
Generalized Finite-Difference Schemes 

By Blair Swartz* and Burton Wendroff** 

Abstract. Finite-difference schemes for initial boundary-value problems for 
partial differential equations lead to systems of equations which must be solved at 
each time step. Other methods also lead to systems of equations. We call a method 
a generalized finite-difference scheme if the matrix of coefficients of the system is 
sparse. Galerkin's method, using a local basis, provides unconditionally stable, 
implicit generalized finite-difference schemes for a large class of linear and nonlinear 
problems. The equations can be generated by computer program. The schemes will, 
in general, be not more efficient than standard finite-difference schemes when such 
standard stable schemes exist. We exhibit a generalized finite-difference scheme for 
Burgers' equation and solve it with a step function for initial data. U 

1. Well-Posed Problems and Semibounded Operators. We consider a system 
of partial differential equations of the following form: 

(1.1) au/at = Au + f, 

where u = (ui(x, t), U. Um(x, t)), f = (fi(x, t), * , fm(x, t)), and A is a matrix of 
partial differential operators in x = (xi, **,) 

A =A(x, t,D) = ZaiD', 

D= (a/lx1) t .. . (a/lx,)in 

ai(x, t) = ... in (x t) = matrix. 

Equation (1.1) is assumed to hold in some n-dimensional region Q with boundary 
au. 

An initial condition is imposed in Q, 

(1.2) u(x, 0) = u0(x), x El Q. 

The boundary conditions are that there is a collection 63 of operators B(x, D) such 
that 

(1.3) B(x, D)u= 0, x E a, B E? 63. 

We assume the operator A satisfies the following condition: There exists a scalar 
product (,) such that for all sufficiently smooth functions +(x) which satisfy (1.3), 

(1.4) 2Re(AO,4) < C(,), O<t < T, 

where C is a constant independent of p. An operator A satisfying (1.4) is called semi- 
bounded. A general theory of such operators is given by Kreiss [6], Lions [7], and 
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in the case C = 0 by Lumer and Phillips [8] (see also Yosida [15]). If the operator A 
is independent of t, and if f = 0, this condition is essentially necessary and sufficient 
for the solution operator to form a semigroup on a suitable space; therefore (1.4) 
is not really a restriction for physically interesting problems. 

It now follows from (1.1) that 

(Ut, u) + (u, Ut) = (d/dt)(u, u) Q C(u, u) + 21(f, u)I, 
or 

d IIuII2 < (C + 1)11U112 + .IlfI!2 

Therefore, 

(1.5) IIU(t)112 < e(C+1'tIIu(0)Il2 + 
f 

e(C+1)(t-t')If(t,) 12dt' 

In other words, we have an energy inequality for the solution u(t), which means that 
our problem is well posed. 

A trivial example of a semibounded operator is the scalar operator 

A = -,/,x + a, x > O 

with boundary condition u(O, t) = 0, for if we put (u, v) = J uvdx, then 

(Au, u) =-J uxdx + fruu-dx 

0~~~~~~~~~ 
= lu (a) 12+ |uu-,x + Jau7udx 

=-(Au,u)- Iu(a)l2+2f Reaufdx. 

Thus, 

2 Re (Au, u) _ 2 max lal(u, u). 

The classical linear equations of mathematical physics, with suitable boundary 
conditions, are all based on semibounded operators. In a later section we discuss an 
extension of this notion to nonlinear equations, in particular Burgers' equation. 

2. An Approximating System of Ordinary Differential Equations., Let 45i(x), 
i = 1, 2, * , N, be linearly independent functions (vector-valued) satisfying (1.3). 
In the applications each 4i will depend on N, but this dependence is suppressed for 
notational simplicity. 

We seek a function v(x, t) of the form 

(2.1) v(x, t) = E ci(t)0i(x) 

This function will be the solution of the following system of ordinary differential 
equations 

(2.2) Mvt-Avt-hf, t i) = O , i = 1a 2n s e a Nv . 

Multiplying the ith equation by es and summing we have 
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(2.3) (v t-Av -f,v) = 0. 

It follows immediately that v(x, t) satisfies the energy inequality (1.5). 
The initial condition on v(x, t) may be taken to be 

(2.4) (v,40) (u(x,0),), i = 1,2, ... ,N. 

In that case 

(v(0), v(0)) = (u(0), v(0)) ? IIu(0)II IIv(0)II 
or 

(2.5) .Iv(0)II ?< Iu(0)I1 
It follows from the energy inequality that Ilv(t) I is uniformly bounded for 0 < t < T, 
independently of the choice of ,i. 

To discuss the convergence of v(x, t) to u(x, t), let w(x, t) be any function of the 
form w(x, t) = E wj(t)45(x) and let Lu = au/at - Au - f. Then 

Ilu - vil ? Ilu - wlI + llw - vil 

Now, let e v - w. Then, (Lv - Lw, e) = -(Lw, e), and 

d i1eii2 ? Ciieii2 
+ 21(Lw, e)i I 

So e(t) satisfies (1.5) with u replaced by e and f by Lw. Therefore we have 
convergence in the norm, as N-* oo, if for each N there exists a function w(x, t) 
E wi(t) 45(x) such that llw - vll(0) -O 0 and. 

liu-wil O- , IiLwl O-0 

uniformly in t. This means that u(x, t) must be well approximated by linear combi- 
nations of the 4i. 

It is also possible to obtain an a posteriori error estimate. Let a = u -v. Since 
Lu = 0, (Lu - Lv, 3) =-(Lv, 5), therefore 

0 (2.6j 118 (t)11l2 < e (c+') tl ( l 2 + e e(C+ 1) ( t- t ) I ILv 1l 12dt' . 

The existence of this. error estimate makes this method particularly attractive; 
however, we do not pursue this any further in this paper. The system (2.2) is dis- 
cussed in Lions [7]. 

3. An Approximating Discrete System. The differential equations obtained in 
the preceding section can only be solved numerically; therefore one might as well 
start out by replacing the time derivative by a difference quotient. We do this as 
follows: Let Vn(x) be a function of the form 

(3.0) v8(x) = c 

For each n let 

(3.1) <n+1 _ vn - A (tn+1/2) At (Vn+l + Vn) -fAt, > =0, i= 1, 2 ..*, N 

A different system is considered by Lions [7]. We take initially 
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(3.2) (v0,4i) = (uo,4 i) . 

The matrix ((pi, fj) is positive definite, so (3.2) has a unique solution {fci, 
CNO }. Suppose the C,n have been found. Then (3.1) has a unique solution if and only 
if the system 

(vn+ -A(tn+?/2) Atv n+/2,) = 0 

has only the trivial solution. Multiplying by C n+l and summing we have 

(vn?l, vn+l) = (A tvfl/2 Vn+l 

Then 

(vn+l, vn+l) = Re (AAtvn+l/2, Vn+l) 

<- (AtC/4)(Vn+l vn+l) 

Thus, if 

(3.3) CAt < 4, 

(3.1) has a unique solution. 
We obtain an energy inequality from (3.1) by multiplying by (C!n+l + Cin) and 

summing over i. This leads to 

Ivn?11 2 _ flvnI2 < C At lvn+ + vn1I2 + Atl(f, vn1 + vn)|. 

Using the Schwarz inequality, the triangle inequality, and dividing by flvn+1'l + 
IvInll we get 

(3.4) ||v n|| v' <1 + CAt/4 nIIvil + At l 
(3.4) ~ ~ ~ 

- 
-CAt/4 l 1-CAt/4Ifl 

This implies that 

(3.5) IIv8II < K1 (At, t) Ilvll + (max 1 fW )K2 (At, t) 

where 

lim K1 (At, t) = e tI2 lim K2 (At, t) = f ec(tt')/2dt' 
At-+0 At-+0 0 

Let Wn(X) = E w,n,(x). Let 

L W8lWn (Wn+l + n)-. Lw = W - 1A + 

Then, similarly as in Section 2, if as N -oo, At 0, 

(3.6) Ilu (nAt) -wn __, 0 v0 -wll 0 

and 

(3.7) IHLwII O 0 
uniformly in n, nAt < T, for some Wn(X), we have convergence. 

We have exploited the semiboundedness of the differential operator A to obtain 
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a convergent discrete scheme. This has also been done by Kreiss [6] in a different 
way. 

4. Approximating Systems of Higher Order in Time. The system (3.1) has been 
shown to be convergent as N -- oo, t -O 0 if (3.6) and (3.7) hold. We might, how- 
ever, keep N fixed and think of (3.1) as an approximation to (2.2). In that case there 
are approximations of higher order in LAt that might be considered. Suppose that 
f 0 and A is independent of t. Then there is no loss of generality in assuming that 
C = 0, in which case we have IIvn+'II ? jjvn'l. 

Now, let 

(4.1) P= {(j, p)} 

(4.2) Q = {(Aoj, 0}. 

Then (2.2) becomes 

(4.3) dc/dt = P-'Qc Sc, 

where c(t) = (cl(t), ... , CN (t)). Let 

(c, d) = (ZE cio(x), E d ii(x)) 

and let IISII be the induced norm. From (3.1) we have 

c = (I - AtS/2)f1 (I + AtS/2)C 

Since 

|Cn 1 || II|Vn+1II < lIVnil = 11cnil 

we have shown that 

11 (I - AtS/2)-1 (I + AtS/2) 11 < 1. 

Let r(z) be a diagonal element of the Pade table for ez. Then llr(SAt)II ? 1 (see 
Thome6 [14]) and Cn+l = r(SAt)cn will be a stable (in N and zt) discretization of 
(4.3). By choosing the right r(z), the truncation error (for fixed N), will be O(At)t 
for any 1. 

5. Nonlinear Problems. Much of the previous discussion can be extended to 
nonlinear problems. Suppose the problem is 

(5.1) Ut = A(u) + f, 

where A (u) is a nonlinear operator. Suppose further that 

(5.2) 2 Re (A (u) -A (i), u-i) _ C(u-a, u-i2). 

Then (5.1) is well posed, for if u, 'a are two solutions corresponding to different, 
initial data, and if a = u - a, then 

d 2 < 

so that we again have an energy inequality. 
An example of an operator satisfying (5.2) is 
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A (u) = aa f(u), f'(y) _?O, u(O) = u(l) = 0 . 

We set up a nonlinear approximating discrete system as follows: 

(5.3) v + vn _ AvtA ((Vn+l + Vn) /2) - Atf, q5 ) = O, i = 1, 2) - ) N. 

Let c = (cn+l, * *, CN), and let P = { 4)s}. Then (5.3) can be rewritten as 

(5.4) c + G(c) = 2b 

where 

b= cj + At (P-) ij(f, s 2), 

(G(c))i = ci- 2At (P-1)i<A ( + )>2 

For any vectors c, c in CN, let v(x) = E ci0i(x), V(x) = E fpi(x), and let 
(c, d) = (v, v). Then (c, d) = Ei (Pc)Adi, so 

(G(c) -G(d), c- ) = (v-V, v -)-4tKA(A + v)-A 
+ 

vn)v-v> 

Therefore, 

Re (G(c) - G(J), c - ) > (1- CAt/2)(v - , v - v) > 0 

if CAt < 2. 
Thus, G(c) is a monotone operator in the sense of Minty [9]. Minty proves, for 

Hilbert spaces, not just eN, that (5.4) has a unique solution if G(c) is monotone. 
Of course (5.4) will have to be solved by iteration. In the numerical example 

considered in the next section a form of nonlinear successive substitution was used. 
We conjecture that there is some "natural" iteration which is sure to be convergent. 

A nonlinear problem which does not quite fit the hypothesis of semiboundedness 
is provided by Burgers' equation: 

(5.5) A(u) =eu,x-uux, f=0, E>0 

with boundary conditions u(O) = u(l) = 0. It is shown in Lions [7] that if 

(u, v) = f u(x)v(x)dx, 

then (A(u) - A('a), u - a) ? C(u)(u -, u - ). In this case the constant C(u) 
depends on one of the functions. However, we can still make a statement about 
convergence; we now require in addition to (3.6), (3.7), that C(wn) ? const for 
nAt < T N oo. 

There are some practical questions concerning the use of (5.3). Suppose that 
(u, v) = f u(x)v(x)dx. Then, except in very simple cases, the numbers (A(v), 4i) 
should be generated by quadrature formulas. That is to say, if g(x) = A (v) (x) then 

(5.6) (A (v), ki) a E ag (xj)4i(xj) 

with suitable weights {fai}, and nodes xj. In this way the equations (5.4) can be 
formed by a computer program. Done in this way, however, the method is very 
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inefficient, for (A (v), qi) must be recomputed at each iteration. Even in the linear 
case (Av, pi) must be recomputed at each time step if the coefficients of the differ- 
ential equation depend on t (but see above (5.4)). 

One possibility for speeding things up is to replace A (v) (x) by a linear combina- 
tion of the efj, by interpolation. Probably, however, some derivatives should be 
removed by integration by parts. For example, for Burgers' equation 

(5.7) f idX(u2)X&dx - J 2 u adx 

Now replace u2(x) by E dXi(x), so that f kj(Ock/Ocx)dx need be computed only 
once. This seems to work in this case (see next section). In general, of course, we 
would be perturbing the operator A, and there is no guarantee that the problem is 
stable with respect to such a perturbation. 

6. Local Bases and Generalized Finite-Difference Schemes. We now observe 
that in many cases an inner product under which the operator A is semibounded is 
given by an integral over the set U?. Therefore, if each q i vanishes outside some small 
set Qj, the matrices derived from (3.1) are sparse. The analogy with finite-difference 
schemes becomes more direct if there are, say, N of the xi in Q such that 4j(xi) = j 
for then the ci" in (3.0) are v (x) and, through (3.1), become approximations to 
u(x , nAt). Similarly, other unknowns might be the derivatives of v in various 
directions. In other cases (like that of the splines to be discussed), although 
q5(x*) # -i.j, v may still be regarded as giving a smooth interpolation of a function 
which approximates u(x, nAt) at the xi. The (pi to be considered here, then, are 
functions whose support in Q is small and which satisfy the boundary conditions 
(1.3). The matrix problem then generated by (3.1) we shall call a generalized finite- 
difference scheme. The set of functions { 4 } is called a local basis. 

We now restrict our attention to one space dimension, reserving a comment on 
higher dimensional problems for the end. 

As an example of (3.1) we consider the heat equation using piecewise linear 
approximations. That is, we consider 

(6.1) Utt = usx, (x, t) E (0, 1) X (0, T] 

u(0, t) = u(1, t) = 0, -u(x, 0) = uo(X) 

The operator A = 82/8x2 is semibounded with respect to the inner product 
( = Jl fgdx, with constant C = 0. Let h = 1/N, and let oi be the local basis 
for piecewise linear interpolation of a function at xi = i/N, i = 1, 2, *, N - 1: 

?(x)= (x - x_)/h, Xi- X <xi, 

(6.2) -(xi+1 - x)/h, xi < x < xi+,, 
-0, otherwise. 

Since q$i(xj) = ij the coefficients cen of (3.0) may be regarded as vin = vn(xi). We 
make a weak extension of c2/lx2 to continuous, piecewise differentiable functions 
v by setting 

(02/xa2, W)- -X /1w + vxw 
0o 
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(Although the piecewise linear functions are not in the domain of A = 82/8x2 we 
have selected them for our example because the inner product, as extended, is 
quite easy to calculate and yields by (3.1) a matrix problem which bears a very 
strong resemblance to a quite reasonable finite-difference scheme.) Applying (3.1) 
we obtain equations which are (with the notation vi t = (V,n+l - V,n)/ At and vny = 

(Vn-2vn + v' )/h2) 

(6.3) (Q)(vi+1,t + 4i, t + v_ = (i)(v1t + VXx) 

(Next to the boundaries, (6.3) is to be regarded as holding with v o = VNn = 0, all n.) 
If At = Xh2 this is equivalent to (5) on page 189 of Richtmyer and Morton [10] 

with 0 1/2 - 1/6X; thus is quite close to their accurate and stable scheme (6) 
where 0 = 1/2 - 1/12X. The initial condition (3.2) amounts to integral least squares 
approximation of the initial data by piecewise linear functions. 

Because 82/8x2 remains (weakly) semibounded on the piecewise C1 functions, 
the proof that JJvn+1JJ < ? vnll of Section 3 holds. Our convergence analysis breaks 
down, however, for IIa2v/ax22I remains undefined. 

Suppose, now, the boundary conditions in (6.1) are of the form 

(6.4) ux(0, t) = aou(0, t), ux(l, t) =-alu(1, t); ao, a1 > 0, 

(for which A = 82/8x2 remains semibounded as before). A local basis, 4's, for the 
space of piecewise linear functions satisfying (6.4) is given by 4'i = qi, 2 < i < 
N - 2; together with the linear combination, ,11, of 4o and q51 which satisfies (6.4) 
and 411(xi) = 1, plus a similar linear combination, 4w-i, of qN-l and 4N. It is seen 
that v(0) and v(1) do not enter the resulting matrix problem; from the difference 
equation viewpoint the "boundary" equations have already been substituted in 
the "interior" equations. However, one can regard the resulting matrix equation as 
(6.3) at each interior mesh point together with two additional equations for 
Von = v(0) and VNn = v(1) of the form 

(18 _ vo )/h = [ao + 0(h)]vl; 

(vN - vN1)/h = [-a, + 0(h)]VNr-i - 

Other schemes, probably more accurate at the boundaries, could be found by placing 
the boundary h/2 from its interior neighbor or by using local bases for piecewise 
quadratic (or higher degree) interpolation near each boundary. The support of the 
latter local basis functions spreads farther than h into the interior; thus, from the 
difference scheme view, they let more interior mesh points interact with the bound- 
ary data. 

We should emphasize that we do not necessarily intend that the user of this 
method explicitly calculate the coefficients of the matrix problems, as we have done 
in (6.3). Rather, we expect the coefficients to be obtained by numerical quadrature. 
As we have indicated in Section 5, this will be very inefficient unless the coefficients 
of the differential operator are independent of t, or unless one is willing to replace 
those coefficients by functions of the form E ai(t)fi(x), in which case the quadra- 
tures need be done only once. 

Before leaving the piecewise linear approximations for higher order ones we 
wish to consider another example: that of Burgers' equation 

Ut + Uux- EUx - 0. 
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It was indicated in Section 5 that the space operator is semibounded in the sense 
of (5.2) under the inner product (f, g) = I fgdx with appropriate boundary con- 
ditions. Applying the previously discussed piecewise linear technique we arrive 
at the matrix problem, (in the notation preceding (6.3) together with ve = 

(v +1-vi-1)12h), 

0 = (vi+i,t + 4v,t + vi-,t)/6 

(6.5) + 2[8v (v +1 + vf + vt-1)/3 - Ev x] 
+ I Vn+l Vn+l n+I n+l1 n+1 

+ x (1 + VS + vit1)/3 - Evxj] 

As initial data we used 

uo(x) = 1 0 < x < 1/2, 

=0, 1/2?x<1; 

and took v(x) at t = 0 to be the integral least squares piecewise linear approximation 
to uo(x). (It might be noted that this type of approximation exhibits symmetric 
Gibbs phenomenon of about 13% of the jump at each corner of the discontinuity.) 
Cole [4] exhibits the exact solution of Burgers' equation with such discontinuous 
data for the pure initial-value problem; it is a wave traveling to the right at velocity 
1/2 which has the shape (asymptotically, as t becomes large) of [1 - tanh (x/4E)]/2. 
We considered, however, the boundary-value problem, fixing u(0, t) - 1 and 
u(l, t) _= 0. Rather than subtract off, say, 1 - x to make the boundary data homo- 
geneous by putting a source in the equation, we simply formed (6.5) by applying 
(3.1) with 

N 

v(z) = E cE ?ni(X), CC 1, CN = 0 
i=O 

taking inner products only with the qi of (6.2) with i = 1, ..., N - 1. 
The matrix problem was solved at each time step by making a guess of Vin+ 

using (6.5) with the average of Vt replaced by vi t and all space differences taken at 
time n At, then applying the following nonlinear successive displacement technique: 
regarding (6.5) as a system of equations g,(vn+l) = 0; replace Vin+l by vin+l - 

gi(Vn+')1[Og91OV,n+1(vn+1)], and sweep from right to left (i = N - 1, N - 2, * , 1). 
Convergence of this process to the solution of (6.5) generally occurred in 6 to 8 
sweeps (convergence was judged complete when (6.5) was satisfied with a maximum 
error of 10-4). Sweeping from left to right took perhaps 3 times as many sweeps to 
attain comparable convergence. 

Some of the results are indicated in Fig. 1. Fig. la is a graph of the initial data 
with h = 1/100. The half-width of the final traveling wave of this amplitude may 
be estimated from Cole's solution as 9E to M4e (depending on whether one can 
discriminate between 1% or 0.1% of the wave height and 0, respectively). Fig. lb 
indicates the final form (taken at t = 1/2) of the traveling wave calculated using 
(6.5) with e = 3 X 10-32 At = h = 1/100. Fig. lc shows the result under similar 
conditions with e = 7.5 X 10-g. Experiments with other parameters indicate (as 
might be expected) that, when the wave width is less than about 4h or 5h, permanent 
oscillations are found in the shape of the numerical solution in back of the crest. 
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FIGURE 1. The significant part of some piecewise linear approximate solutions to Burgers' 
equation using (6.5) ff with At = h = 1/100. 

Anticipating that with a more complex set of basis functions or a more involved 
nonlinear term, one would really like to compute the inner products once and for all 
(rather than recomputing those involving the nonlinear terms at each time step), 
we tried expressing uu, in Burgers' equation as l(U2)., interpolating u2 as u u24, 

and then using (5.7). The resulting matrix problem is remarkably like (6.5); being 
obtained from it by replacing (v +1 + vi + v i1)/3 by (v +1 + v j1)/2. The numerical 
results are essentially the same. 
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We now turn to the use of local bases which, if applied to interpolate a smooth 
function of one space variable, would yield more accurate approximations than 
piecewise linear interpolations do. 

The first example is the local basis for local two-point Hermite interpolation of 
degree 2k + 1 (see, for example Ciarlet, Schultz, and Varga [3]). The coefficients 
may be regarded as v (xi), v'(xi), * *, v (k) (xi). The local basis is two mesh intervals 
wide. Each element, cij, is a polynomial of degree 2k + 1 between the xi = i/N; 
is in Ck[O, 1]; is identically zero outside [xi-,, xi+,]; and satisfies 

100 (z1l) = ozj(xt+) = 0 c/i(xi) = j, Il,j = 0, *, k; i = 0, .,N. 
For a given mesh size, h = 1/N, there are about (k + 1)N elements in the basis; 
and the (k + 1)N X (k + 1)N matrices which result from integral inner products 
have band widths of 4k + 3. Error bounds for the interpolation of f E C2k+2[O, 1] 
are of the form 

JJf(l) - f(j)Xi)+.l?l _ 0(h2.2 ), 0 
? 1 ? 

2k + 1 
i,j 

The second example of such a local basis is the basis for polynomial spline 
interpolation of degree m = 2k or 2k + 1 (see, e. g., Schoenberg [11, p. 71], [12], 
and de Boor [5]). There are roughly N basis functions. Each element ci vanishes 
outside an interval of width (m + 1)h, is strictly positive inside that interval, and 
is in Cm-1[0, 1]. The roughly N X N matrices which result from integral inner prod- 
ucts also have a band width of 2m + 1. Error bounds for some forms of spline 
interpolation of f E Cm+1[O, 1] have been shown to be of the same order as those 
for the corresponding Hermite interpolation: IJf(l)- ci)illlo _ O(hm+l-l), 0 _< 1 
_ m (see, e. g., Swartz [13]). 

Now, it is clear that we can satisfy any homogeneous boundary condition by 
only including those basis functions which are identically zero at the boundary; it 
is just as clear that we would be leaving out too many basis functions. In other 
words, we would be satisfying extra boundary conditions which would, in general, 
reduce the accuracy of our solution. So, we must find linear combinations of basis 
functions which satisfy the given boundary conditions, but, roughly speaking, not 
any others. We do this as follows for the scalar case: suppose the differential oper- 
ator, A, is of order (-; and suppose the boundary condition at x = 0 is 

(6.6) [Bu](O) [(Z,b1D )u](O) = 0, 

where ? is a nonempty subset of {0, 1, * * *, (-1 1} (this restriction on the order of 
B is not essential); b, F 0, 1 E e . 

Consider first a local Hermite basis of degree 2k + 1 not less than 2(- + 1 (so 
that A may be applied without difficulty). If ? consists of a single integer, 1, simply 
drop p01 from the collection of cpij. Otherwise, let ?' be ? without its largest integer, 
1'. Define 

hol = m0' - blj'o,i/bj , tin ?' 

= 0 l1, 1in {0,1, ...o-- 1} -C ; 

then the a- - 1 4o, l satisfy (6.6) and have their support in [0, h]. Similarly, a- - 1 
41NI may be defined using the boundary condition at x = 1. These (2o- - 2) func- 
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tions, together with the fij, j = 0, ***, k; i = 1, N - 1, and the remaining Ooj, 
4Nj, o- j < k, are used as a basis. 

A similar sort of trick works for the splines of degree m _ o- + 1. For, by the 
work above, it suffices to show that there are splines 4tI whose support lies in [0, xm?+] 
and which satisfy 4/1(i)(O) = jl, 0 < j, 1 _ m. Now, if 

(t+ -t , t 0 O 

0, otherwise; 

then the functions (1 + 1 -x)+m, 0 <_ 1 < m are splines with the required limited 
support. Since the determinant of the matrix 

{Mkl}= {[( + 1 X)+ m](k)(O)}, O k, < m 
is proportional to a Vandermonde determinant, the required A,I exist. 

Turning to the more general case, we now suppose u is a M-dimensional vector; 
and that there are K boundary conditions at x = 0: 

(6.)( bKxD )u} (O) = 0, K =1, K; 
(6.7) X= 0 

bx = {b, v O< X < L 1 _ ,u, ? M. 

Here L would be a" - 1 in general. Let 4, be the set of L + 1 linearly independent 
scalar functions satisfying (as before) 

(Dx &) (O)= xX O< X < L 

and define M unit M-vectors 

e,= {3V#}, 1 _ ? M. 

We wish to find as many linear combinations of the (L + 1)M vectors, OA,, as we 
can which satisfy (6.7) and are linearly independent. Thus, if a, = E a e the 
numbers a,, should satisfy the K vector equations 

0 = E b"xa,,,[Dx,cj(O)e,, 1 < K< K. 

Hence we are looking for all linearly independent solutions to the KM homogeneous 
linear equations 

L M 

O= bKZa,, 1_ K K, 1 ,u _ M, 
x=O v=1 

in the (L + 1)M unknowns, ax,. Presumably the solutions would be found numeri- 
cally (rather than analytically as we did below (6.6) where K = M = 1). 

Local bases can also be constructed in more than one space dimension, with an 
integral scalar product. It is not clear how to construct them so that they do not 
satisfy extra restrictive boundary conditions. It is -hoped that the method of splitting 
(see Richtmyer and Morton [10, pp. 216-217]) will provide a way of reducing multi- 
dimensional problems to sequences of one dimensional problems. 

Los Alamos Scientific Laboratory 
Los Alamos, New Mexico 87544 

University of Denver 
Denver, Colorado 80210 



GENERALIZED FINITE DIFFERENCE SCHEMES 49 

1. F. E. BROWDER, "Nonlinear equations of evolution," Ann. of Math., v. 80, 1964, pp. 
485-523. MR 30 #4167. 

2. F. E. BROWDER, "Non-linear initial value problems," Ann. of Math., v. 82, 1965, pp. 
51-87. MR 34 #7923. 

3. P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of high-order ac- 
curacy for nonlinear boundary value problems," Numer. Math., v. 9, 1967, pp. 394-430. 

4. J. D. COLE, "On a quasi-linear parabolic equation occurring in aerodynamics," Quart. 
Appl. Math., v. 9, 1951, pp. 225-236. MR 13, 178. 

5. C. DE BOOR, The Method of Projections as Applied to the Numerical Solution of Two Point 
Boundary Value Problems using Cubic Splines, Doctoral thesis, Univ. of Michigan, Ann Arbor, 
Mich., 1966. 

6. H. 0. KREISS, "Ober implizite Differenzmethoden fur partielle Differentialgleichungen," 
Numer. Math., v. 5, 1963, pp. 24-47. MR 27 #5376. 

7. J. L. LIONs, Equations Differentielles Operationnelles, et Probl'emes aux Limites, Die Grund- 
lehren der math. Wissenschaften, Bd. 111, Springer-Verlag, Berlin, 1961. MR 27 #3935. 

8. G. LUMER & R. S. PHILLIPS, "Dissipative operators in a Banach space," Pacific J. Math., 
v. 11, 1961, pp. 679-698. MR 24 #A2248. 

9. G. J. MINTY, "Monotone (nonlinear) operators in Hilbert space," Duke Math. J., v. 29, 
1962, pp. 341-346. MR 29 #6319. 

10. R. D. RICHTMYER & K. W. MORTON, Difference Methods for Initial Value Problems, 2nd 
ed., Interscience, New York, 1967. MR 36 #3515. 

11. I. J. SCHOENBERG, "Contributions to the problem of approximation of equidistant data 
by analytic functions," Part A, Quart. Appl. Math., v. 4, 1946, pp. 45-99. MR 7, 487. 

12. I. J. SCHOENBERG, "On spline functions," in Inequalities, 0. Shisha (Editor), Academic 
Press, New York, 1967, pp. 255-291. 

13. B. SWARTZ, "O(h2n+2-t) bounds on some spline interpolation errors," Bull. Amer. Math. 
Soc., v. 74, 1968, pp. 1072-1078. 

14. V. THOME, "Generally unconditionally stable difference operators," SIAM J. Numer. 
Anal., v. 4, 1967, pp. 55-69. MR 35 #3916. 

15. K. YOSIDA, Functional Analysis, Die Grundlehren der math. Wissenschaften, Bd. 123, 
Springer-Verlag, Berlin, 1965. MR 31 #5054. 


	Cit r30_c33: 
	Cit r31_c34: 


