
On the Condition of a Matrix Arising in the 
Numerical Inversion of the Laplace Transform 

By Walter Gautschi 

Abstract. Bellman, Kalaba, and Lockett recently proposed a numerical method 
for inverting the Laplace transform. The method consists in first reducing the infinite 
interval of integration to a finite one by a preliminary substitution of variables, and 
then employing an n-point Gauss-Legendre quadrature formula to reduce the in- 
version problem (approximately) to that of solving a system of n linear algebraic 
equations. Luke suggests the possibility of using Gauss-Jacobi quadrature (with 
parameters a and A) in place of Gauss-Legendre quadrature, and in particular raises 
the question whether a judicious choice of the parameters a, ,B may have a beneficial 
influence on the condition of the linear system of equations. The object of this note is 
to investigate the condition number cond (n, a, ,3) of this system as a function of 
n, a, and /3. It is found that cond (n, a, /3) is usually larger than cond (n, /3, a) if 
j > a, at least asymptotically as n -> oo . Lower bounds for cond (n, a, 3) are ob- 
tained together with their asymptotic behavior as n co o. Sharper bounds are de- 
rived in the special cases a = /, n odd, and a = A3 = ? 1, n arbitrary. There is 
also a short table of cond (n, a, ,3) for a, 3 =-.8(.2)0, .5, 1, 2, 4, 8, 16, /3 _ a, and 
n = 5, 10, 20, 40. The general conclusion is that cond (n, a, /3) grows at a rate which 
is something like a constant times (3 + -^ 8) , where the constant depends on a and 
/, varies relatively slowly as a function of a, /, and appears to be smallest near 
a j3 =-1. For quadrature rules with equidistant points the condition grows like 
(2 i 2/3ir)88. U 

1. In [4], Bellman, Kalaba, and Lockett propose a numerical procedure to 
invert the Laplace transform 

00 

(l.l) J ~~~~e- u(t)dt-F(s) . 

Briefly, the procedure consists of first substituting x = e-t, to bring (1.1) into the 
form 

(1.2) J xs-1q(x)dx = F(s), g(x) = u(-lnx), 

and then employing Gaussian quadrature to approximate (1.2) by 
n 

(1.3) 2 ix w,,g(xi) =F(k + 1),I (k = 0, 1, 2, ... n-) 
i=1 

where xi are the zeros of the shifted Legendre polynomical pn(x) = Pn(2x - 1) and 
wi the associated weight factors. Letting yj = wig(xi), the method thus boils down 
to solving the system of linear algebraic equations 
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n 
(1.4) Exiky = F(k+ 1), (k= 0, 1, 2, ... ,n-1). 

In reviewing the work of Bellman et al., Y. L. Luke [8] generalizes their ap- 
proach by employing the substitution x = e-tv (v > 0) in (1.1), and by using Jacobi 
polynomials in place of Legendre polynomials. This again leads to a system of 
equations (1.4) where now x i are the zeros of the shifted Jacobi polynomial pn (a'o) (x) 
- P_(a)(2x - 1), and F(k + 1) on the right must be replaced by F((k + 1)v). 

The system (1.4) can be solved analytically in a number of ways, the coefficient 
matrix being a Vandermonde matrix. However, as noted in [4], the ill-conditioned 
character of the system may well require high-precision calculations, especially if 
n is fairly large. Luke [8] raises the question of whether or not "the detrimental 
effects of ill-conditioning can be removed or mitigated by the use of other choices 
of a and (" (other than a =( = 0). The purpose of this note is to give a detailed 
answer to this question. 

We first obtain a closed expression for the condition number of the coefficient 
matrix in (1.4). In Section 3 we compare the condition number for Pn(a?o) with that 
for pn(O?a) and find that the former is usually larger than the latter if : > a, at least 
asymptotically as n oo. Section 4 contains a short table of the condition number 
for pn(a),P where a,( = -.8(.2)0, .5, 1, 2, 4, 8, 16, B < a, and n = 5, 10, 20, 40. 
Section 5 exhibits lower bounds for the condition number, together with their 
asymptotic behavior. Sharper results are obtained in Section 6 in the case a = A, 
n odd, and in Section 7 for general n, and a = A = ? 2. For comparison we con- 
sider in Section 8 the case of equidistant abscissas xi. 

The general conclusion is that the condition number grows at a rate which is 
something like a constant times (3 + V. 8)n [(2 V. 2/37r)8n for equidistant abscissas], 
where the constant depends on a and ( and varies relatively slowly as a function of a 
and (. As expected, there is no escape from ill-conditioning, which, after all, only 
reflects the fact that the original inversion problem (1.1) is not well posed (cf., in 
this connection, [1], [2], [3], [9], [11], [13], [14]). 

2. Let pn(x) be an arbitrary polynomial of degree n whose zeros xi are distinct 
and located in the interval [0, 1]. Let 

r1 1 *o 
(2.1) V(pn) = X2 . 

1 

_X1 X28- . .. X n- 

denote the Vandermonde matrix of the zeros xi. We shall consider the condition 
number 

(2.2) condO3 [V(pn)] = jIV(pn)Ilooll[V(Pn)1 lIIoo, 

where j. denotes the oo -matrix norm ("maximum row sum"). Clearly, 

(2.3) II V(Pn)j0oo = n . 

In [5] we have shown that under the assumptions made, 

(2.4) j1[V(pn)]f 411o = max 11 
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Combining (2.3) and (2.4), and rewriting (2.4) in terms of pn and its derivative, we 
obtain 

(2.5) cond00, [V(p,,)] = np -) 
(mini I (1 + xi) lpn'(x ) I I 

3. We now let pn be the shifted Jacobi polynomial p (a ?(x) Pn (a ?)(2x - 1), 
a > -1, I > -1. We first show that 

(3.1) cond0,, [V(p,ja?))] = an) pn(gfa) (3) cond0 [V(p,j3a))] , 
2 < yn < 2, 

where the constant 7n depends on a and /. Indeed, it is well known that 

pn (aAX) = ( 1)npn (a)(1 - x) X 

pj (a?)(X) =( l)n+lpn(#,a) (1 - x) 

In particular, if xi is a zero of pn(a?) then (i = 1 - xi is a zero of pn(f a). Therefore, 

(1 + X0)IPn(afl) (Xi)j = (1 + X0)IPn(,a) (S )| 

(3.2) - 1 + i (1 + i)IpPn (ai)I 2- 

and since 2 < (1 + x)/(2 - x) < 2 for 0 < x < 1, it follows that 

min 1(1+ x ))p ,' (x;)l } = -m in { (1 + {i)jp (f) (t)j }, 2 < -yn < 2 . 

Consequently, by (2.5), 

cond03 [V (p (afi )) = I(a'? 1)/pn('a) (-1 ) I cond0,. [V (p MOa))] 

which is equivalent to (3.1). 
Noting that [10, p. 194] 

-1/2+a0+)/2( 

(3.3) Pn(fl"))(3) 1/22(2a+6)/4 (3 + V8)n+(a++ ( ) 

we obtain from (3.1), 

(3.4) cond,,, [V (pn 
(a ? ) y n - 2(*-a) /2 cond. [ V (pn ( )], (n --* 0) 

Our computations (cf. Section 4) have revealed that in most cases the minimum 
in (2.5) is assumed for xi near 2 (though not necessarily closest to 2), so that in these 
cases yn 1. Taking this into account it appears from (3.4) that for n sufficiently 
large the condition number for pn(a,) is greater than that for pn(# a) if A > a. As was 
observed by computation this remains generally true for smaller values of n as well 
(typically for those of Table 1), although in a few instances in the region 
-1 < a, a < 0, d > a, it was found that cond. [V(pn(a?fl))] is slightly less than 
cond.O [V(pn(l,a))]. 

4. In order to compute the condition number in (2.5) for pn(x) = pn(a,o?(x), we 
make use of the fact that these polynomials satisfy the orthogonality relation 
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(4.1) f pn(x)pm(x) (1 - x)x dx = hnn,m , 
0 

wherehn= (n+a+1)F(n+,B+1)/((2n+a+6+1)n!F(n+a+A+ 1)) 
and an,m is the Kronecker delta. With pr*(x) = hr'-12 pr(x) denoting the normalized 
polynomials, we may compute pn*(x) from the recurrence relation 

p* 1(x) = ((x - ar)pr*(x)- bp*U 1(x))/br+1, (r = 0, 1, 2,** , n- 1), 

p*4(2 ) r= ? +() r + 2) }1/2 (.)P*i(x) = 0, Po* (x) = r( 1ro+1 

where 

ao=+i a i+) a=2 a-+ +2y 

2 2 

=2 { (2r+a+ )(2r+a+,+2)' (r 1), 

(4.3) 1 ((a+ 1)3+ +1)1/2 

= + A + 2 a + + 3 )' 

b _ 1 r r(r + a)(r + f)(r + a + 3) 11/2 (r> 2) 
br 2 r + a (2+ 1)(2r + a + f3 + 1)f ' = 

The zeros of pn*(x) may now be computed from (4.2) by a combination of Newton's 
method and successive deflation as described in [6, p. 261]. Hence the condition; 
number of V(pn) can be computed directly from (2.5) for any value of a and f3. 
Selected results* are shown in Table 1. (The numbers in parentheses denote the 
powers of 10 by which the preceding numbers are to be multiplied.) For reasons, 
indicated at the end of Section 3 we restrict our tabulation to the region d ? a. 

The results in Table 1 indicate that condo [V(pn(a,#))] for fixed a is an increasing 
function of f, if -1 < a < 0, and changes from a decreasing to an increasing func- 
tion as f varies from -1 to a, if a > 0. There is thus a "valley" of low condition 
number extending approximately (and more or less independently of n) along the 
line f3 = -1 + 2a/7, as was determined by additional calculations. Along this' 
valley, as well as along the diagonal a = ,3, and near the line: = -1, the condition 
number increases with a and thus appears to be smallest near a = = -1. 

5. A lower bound for the condition number in (2.5) may be obtained as follows. 
Let 

(5.1) max jpn(X)| =A. 
O_x?1 

* In the range-1 <a ? 3, -1 < A _ 3, A _ a, and for n = 5 and n = 8, the zeros of 
pn(a i) (x) as computed were checked against those tabulated in [7]. Disagreement never exceeded 
one unit of the last (eighth) significant digit. For n = 40, successive deflation was used only for 
the first 20 zeros. The remaining zeros were obtained from the original polynomial by Newton's 
method and a simple search procedure. 
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(5.2) (1 + xi)lpn'(xi)l 4n2p, (i = 1,2, * *,n) 

Consequently, by (2.5), 

(5.3) condc. [V(pn)] > Kn , Kn = I Pn(-1) /4n n 

If pn(X) = Pn(a'l(x) we may take advantage of known asymptotic results for 
Jacobi polynomials to obtain an asymptotic expression for Kn in (5.3). As n -* oo, we 
have [10, p. 380] 

An nq/r(q+ ) if q> -2 

(5.4) "-1/2j + 1-a/2-1/41 + 1-V/2-1/41 + + 1I(a+#+l)/2n-1/2 

if -1 < q <-1'2 

where q = max (a, f). Combining (5.4) with (3.3) we obtain from (5.3) 

(5.5) Kn'~~-' (2a+13)/4 n 1) (3 + V8)n+(a+#+l)/2 (q - - n 
and 

a + 11a/2+1/4I + 1I/2+1/4 ' n+(a+#+l)/2 

(5.6) n 2(2a+13) /4j1 a + + l (a+#+1) /2 

( < q <- n O 

The powers of n appearing in (5.5), (5.6) are due to the crudeness of the in- 
equality (5.2) and do not reflect the true asymptotic behavior of cond., [V(pn(aI?)]. 
In fact, if xi is restricted to a closed interval in the interior of [0, 1] (e.g., i such that 
xX is the smallest zero of pn(a,') larger than or equal to 2), then it is known [10, p. 237] 
that 

(5.7) I Pn (a,) (X O I ~-n'/2 (n -+oo), 
the symbol -:-' meaning that the ratio of the left-hand and right-hand expression 
remains between certain positive bounds depending only on a and 3. It thus follows 
from (2.5) and (3.3) that 

(5.8) cond00 [V(pn(aA))] > Kn'X Kn ' (3 + -/8) , (n -oo) oo 

If, as all numerical evidence indicates, the points at which the minimum in (2.5) 
is assumed remain in a closed interval inside the open interval (0, 1) as n -o o, then 
inequality in (5.8) may be replaced by equality. 

6. Considerably sharper bounds can be had if a = S. We thus consider 

( pn() = n(ff)2Z _l) =r(o-2 )+ I)r(n + 2o-) p (a-1/2,a l/2)(2 pn (x) =Cn(j) (2x - 1) = (- + (2xn+2o - 1,, 
(6.1) r(2o-)r(n + o- + 2) 

and for convenience we assume that n is odd. Then, by symmetry, xi = 2 for some 
i = io, so that for this zero, 

pn'(Xs0) = pn (2 ) = 2Cn(O) = 2(n + 2o - 1)Cn(?) C 

Since 
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Y(01(?) = (_1)(n-1)/2 r((n + 2o - 1)/2) ( #zO 
rP(o)IF((n +1) /2) 0 

= 2(- 1), ( = 0), 

we obtain 

(1 + x i) pnp'(x i)I = 6 F((n + 2o + 1)/2) 0) 
IP(o) IF((n +1) /2)' 

6, (ov=O) 

Hence, from (2.5), 

cond,: [V(pn)] ? K Kn = I Cn('T( (3)1 Ir(CT)Ir((n + 1)/2) (v ^ 0) 
(6.2) 6 r~~~~~((n +2o-+ 1)72)' 

n 
6 Cn? (3) (v= ). 6 

From the known asymptotic behavior of Pn(o4-1/2' 1/2)(X) as n oo [10, p. 194] and 
from Stirling's formula we find 

(6.3) Cn (3) (3) 
+ 2 n (3 + \'8)n, (o- # 0, n oo). 

Furthermore, 

2 1 
C, 1 

(0) (3) = Tn (3) (3 + -\/8)4 (n ---> ) 
n n 

where Tn(x) is the Chebyshev polynomial of the first kind. Substituting in (6.2), and 
using Stirling's formula and the duplication formula for the gamma function, we 
obtain 

(odd) 

(6.4) Kn { j8s1 (3 + \/8)n , (o > -2n oo ) 

a result which obviously improves upon (5.5), (5.6) and is more precise than (5.8). 
The case pn(x) = Pn(2x - 1) originally considered in [4] corresponds to a = 12 

in which case (6.4) gives 

(od(l) 
(6.5) 1n 4 

(3 (d 2 ) n oo) 

The corresponding analysis for even n appears to be rather more difficult, for 
general cr > - 1, and we shall not pursue this any further. If o = 0, or cr = 1, then 
(6.4) remains valid for general n, as will be seen in the next section. 

7. The cases a = e = i 2 merit special attention since the Jacobi polynomials 
then reduce to Chebyshev polynomials (of the first and second kind), the zeros and 
weight factors of which are known explicitly. 

We begin with a = = - 1, or, equivalently pn(x) = Tn(2x -1). We have 

Ipn(-1)I = Tn(3) = 2[(3 + V/8)4 + (3- -/8)n. 

so that 
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(7.1) p (-1)| > 2 (3 + V\/8) 
Since the zeros xi of pn(x) satisfy 

2i - 1 
2xi-1=cosOi, Oi= 2n -, (i 1122-..n) 

and Tn' (cos 0) = n (sin n0)/sin 0, we get 

Pn'(xi) = 2Tt' (cos Oi) = (-1)-1 2n/sin O, 

and so, 

3 + cos0Oi 
(1 + xi) IPn'(x1) si Oi n s 

The function f(0) = (3 + cos 0)/sin 0 has a unique minimum in the interval (0, ir) 

which is assumed at 0 = 0o, where cos 00 =-1/3, i.e. Oo 7r/2 + .340. Let i = io be 
such that ir/2 ? 0Ot < 0o. (The existence of io is trivial if n is odd, and if n is even is 
assured whenever n > 4.) Since f(0iO) _ f(ir/2) = 3, we obtain 

(1 + xio)Ipn'(xio)j _ 3n, 

and thus, by (2.5) and (7.1), 

(7.2) 
cond, 

[V(, 
(p, 

))] > 1(3 + V8)n (a = = 

in agreement with the case o = 0 of (6.4). 
Consider next, a = = 1, i.e. pn(x) = Un(2x - 1). Here we have 

(7.3) Pn (-1) = Un(3) = 2V8 {1 - (17 + 6A/8) }, 

and 

2xi -1 =cosOi, As = n + 1 r (i = 1, 2, *,n). 

Since now 

Un'(COS0)= in3 [cos0sin (n + 1)0 - (n + 1) sin cos (n +1)0, 

we get 

Pn'(xi) = 2Un'(cos i) = ( 1)i+l 2(n + 1) 
sin Oi 

and so, 

(1 +xi)p '(xi)I = 3 + cos0. (n +1 
sin a 

In the interval (0, ir) the function g(O) (3 + cos 0)/sin2 0 takes on its unique mini- 
mum at 0 = Go, where cos Go = 8- 3, i.e. Go 7r/2 + .173. Picking i = io such 
that ir/2 < 0X0 < 0 (which is always possible if n is odd, and if n is even certainly 
for n > 8), we have g(0io) _ g(7r/2) = 3, and therefore 
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(1 + x p0)npn'(xi0)I ? 3(n + 1) 

Consequently, by (2.5) and (7.3), 

cond [V( (a) > n - (3 + V/8)n+l{1- (17 + 6V\/8)-n-1} 
(7.4) (6V\8) (n +1) 

(3 + V/8)n+' 
,(3+v8)+I (ta = ,n -->oo), 

in agreement with the case o- = 1 of (6.4). 

8. For comparison we briefly discuss the case of equidistant abscissas** 

(8.1) xi = i/(n + 1), (i = ,2, ,n). 

Here, (2.3) and (2.4) give 

n(n + 2)(n + 3) ... (2n + 1) 
(8.2) cond0, [V(p.)] 

- mini 7ri 

where 
n 

i=(i + n + 1) H li-jl, (i =1 2, *,n). 
i=1; j#iX 

Observing that 

+ n + 2 
- 

X+= + n + 1 n _ , i " (i = y,2 ,n ) 
and that the function f(x) = (x + n + 2)x/((x + n + 1) (n - x)) is monotonically 
increasing on the interval [1, n - 1], with f(l) < 1 (for n > 3), f(n - 1) > 1 (for 
n > 2), f(n/2) > 1, f((n - 1)/2) < 1, it follows that 

7ri+i < 7ri fori < [(n - 1)/2], 7ri+i > 7ri fori > [(n - 1)/2]. 

Consequently, the minimum in (8.2) occurs at i = [(n- 1)/2] + 1 = [(n + 1)/2], 
and we find that 

n2 (2n+1) (neven), 
condX, [V(pn)] (3n + 2) (n + 1) n! (n/2) !2 (n odd) 

(8.3) 
con,, [(pn] -2n (2n + 1)! nod 
cond, [(p~] =3(n + 1) (n + 1)! ((n - 1/)! 

Therefore, by Stirling's formula, 

(8.4) cond00 [V(pn)] 
2 8 2 n >0 

Department of Computer Sciences 
Purdue University 
Lafayette, Indiana 47907 

** Consideration of this case was suggested to the author by Professor C. H. Wilcox during 
a recent conversation. 
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