn - VII iiv1/2 -wll, llvn+1/2 - wll < 11v112- wil, for 
n = 1, 2, * , so the vectors v, w, and v1, j = O, 2, 1, * , all lie in a bounded set. 
Appealing again to (4), (5), and Lemma 2, we find that there is a positive constant 
p < 1 such that iivn+i - vil ? pllvn- vl. It follows that vn -* v, Vnl/2 -> w. Since 
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(rI + H)-1 and (rI + V)-1 are continuous, uj -i u as j -o through integer and 
half -integer values. 

The proof of this theorem actually shows that the convergence is geometric, 
lui - ull = O(pi). To implement these iterations one must solve the nonlinear 
equations (2). It will be shown how this is possible in certain cases. 

3. To apply the iterative method (2) we consider in a domain D of the xy plane 
the boundary value problem 

(6) -V (k (x, y) VT (x, y)) =q (x, y), in D 

(7) -k(x, y)aT(x, y)/an = g(x, y, T(x, y)), on aD 

where k > 0 in D, and n is the outward pointing unit normal vector to the boundary 
AD of D. Such a problem may arise, for example, in the theory of nonlinear heat con- 
duction [4, p. 21]. We will assume that for each (x, y) E AD and for each M > 0, 
g(x, y, T) satisfies a Lipschitz condition in T when I TI < M. Also, we assume that 
for some d > 0 and any real T1 and T2, 

(8) g(x, y, T2) - g(x y, T,) > d, (x, y) E= AD 

To obtain a difference approximation to (6), (7), we assume that AD is a polygon 
and that there is superimposed on the xy plane a rectangular grid of mesh lines 
drawn parallel to the x and y axes and dividing the xy plane into a set of rectangles 
such that if the polygon D intersects one of the rectangles, the intersection must be 
either a vertex, a side, or a diagonal of the rectangle. We employ a commonly used 
difference approximation, discussed for example in [3], but modified to take into 
account the nonlinear boundary condition (7). In this difference approximation the 
unknowns are the values u(P) of the approximate temperature u at the mesh points 
P EE TD. To describe the difference approximation we let Ao be the matrix of co- 
efficients of the difference approximation [3] of the linear boundary value problem 
consisting of (6) with the boundary condition aT/an = 0. Then discretizing the 
nonlinear problem (6), (7), gives rise to the nonlinear system of equations A (u) = 0 
where A (u) = Aou - + -C(u), with q a constant vector and C(u) defined, at any 
mesh point P E D, by 

(9) C(u) (P) = 0, P E aD 

= l(P)g(x, y, u(P)), P = (x, y) E AD . 

The positive quantity l(P) is defined for each mesh point P E aD by 

(10) 1 (P) = -(PP1 + PP2) 

where P1 and P2 are the two mesh points on aD lying next to and on either side of P. 
Following [3] we write Ao = Ho + Vo where Ho and Vo are symmetric, positive 

semidefinite matrices. Similarly, we define for each mesh point P E aD, l(P) = 
1H(P) + lv(P) where, if P, P1, and P2 are as in (10), and if Oj is the angle the line 
PPj makes with the x-axis, then 

lH(P) = (PP1 COS2 01 + PP2 cos2 02), P E aD 
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As in (9) we define CH(U) and Cv(u) with C = CH + Cv, and we define 

(11) H(u) = Hou + CH(u) -2 

V(u) = Vou + Cv(u) --2 

(See also [3, p. 223].) With these definitions we have the following lemma. 
LEMMA 3. A, H, and V are continuous and strongly monotone. 
Proof. Continuity follows from continuity of g(x, y, T) as a function of T. To 

prove that A is monotone, note that from (8), 

(I12) (A (U)- A(v)} u -v) > (AO(U - V), U -V) + d E (U (P) - v(P))' 

The right side of (12) is a nonnegative quadratic form in z = u - v which may be 
written (A z, z). The matrix A1 is easily found to be a nonsingular M matrix [7]. 
Hence A1 is positive definite and A is strongly monotone. H and V are treated in 
the same way. 

Using Lemma 3 and Theorem 2 we deduce immediately 
THEOREM 3. If H and V are given by (11) and u? is arbitrary, the iterations u1, 

k= -, 1, * * *, given by (2) converge to the unique solution u of A(u) = 0. 

4. For the iterative scheme to be of use we must be able to solve equations of 
the form 

(13) rv - H(v) = 

(14) rw + V(w) = 

where H, V are given by (11). This may be accomplished by the following trick, 
suggested by W. Guilinger. The component of rv + H(v) at a mesh point (xj, yi) 
depends only on the values of v at mesh points (xk, yi) on the same horizontal line. 
Thus, to solve (13), it suffices to consider equations of the form 

(15) rvi + Ho,ivi + CHmi(vi) =t 

the subscript i denoting projection onto the ith horizontal line. rI + Ho,i is a tri- 
diagonal matrix and hence easily invertible. Calling the inverse Ei, we write 

(16) v, = Eii- EiCH i(vi) 

Suppose the ith horizontal line meets D at only two mesh points, the points on 
columns jo and ,i. The vector CH,?(v ) has components all 0 except at the points on 
columns jO and ji. Hence one may extract from (16) a simultaneous pair of equations 
in the unknowns vj1,i and vj ,i. When these are solved, the remaining components of 
vi may be found from (16). The solution of (15) has thus been reduced to the solution 
of two sets of tridiagonal linear equations, plus a set of simultaneous nonlinear 
equations in two scalar variables. Equation (14) is handled in the same way. 

If the function g(x, y, T) is continuously differentiable in T and if cdg/aT > 0, 
then it may be shown that the nonlinear pair of equations extracted from (16) may 
be solved by Newton's method and convergence is assured with any initial guess. 
To see this, note that with the hypotheses on g, (15) may be solved for v i by Newton's 
method and convergence is guaranteed. (See, for example, [8] or [9].) The Newton 
iterations for (15) may be written 
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(rI + Ho, + CH, i(vin)) (v+l v v i) = -rv _ Ho,- - CH,i(Vi ) 

or 

(17) -i 
+' E4i -EiCH,j(v1 - v -)EiCHi(vin) 

Again, one may extract from (17) a pair of equations for the components of v n+l at 
the mesh points (jo, i) and (jr, i). These equations are the Newton iteration equations 
of the nonlinear system extracted from (16). 
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