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Abstract. The generalised Euler-Maclaurin summation formula for the error 
functional Ef = Rf - If is not suitable for numerical computation if f(x) contains 
singularities in the complex plane which lie close to the interval of integration. In 
this paper, we use the methods and results of an earlier paper to construct alternative 
asymptotic expansions suitable in such cases. U 

1. Introduction. In a previous paper, [1], we derived generalisations of the Euler- 
Maclaurin summation formula. Asymptotic expansions for the error functional 

(1.1) Ef = Rf-If 

were constructed in cases for which the integrand f(x) has singularities on the 
interval of integration. 

It is well known that the effective use of conventional, quadrature methods is 
difficult when the integrand has singularities close to the interval of integration in 
the complex plane. This is related to the fact that in this case the Euler-Maclaurin 
formula yields a rapidly diverging asymptotic expansion; (see [1]). Thus, for small 
e the numerical integration of the simple function 1/(x + E)1/2 over the interval 
[0, 1] by standard methods is difficult. 

In this paper we derive alternate asymptotic expansions to the Euler-Maclaurin 
formula which are useful in such circumstances and which converge rapidly if m, the 
number of function evaluations, is small. The main features of our method for con- 
structing asymptotic expansions are illustrated in Section 2 for a simple function and 
an end-point trapezoidal rule R [mIl]. In subsequent sections the integration rules are 
examined for functions which are integrable on [0, 1], which have singularities at 
x = - e or x = - e exp [?iG], and which may have additional algebraic singularities 
at x = 0 and x = 1. Thus we shall consider integrals of the form 

(1.2) If = f (1 - t)0(tv + e)Ph(t)dt; X > 0 

where h(t) and its derivatives are continuous in [0, 1], larg ef < 7r, and the exponents 
are restricted only to the extent that the integral exists. In our discussion below, the 
numbers #3, w, and p of (1.2) are assumed to be real; nevertheless, with obvious modi- 
fications, the results and derivations hold for complex exponents. The section head- 
ings indicate the rule and the function whose error functional is considered in that 
section. 
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We note that our treatment is sufficiently general to provide a new class of 
asymptotic expansions for the calculation of the hypergeometric function by means 
of its integral representation 

(1.3) F(a,b;c;z) = r(b) r J(c- t(1 -tj) tb-(1 _ tz)a dt 

(Erdelyi et al. [2]). 

II. R[m 1: (x + E)P. In [1] we considered expansions of the error functional 

(2.1) Ef = Rf-If 

for a function f(x) having singularities on the integration interval; here Rf denotes 
the result of an arbitrary quadrature rule. Consider the function 

(2.2) q(x) = (x + E)P, p < 0, 

where e is small and positive. For the end-point trapezoidal rule R [m,1] we know (see 
[1], Eq. (3.15)) 

00 r 
(2.3) E[ml]q = R[ml]q - Iq = ' f (t + E)Pe"rirm dt 

r= _ooO 

We write 

(2.4) E[m liq = Eo[imlq - Ei[mllq 

where 

00 rO0 
(2.5) En[m l]= q f (t + E-)Pe7r rm dt; n = 0, 1 

r= _oon 

Asymptotic expansions for both Eo[iml1q and Ej[ml1Iq follow most easily by succes- 
sively integrating by parts. After summing over r, we have 

(2.6) Eojm l_q 2JP+1[ P (2))2 p(p 1) (p )4 + 

and 

(2.7) Ei['ml]q_ -2(1 + e)P+l[ p?(2) p(p - l) (p- 2) (4) + . 
(2irm (1 + c))2 (2irm (1 + -) ) 

4 

The second of these expansions is suitable for numerical computation for moderate 
values of m. However, the first is unsuitable unless m is large. Clearly, unless 
m > Jp/2lrE1, each term in (2.6) is larger than the previous term. Obviously these 
expansions are valid for all p. 

Our general problem is adequately illustrated by this simple example. The 
existence of a branch point or pole of f(x) close to the interval of integration leads 
to an Euler-Maclaurin expansion for the error functional which diverges badly, and 
is not suited for numerical computation. Stated in other terms, low degree poly- 
nomial approximation fails. We therefore derive an alternative expansion for Eo [m,lq 

which is useful for small me. 
To do this we obtain first an integral representation for (t + E)P. Since [3] 
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f0 (t + e)pep''de = tpe(- -P-l)!(p -1)! 
(2.) (-p-1c =ep -1)! 

0< Re (p) < -p, IargEI <2r, 

we have from the inversion formula for Mellin transforms that 

(2.9) (t+e)?= |f (-P-p- )!(P l)! dp 0 < c <-p 

Substituting (2.9) into (2.5), we find 

(2.10) Eo[m l]q 
c 

' i| dt 2t +1(p - 1)!(-p - p- 1)! cos [2irrmt] d 
47 r-1 dt-o p( - 1)! Id 

where to ensure convergence of the integration over t the contour must be deter- 
mined by 

(2.11) Max (-p-1, 0) < c = Re (p) <-p. 

Interchanging orders of integration and using the identity 

f00 
cs[r( )2 

tP+P cos [27rrmt]dt = (p + p)! cos[((p+)p+ 1l)/2 

-1 <Re (p + p) <0, 

the expression (2.10) becomes 

E0[mfl]q= 1 E +00 

(2.13) Tr 

x 

c? 02(p 

+ p)!cos [(p + p + 
1)/2](1pp)!(p l!dp 

c-ic 
(27rrm)P+P+l( 

- p 

1)!?P where the path of integration, L1, equivalent to (2.11), can be specified for notational 
convenience as 

(2.14) Li:Re (p) =-p- ; 0 < < Min (-p, 1) . 

We note that the orders of integration and summation in (2.13) may not be inter- 
changed, as the resulting sum over r would then diverge. However, since the- 
integrand has no poles in the interval 

(2.15) -p-- A < Re (p) < 1-p-A 

we may translate the contour to a new path L2, given by 

(2.16) L2:Re(p)=1-p-Ap . 

On the new path, since the sum over r is then uniformly convergent, interchange of' 
the order of summation and integration is permissible. The sum over r gives a zeta, 
function, and after using the Riemann relation 

(2.17) 2(s - 1)! (s) cos (7rs/2) = (27r)a (l - s) 

we obtain finally 
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(2.18) Eo = lft (-p -P)(p -p-1)!(p-l)d 

If we evaluate the integral by translating the contour to the right, the only poles 
which contribute are those of (-p - p - 1) ! at p + p = 1, 3, 5, ** * . Summing the 
residues at these poles leads to the descending expansion (2.6). On the other hand an 
ascending expansion in (me) can be found by translating the contour to the left. The 
poles whose residues contribute to the expansion are those of the zeta function at 
p = - p - 1 and of the factorial functions at p =-p, and at p = 0, -1, -2,* 
The result, provided p # -1, is 

(2.19) Eoml]q = m 51 L 2 ((n -) pemi- 

The expansion converges if 0 < em < 1. This expansion, and expansion (2.6) are 
complementary. In most cases, either one or the other are suitable for numerical 
computation depending on the value of em. For this simple example, the sum may 
be expressed in terms of the generalised zeta function (see [1, p. 167]) as 

(2.20) Eom'l]q = - [- - 2 (m _ ( +' + (-Pp,E m)]; p -i. 

The case p = -1 requires special treatment. Two of the poles of the integrand in 
(2.18) then coincide at p = 0. The integrand of (2.18) may be recast into the form 

(2.21) 2r co (p) (2(rm6)!] 
sin 7rp - 

The residue of the integrand at the pole at p = 0 is then 

(2.22) 2[ I = ln (me) + 7' 

where to obtain this expression we have used the results 

(2.23) ~(0) = 2; - (0) = -2 In 2ir; Ldp In (p!)] = -y = -0.5772 

Thus the terms in the expansion (2.19) which correspond to poles of the integrand 
of (2.18) at p = -p -1 and p = 0 are replaced by (2.22) above. This gives 

(2.24) Eom l]q = (cm)-1 + In (me) + y + E t(n + 1)n(-) (Em)n; p = -1. 
2 n=l 

III. R'' :(xi + E)Px P (1 -xx)wh(x). We now apply the same technique to ob- 
tain the error functional E[m,l]q for the function 

(3. 1) q(x)-= (xv + E)PJIxJ1(1 -x)wh(x), p < 0, A _ 0, X> 0 

where h(x) and its derivatives are continuous on the interval [-cE, 1]. Again in 
analogy to (2.3) the generalised Poisson summation formula gives 

(3.2) E[ml]q = R"n lq- Iq = ,' f (t0 + E) Pt(1-t)wh(t)e27rirmtdt 
T=-oo 0 
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However, we may not define Eo0m,l] and El[m,l] as in (2.5) as the resulting integrals 
may diverge. Instead we substitute the integral representation (2.9) for (P + E)i' 

into (3.2) to obtain 

? 00 
E[m"laq= -1 E dt 

(3.3) 
r 1 

X fc+tt2t0 P)?6(1 -t)'h(t) cos(2Irrmt)(-p-p-1)!(p- 1)! 
c=ioo (- p -1)!ep 

d 

where the orders of integration may be interchanged. An asymptotic expansion as a 
function of m for the integral over t can be found by the method of Lighthill, and 
explicitly, using the results of [1, Section 7], we find 

* 00 
c+it00 

E[mllq_? - EJ 2 7ri r=l i oo 
X(3.4 o(8)(u) ((P + p) + A+ s)!2 cos [ir(7q(p + p) + + s + 1)/21 

(3.4) 8=08s! (27rrm)l(P+P)+A+8+l 

+ (1; (p + p)) ( + s)!2 cos [(c + s + 1)/2]} 
8=0 s! (27rm)'O+"+' f 

(-p-p - )!(p - ) d X 
(-_p 

- 

)e 

where 

(3.5) Oo(x) = (1 - x)wh(x), 

(3.6) 41i(x; t) = xl+lh(x). 

The path of integration L1 may be chosen to be 

(3.7) Li: Re (p) =-p-A 

where 

(3.8) A = Min (-p, + 1). 

At this stage we separate E[m'lIq given by (3.4) into two contributions, each corre- 
sponding to one of the explicit sums over s in (3.4). Thus 

(3.9) E[m llq = Eo[mlIq - Ei[m lq. 

The second of these contributions Ei[mll1q may be evaluated using the same pro- 
cedure as that of the previous section. Thus, we first write 

1-2 i f jf1{ (-1)cV ((1;7(p + P)) 2iri r= c-oo t8=O 

(3.10) X 2 (co + s)! cos [r ( + -s + 1)/2]X2 
(27rrm)+? 1/ 

(-p - p-l)!(p-1l)!d x (-p -1)!(p dp 

The orders of summation and integration may be interchanged unless w = 0. In this; 



76 B. W. NINHAM AND J. N. LYNESS 

case the s = 0 term of the integrand is zero, so that the corresponding term in any 
expression derived from (3.10) must be omitted. Summing over r, and using (2.17), 
we find 

2 m fa~(1Vi8 (; 'O (p + p)) 
(3.11) CE s=l ,!m)?8?lEP 

x cow s)(-p -p - )! (p - ) d 
(-p-i)! dp 

where 1 = 0 unless co = 0, in which case 1 = 1. The poles to the right of the contour 
are those of (-p - p - 1) ! situated at p =-p, -p + 1, -p + 2, *... Translating 
the contour to the right we find the asymptotic expansion 

-Ej[m1]q- E E - s)(-p + n -1)! 
(3.12) 8=1 n=O S!mw?S?l(-p - 

(-1) (8) -s) 

8=1 ~ S!M C+8+1 

where we have written 

(3.13) i(x) 2(x) - (+ )PxOh()= x!4(;nn)= 
(1-x)w n=O n!(p - n!:P 

and employed the relation 

(-l)fn(-p + n - 1) !(p-n)! = (-p -1)!p! 

which is a simple consequence of the standard relation 

(3.14) (z - 1)!(-z)! sin rz = r . 

Expression (3.12) for E1[m,1]q is precisely the second part of the expression for 
E[m l]q given by the generalised Euler-Maclaurin summation formula (see [1, Eq. 
(7.8)]), and obtained in [1] by a less cumbersome technique. 

The expression for Eo[ml1]q may be handled in the same way. Again for 3 = 0, 
the term corresponding to s = 0 in the summation requires special attention. Pro- 
vided A > 0, in analogy to (3.11) we find 

Eo[m q L fJ E 
(3.15)2ii 

X o(s)(0) (_n(p + p) - -s)(-p p - l)!(p - 1)! d 
s!m(P+P)++s+lEp(_p -d1)!P- 

If we evaluate the integral by completing the contour to the right, we recover the 
remaining part of the generalised Euler-Maclaurin summation formula, namely 

(3.16) Eo[Mq1] q_ E O S(O)( i - s) 
s=O +1 

where 

(3.17) fo(x) = (xv + e)P(1- x)wh(x) = q(x)/x 
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Expansion (3.15) suffers from the same defect as expansion (2.6). The terms 
Ao(8)(0) are large and increase with s because of the proximity of the branch point 
at x = -,e. We therefore proceed as in the previous section, and evaluate (3.15) by 
translating the contour to the left. The poles of the integrand to the left of the path 
of integration are those of the factorial function (p - 1)!, situated at p = 0, -1, 
-2,*.. and the pole of the zeta function, at p = -p - (3 + s + 1)/X. This pole 
does not coincide with any of the other poles unless p + (3 + s + 1)/X7 is a positive 
integer or zero. This case requires special treatment which is given in Section 5. 
Evaluating the residues at these poles, as in the previous section we have 

E[ml] 0 E (s)(0) f MO + s+ 1)/o) - 1)!((- (3 + s + )/) - p -1)! 
q- 8=0 s!m P?a?8?l (p -1)! 

(3.18) X (nmD(a?8?l)/n?P 
+ E 7 (n(n - p) _ -s) (p_ )n! em)}' 

p + 63+ s + 1)/n 5-? integer, f3> 0. 

This expansion is of the same form as the expansion (2.17). 
We note that one set of terms here is independent of the value of m. In certain 

cases these terms have a relatively simple interpretation. For example, if ' = 1 and 
if p > -1, a straightforward calculation indicates that 

sin [irp] [0 sin [irp] [0 

sin [7( + p + 1)] q(e)x -sin [ir(j + p + 1)] le ) + 

E 4'0 (0) (3 + s)!(-3-s-p-2)!E 
80 s (-p -1)! 

In such cases, the calculation of the right-hand side may be replaced by a direct 
calculation of the integral on the left-hand side. This integral has singularities at the 
end points and as the other given singularity (at x = 1) is relatively distant from 
the interval of integration [-,E, 0] the methods of [1] could be applied. 

For the special case A = 0, the analysis above requires adjustment. The terms in 
(3.18) for s 5 0 remain unchanged; for s = 0, the term is that appearing in Eq. 
(2.13), of the preceding section. Comparison of the results (2.19) and (3.18) shows 
that for A = 0 an additional term corresponding to the first term of (2.19) must be 
included. Thus we find 

Eo[(m l] ((xv + E) (1 - x)wh (x)) 

lm= l Eo[ml ((Xv +? e)Px(1 - x)wh(x)) - ___(?) (___ 

The general explanation of this additional term is quite simple. The rule R[m,1] in- 
volves a function evaluation at x = 0. Thus while in general 

(3.20) lim f(x)xo =f(x) , x > , 

in the particular case for which x = 0 

(3.21) lim f(x)x = 0. 

Thus we have 
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(3.22) rim R[ml] (f(X)xl) = R[ml] f(x) -f(O) 
A__O+ 2m 

and the term -f(O)/2m accounts exactly for the outstanding term in (3.19). 

IV. Rj; (xn + e)PX#(1 - x)wh(x). In this section we show how the asymptotic 
expansion Eo[ml1lq may be generalised for application with a general quadrature 
rule. The results corresponding to the midpoint rule RIIm,] may be derived directly 
from those of the previous section using the identity 

(4.1) REm,0] = 2R[2m,l] - R [m,l] 

Although this establishes the results only for the cases in which 3 and co are not nega- 
tive, a separate investigation which is a specialisation of the general results derived 
below indicates that they remain valid for all A > -1, co > -1. 

The most general rule R which we consider is a linear suwerposition of one point 
rules Rj, where 

(4.2) Rjf(x) = f(tj); tj 5 0, l, 

and RI','], where 

(4.3) R [,"I f(x) - 2 f(0) + f(l)] 

The expansions for the error functional which correspond to the general rule R are 
the same linear superposition of the expansions corresponding to these one (and 
two) point rules. The expansions corresponding to (4.3) are those of Section 3 with 
m = 1. We indicate here the construction of expansions for the error functional for 
the one point rule (4.2). 

The generalised Poisson summation formula [1, Eq. (3.4)] states 

00 l1 

(4.4) Eq = Rjq-Iq= E' dr(Rj) q(t) exp [2rirt]dt 
r=-.oo 

where 

dr(Rj) = exp [-27rirtj]. 

Thus, substituting the integral representation (2.9) for (t + E)P, we find 

00 ?l 
Eq= ?'dr(Rj) f (t) exp [2rirt]dt -2 . 

(4.6) r=-0o 2oo 

x t"P+')(- p - p - )(p -1!dp 
c-too (-p -1)!Ep 

where 

(4.7) f(t) = t(1 - t)wh(t) 

We interchange orders of integration, and for the Fourier transform 

(4.8) g(r) tf(P+P)+(- t)wh(t) exp [27rirt]dt 

substitute the expansion of [1, Eq. (6.15)], obtaining 
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00 to1 f+o 
Eq - ' dr(RI) 2 c 

r=-oo 27ri oo 

X { 4.'O(S )(O)(2 ( P)+ 3+ s)! exp ['7ri(?q(p + p) + ,B + s + 1)/2] 

+ l (p + p)( + exp [-7ri(c + s + 1)/2]} 

S=O 8(r)++ 
(-p -p--l)!(p-1)! X -p dp 

(-P -1)!,E 

where 41o(x) and tii(x; t) are given by (3.5) and (3.6), and the path of integration is 
L1 given by (3.7) and (3.8). 

With the exception of the first terms (s = 0), we may interchange the orders of 
summation and integration, and carry out the sum over r which is absolutely con- 
vergent. For the first terms (s = 0), the summation over r is only conditionally 
convergent. However, a more detailed investigation indicates that for this case too 
the interchange is permissible. This may be shown by translating the contour to the 
right, and including a contribution from the residue of the pole at p = -p. After 
carrying out the sum, we may then move the contour back to its original position, 
and include again a contribution from the residue at the pole at p -p. These two 
contributions cancel. This procedure depends critically on dr(Rj) being given by 
(4.5) with tj ? 0, 1. We may therefore change orders of summation and integration 
in (4.9). This is precisely equivalent to interchanging orders of summation and 
integration in (4.6) from which (4.9) was derived. We may therefore write 

?+ too 00 r 

Eq-21 f dp E' dr(Rj) f tP+Pf(t) exp [27rirt]dt 
(4.10) 2-7r - ioo r=-oo 0 

(-p - P - l)!(p -1)! 

(-p - 1)Ep 

That part of the integrand which involves the sum over r and the integral over t has 
been investigated in detail in [1]. Referring to the generalised Poisson summation 
formula, it is simply an error functional which corresponds to the function 

(4.11) 7(x; r (p + p)) = fq (x) (X + E) PxP+ 

= X+?(P+P) (1 -x)Yh(x) . 

Thus we have the relation 

(-P - P - l)!(P - l)!d 
(4.12) Eq = R,q-Iq (RJ- Idp 

where q and f are related by (4.11). The relation (4.12) is true also if Rj is the end 
point rule (4.3) and 1 > 0, but does not hold if Rj is the end point rule and ,1 = 0. 

An asymptotic expansion for Ij - hf is given in [1] by the generalised Euler- 
Maclaurin expansion equations (8.1) and (8.2) which we substitute into (4.12). We 
may then write 

(4.13) Eq = Iq- Iq = Eoq - Eiq 

where 
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C+ iOo 

Eoq 21f : 

(4.14) 2ri ix o 

x 4( s) (O) (-,q (p + P) - -s; tj)(-p - p - 1)! (p - 1)!d 
s!(- p-1)!1? dp 

If again we close the contour of (4.12) to the right, we recover the generalised Euler- 
Maclaurin formula [1, Eq. (8.1)]. If we close the contour in (4.14) to the left, we 
recover the appropriate generalisation of (3.18). The result is 

Eoq 
r'-1 E V/0o(O (((0 3 ? s + s)/O) - 1)! ( - ((d + s + 1)/O) -p-i)! 

__0 (P-p-i)! 

(4.15) X E((O+S+l)/17)+P + E (nn- p) _ As, tj) (Pt_n!n 
n=o (p - n)!n! EJ 

p + (3 + s ? l)/'i F integer, 
where the restriction-on p + (,B + s + 1)/1j arises in the same way as in the corre- 
sponding Eq. (3.18). 

V. Special Values of the Parameters 3 and p. The terms in the expansions for 
Eoq in which p + (3 + s + 1)/1j is a positive integer or zero require further attention. 
The coefficient of EP+ (+s+1) /r in (4.15) or (3.18) is in this case the sum of two terms, 
each of which is indeterminate. We may calculate the residue of the integrand in 
(4.14) or (3.15) at p = -p - (f + s + 1)/1j which is due to a double pole, the 
coincidence of a simple pole of (p - 1)! and a simple pole of the generalised zeta 
function. We make use of the results 

(5.1) lim ( (1 + 6, tj)--) =-S_ (tj- 1) 

(5.2) lim (-N-1 a)!- ( ) ) = S N! 

(5.3) lim (Im )8 1 -ln (emn) 

where 

(5.4) '(z) = d(lnz!)/dz. 

This leads to a residue of the form o (s) (O)R/ss!mnp+O+s+l where 

RS = _ ( 1)N(-p + N - )!(m)N ,(N)- (p + N - 1) 
- 1)!1 

(5.5) + 711t (t1 - 1) - In (em7)} 
N = p + ((3+ s + l)/1j = integer > 0. 

To modify (3.18) we set tj = 1 and to modify (4.15) we set m = 1 in this and the 
subsequent expressions. Either equation may be written 

(5.6) Eoq ,P+O+S+l Rs + ( ((n(-[p)!s, tj) ( !E)nl 
s-O Sim sumLo symbol 'h(p - n)!n! =mN, 

where the prime on the summation symbol indicates that if p + ((3+ s + 1)/,q = N, 
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an integer, the term n = N is to be omitted from the summation. In this case R, is 
given by (5.5) above. Otherwise it takes the value corresponding to the first term 
of (3.18) or (4.15), namely 

( EM')P+(#+S+l) /I 

(5.7) Rs = ((( + s+ 1)/) - 1)!((- (3+s+ 1/ - p- 1)! (-p-) 

p + (,B + s + 1)/n 5 integer 

VI. R: (x + eexp [iO])P/2 (x + e exp [-i])P/2 X (1 - x)wh(x). In applications in 
theoretical physics, integrands of the type f(t)/(t2 + E2)v or f(t)/[(t - a)2 + E2]v or 
products of such functions frequently occur. This is particularly so in applications 
which involve field theory, dispersion relations and the many body problem. Factors 
of the form [(t - a)2 + C2]Y arise in perturbation theories as 'energy denominators' 
or propagators. Usually these integrals cannot be evaluated analytically. We in- 
vestigate in this section the asymptotic expansions associated with the error func- 
tional of integrals of this form. 

We consider the function 

(6.1) q(t) = f(t)(t + E exp [iOP/2(t +e exp [-i9])P/2 

where as before, f(t) is of the form 

(6.2) f(t) = t(1 -t)-h(t) 

and h(t) and its derivatives are continuous throughout the interval of integration. 
We use the result (Erdelyi et al. [3]) 

2)p/2 1 rC+ icoo ) ( )2 

(1 + 2x cos 0 + x2)p2 = (2 sin 6)-(P+1)/2( - ( + 1)/2)! 
2ri~ 

(6.3) (p 
- 

l)!(-p P 1)! p( +()/2 OSd 

0 < Re (p) < -p 

where P,, is the associated Legendre function of the first kind. Applying the gener- 
alised Poisson summation formula, we find without difficulty that 

RIq - = ' dr(I?) f f(t)e2 2ritdt 1 if J e+P(2 sin -(P+12 

(6.4) o 271 c-to 

(-(p + 1)/2)! (p - 1)! (-p - p- 1 PL1)/2(cos O)dp2 

This expression differs only in detail from expression (4.6) if we set X = 1. The inte- 
gration over the t variable is identical, and the integration over the p variable has to 
be adjusted to take into account the associated Legendre polynomial. Since this has 
no poles in the p plane, the net result is that each term in the ensuing expansions 
need only be adjusted by the multiplicative factor P+(p1i) /2 (cos 0). Finally the 
whole expansion has to include an overall factor 

(2sin0)-(P+1)/2(- (p+ 1)/2)!. 

The results corresponding to Eqs. (2.19), (3.18), and (4.15) are as follows. If f(t) = 1 
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(2 sin o)-(P+l) /2 

(6.5) X< [PP+)l(cos ?) (Em)~ - P(P2++)1'2(cos 6) (? 1)l 

+ Z D(;I-; )! p!P(ii1L'l2n)2(cos O)(em)] ]; f(t) = 1. 

For f(t) givren by (6.2) abovre with / > 0 

Eo[q m',l] j (2 sinn O>(P+1)/2( - (p + 1)72)! 

(6.5) [(/ + s) !(-,B-s-2-p)! P(p+3) /2 (cosCO)(m)P+13+s+ 

(6.6) ~ ~ ~ ~~~n- 1)! -,(p,/ 

+ 
'- -2) 2 +n) P(P+1EM) f2(cos)(em)fll 

n=0 (pp--nnn!!P!(p1-2n) /2 

(p + /) 3 integer. 

The corresponding expansion for the one point rule Rjf = f(tj) is the same as (6.6) 
except that t(-p - -s + n) is replaced by t(-p - -s + n, tj) and m is re- 
placed by 1. 

If p + / is an integer, we may proceed as in Section 5. We require in addition to 
the quantities listed there, the derivative of the Legendre function with respect to 
the lower argument, namely 

P [p,(P+L') /2 (COS 0) ]p=_D.-_s1. 

In this case expansion (6.6) is replaced by 

Eo ml:q_ 41(s) (0) (2 sin 0)-(p+l) /2 
8=0 S!mP+o+s+l (-(p + 1) /2)! 

(6.7) [ + +n s) p_)!n! P(p+l)/2 (cOs O) (eM)nj 

where 

R = - (1) (p+N ) ! (em) P(P+1)2 2 (COS 0) 

(6.8) f Nd(-D 1)!+i (em)2 
X 'Ut(N) - 4t(N-p -1) + k(0) -n (em) + dp In, pP+ (P12)/2 (cos0)] }, 

N = p + / + s + 1 = integer : 0. 

As in Section 5, the prime on the summation symbol indicates that if p + / + s + 1 
is a nonnegative integer N, the term n = N is to be omitted from the sum and RIi is 
then given by (6.8). 
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