
On the Solid-Packing Constant for Circles 

By Z. A. Melzak 

Abstract. A solid packing of a circular disk U is a sequence of disjoint open 
circular subdisks Ul, U2, . whose total area equals that of U. The Mergelyan- 
Wesler theorem asserts that the sum of radii diverges; here numerical evidence is 
presented that the sum of ath powers of the radii diverges for every a < 1.306951. 
This is based on inscribing a particular sequence of 19660 disks, fitting a power law 
for the radii, and relating the exponent of the power law to the above constant. U 

1. We shall be concerned here with solid packings of a closed circular disk U. 
Such a packing P consists of a sequence of open pairwise disjoint circular disks 
U1, U2, which are subsets of U; P is called solid if the areas of U and U n= Un 
are the same. Let r be the radius of U and rn that of Un so that the condition for a 
solid packing is r2 = n= r2; the Mergelyan-Wesler theorem [1], [2], asserts then 
that En=, rn diverges. Sums of the form En= r have been considered in [3]: for 
every solid packing P there is a number e(P), called its exponent, given by 

00 ) 

e (P) = sup {x: E rnx diverges} 
n=1 

or by 

e(P) = inf y: E rny converges} 
n=1 

and one wishes now to study the set 

B = {u:u = e(P), P is a solid packing} 

Call a solid packing osculatory if its disks are determined in the following manner: 
U1 is an arbitrary subdisk of U, and from then on each successive Un is the biggest 
disk fitting into the as yet uncovered part of U. It is shown in [3] that all osculatory 
packings have the same exponent S which satisfies 

(1) 1.035 < S < 1.999971, 

and that there exist solid packings P such that e(P) = 2. Since an osculatory packing 
seems to minimize the exponent, the above suggests the conjecture 

(2) B = [S, 2]. 

Our main interest here will be in a numerical determination of S, and we present 
numerical evidence which suggests that, approximately, 

S = 1.306951. 

2. In this section we deal with the configuration of three unit-radius circles 
A, B, C, pairwise externally tangent, and bounding a curvilinear triangle Z. Let the 
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largest, 0th generation, circle C1 be inscribed into Z, then inscribe the three first 
generation circles into the three curvilinear triangles of Z - C1, then the nine 
second generation circles, and so on. Let the radii of all the circles from C1 on, be 
r1, r2, *7* *, then the solid packing constant S of (1) is given by 

S = sup {u: ' rn diverges}. n=1 
To be able to apply numerical methods we follow [4] and introduce the functions 
f(y) and m(y) f(y) is the fraction of the area of Z covered by the circles of radius 
> y, and m(y) is their number. Then 

(3) f (y) = K1 f x2dm (x), 

(4) m(y) =K2j x2df(x), 

where K1 and K2 are constants, and the ath moment is 

(5) rna = K3 lim Jxadm(x) n=1 &-+ov 
The functions f(x) and m(x) can be numerically determined for suitable values of x, 
and it is found that f(x) and m(x) can be well fitted near x = 0 by power-laws: 

(6) f(x) = 1-Aixal, m(x) = A2Xa2. 

By (3), (4), (5) this leads at once to S = 2 - = a2. We shall work with the func- 
tion m(x) since it is somewhat easier to count the number of circles of an osculatory 
packing, whose radii exceed a given bound, than to add the squares of their radii. 
Computation of the radii proceeds readily on the basis of Soddy's formula [5], 
which states that if a, b, c are the curvatures of three pairwise externally tangent 
circles, then the curvature of the smaller of the two circles tangent to the three is 
a + b + c + 2(ab + ac + bc)"I2. In the order of descending magnitude the first 
19660 circles inscribed into Z were examined, the results are displayed in Table 1. 
There the index n ranges from 1 to 20, Num(n) is the number of circles whose radii 
are ? (lOOOn)-1, and Fit(n) is the function obtained by fitting (by least squares) 
the best power-law of the form N(n) = Anb to the data Num(n). It turns out that 

N(n) = 3926.48*nl 306951 

3. The solid packings P, exponents e(P), constant S, and the conjecture (2) are 
all in reference to a packing of a circular disk by similar disks. However, a con- 
siderable generalization is possible. Let U be an arbitrary plane convex body and 
let K be the interior of another convex body. It is assumed that the boundary of K 
does not contain a pair of parallel straight segments. Consider the family F of all 
homothetic images of the closure of K, then F covers U in the sense of Vitali and by 
Vitali's covering theorem [6], there exists a countable subset of F, consisting of sub- 
sets U1, U2, U3, . . . of U, whose interiors are pairwise disjoint and satisfy the solid 
packing condition: 

00 

Area (U) = E Area (Un). 
n=1 
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We call the sequence Ul, U2, a solid K-packing P of U. Next, one defines the 
exponent e(K, P) by 

e (K, P) = sup {x: Z [diam (U,)]x diverges} 
.n=1 

and the set B(K) by 

B(K) = {u:u = e(K, P), P is a solid K-packing} 

Both are easily shown to be independent of U. The equivalent of the Mergelyan- 
Wesler theorem holds here and we have e(K, P) > 1. By the methods of [3] one can 
show that there exist solid packings P such that e(K, P) = 2. Further, solid K- 
packings analogous to the osculatory ones can be defined, and shown to have the 
same exponent S(K). This leads to the generalization of the conjecture (2): 

(7) B(K) = [S(K), 2]. 

The packing constants S(K) do not appear to be easy to calculate except when K 
is a triangle; we have then 

S(K) = log 3/log 2 = 1.585 * 

It might perhaps be conjectured that as K varies over all admissible convex bodies, 
S(K) attains its minimum for a circle, and its maximum for a triangle. The con- 
jecture appears to be contradicted if we take for K a "round" square, for instance, 
the region bounded by the locus of the equation x10 + y'l = 1, for, one might argue, 
such figures "almost" fit together to form an economical packing. However, the 
near fit breaks down as soon as one has to fit the interstices with smaller homothetic 
images of K. 

TABLE 1 

n Num (n) Fit (n) 

1 388 393 
2 973 972 
3 1672 1650 
4 2428 2404 
5 3220 3218 
6 4066 4083 
7 4951 4995 
8 5947 5947 
9 6955 6937 

10 7984 7961 
11 9058 9017 
12 10075 10103 
13 11230 11217 
14 12373 12358 
15 13450 13504 
16 14677 14714 
17 15970 15927 
18 17095 17162 
19 18433 18419 
20 19660 19696 
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The packing constants S(K) appear to measure, in a certain sense, the efficiency 
of a convex set K to form a plane packing, and they certainly merit further numeri- 
cal and theoretical study. 

4. The computational work was done on the Bell Telephone Laboratories' 
machine GE-645, the programming presented no particular difficulties, and the 
total central processor running time was 90 seconds. The author wishes to thank 
D. Bzowy and M. D. McIlroy for suggestions and help in preparing the problem 
for the machine. 
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