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Abstract. The m-point Gauss-Legendre formula gives an exact expression for the 
integral of an algebraic polynomial of maximum degree 2m - 1 in terms of m ordi- 
nates. It is shown that analogous formulas can be derived for exponential and 
trigonometric polynomials. U 

The Gauss-Legendre quadrature formulas approximate the integral of a function 
by a weighted sum of function-values. When m function-values are used, the formula 
is exact for functions belonging to a specific 2m-dimensional space, namely the 
polynomials of degree zero through 2m - 1. This finite-dimensional space is in no 
sense 'representative' of the infinite space over which the formula gives exact results. 
The latter space includes all Riemann-integrable functions which are odd with 
reference to an origin located at the mid-point of the domain of integration; it also 
includes an infinite class of even functions, and this class contains an infinite sub- 
class of polynomials. Similar remarks also apply to the Newton-Cotes formulas. 
In [1] there is discussion of weighted quadrature formulas of the form 

rb m 

(1) fb f(x)dx = A fljg(xj) + T, where f(x) = g(x)w(x), a ~~~j=1 
w(x) is a fixed nonnegative weight function, the fj are the Christoffel numbers 
associated with w, and the truncation error T vanishes when g(x) is a polynomial of 
degree not exceeding 2m - 1. It is shown there that 

(2) qj'(x) fb ( w (x)dx, 

where qm is the mth degree polynomial belonging to a set which is orthogonal with 
respect to the inner product (qr(x), q,(x)) Ba qr(x)qs(x)w(x)dx, and the xi are 
zeros of qm. 

Using these results as a basis, we now consider the problem of constructing an 
m-point quadrature formula which gives exact results whenever the integrand f(x) 
belongs to a 2m-dimensional space distinct from those considered in [1]. A simple 
example is provided by the case where f(x) is a linear combination of exponentials 
erx, where r takes consecutive (possibly negative) integer values. In this case by 
writing ex = z we obtain fJI f(x)dx = Ja zsg(z)dz, where s is an integer and g a. 
polynomial. The latter integral is in the form (1), so one can find an m-point formula 
which is valid for up to 2m terms in the linear combination. Specifically, if r take& 
integer values from p through p + 2m - 1, then s = p - 1; the polynomial qm and 
numbers fj are defined as in (1), (2) with w(z) = zs and integration limits ea, eb. It 
then follows that 
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fb m m 

J f(x)dx= ,lg(zi)= Ojzjz1f (In zj)) a 1 1 

equivalently: 

rb m 
(3) f f(x)dx = 3j'f(xj) + T, where 1j' = jzj-'l-s 

Xj= In zi, and T is zero whenever f(x) belongs to the specified space. 
Another simple case arises when f(x) is a sine polynomial to be integrated from 

zero to 7r. On making the substitution cos 0 = x, and noting that for integers r, 
sin r 0/sin 0 is then an algebraic polynomial in x, we obtain 

L f(O)dO=J (f(0)/sin O)dx = p(x)dx, 

where p(x) is an algebraic polynomial. This leads to the formula 

(4) ff(0)d = f13i'f(06) + T, 

where T is zero whenever f(0) is a sine polynomial of degree not exceeding 2m. The 
numbers f3j' and nodes Oj are related to the standard Legendre numbers f3j and nodes 
xi by cos Oj = xj and fj' = fj/sin Oj. It would clearly be inappropriate to use this 
formula on an integrand that is not well approximated by a sine polynomial. In 
particular, the formula gives inexact results when f(6) is a nonzero constant. 

A more difficult problem arises in the case where f(6) is a full Fourier series, and 
the domain of integration is [-a7r, a7r], IaI < 1. In the case a = 1 it is known [2] 
that the parabolic rule is optimal. Let f(6) = a, sin r6 + E- br cos r6. We seek 
Christoffel numbers 3j' and nodes Oj such that fJO'7 f(O)d6 = 0 fj'f(0j), where m 
is as small as possible and the ar, br are arbitrary. If we make the substitutions 

(5) x = tan6/2, sin6 = 2x/(1 + x2), cos6 = (1 - x2)/(l + x2), 

then the integrand becomes a rational function of x, and we have 

(6) J f(O)dO = f P2n(x) dx, 
-air __- (1 + X2)nl+l 

where P2n(x) is an algebraic polynomial of degree 2n, and u = tan air/2. Since an 
m-point formula will handle weighted polynomials of degree up to 2m - 1, we shall 
need n + 1 nodes in order to guarantee exact results when the integrand is of the 
type (6). Now that the problem has been reformulated into one of the type (1) we 
know that it is possible to derive an appropriate formula by applying (2). This 
method of derivation has the merit that we know in advance that formulas of all 
orders do exist; on the other hand a method of undetermined coefficients may be 
preferable for the purpose of actually constructing the formulas. In applying the 
latter method, we assume that all nodes and Christoffel numbers are symmetric 
about the origin, so that there is no need to take further account of the sine com- 
ponent of f(6). We will describe the construction of. a 2p-point formula; this means 
that we are seeking 2p nodes +Qi and p Christoffel numbers fi, such that for all 
integers r C [0, 2p -1 
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f cos rOdo = 2 E cos rO where aa r = I < r 

If we define ui = cos Oi, qr = (1/2) Jft cos rOdO, then the above equations take the 
form 

P 

(7) E iTr(ui) = qr v r = 0, * * 2p- 
1 

where Tr(u) is the rth degree Chebyshev polynomial. Now for r > 2 we pick up 
the Eq. (7) involving Tr and replace it by the average of itself and the equation 
involving Tr2. Using the fact that Tr(u) + Tr_2(u) = 2uTrl(u) we have therefore 
"traded" an equation involving Tr for one involving uTr1. This in turn can subse- 
quently be "traded" for one involving U2Tr-2 etc. After a sufficient number of 
averagings, the equation system (7) can be brought into the form which one en- 
counters when using Prony's method for exponential interpolation [3, p. 378]; 
thus a typical left-hand member of the reformulation of system (7) has the form 
E= fhu:. To solve this system we proceed as in [3], first constructing and factoring 
the polynomial whose roots are ui, then solving a system of linear equations to deter- 
mine the fi. A minor variation in this procedure makes it applicable to the case 
where the number of nodes is odd. Formulas for m = 2, 3, 4 are as follows, with s, 
c denoting sin ,6, cos Al: 

For m = 2, uj = s/hp, 1 = 'P. 
For m = 3, uo = 1, u1 = (1/2) (sc + 'P - 2s)/(s - ) 

fo = 2(2s2 - 41/2 - sc,6)/(4s - 3),6 - sc) , l = 2(2sip - ,,2- s2)/(4s - 3a' - sc) 

For m = 4, ul, U2 are zeros of the quadratic h2u2 + hlu + ho, where 

h2 = S2- (sc + 4)1)/2, 

hi = (s/2)()/ - sc - 2s2/3) , ho = (,62 + 2sc4l -s2(3 -s2/3))/4, 

f1 = (/U2 -S)/(U2 - Ul), 2 = (S - 4/Ul)/(U2 - U). 

A few experiments have been run to compare the three- and four-point 
members of this family with the corresponding Legendre formulas. On the problem 
fT7/2 (cos 1.5x + cos 2.5x)dx, the absolute error for the three-point Legendre quadra-- 
ture exceeded that for the trigonometric method by a factor of 3.4; in the four-point 
case the factor was 7.8. On the problem JWr /2/22 cos 2x, results favored the trigono- 
metric method by factors of 1.4 and 3.3. Another experiment consisted in approxi-- 
mating ln x by applying quadrature formulas to 

/ x-1) /2 
(1/(z + (x + 1)/2))dz 

-(x-1) /2 
at nine equal-spaced x-values in [.55, .95]. These results uniformly favored Legendre,. 
but in no case did the absolute error for the trigonometric formula exceed that for 
Legendre by as much as a factor of 1.3. Both three-point methods yielded at least 
four correct decimal digits; the four-point methods always gave at least six correct. 
digits. In short, the trigonometric methods seem to be quite closely competitive 
with Legendre in problems which are not deliberately biased towards one method or 
the other. It may be anticipated that the trigonometric methods will find their- 
principal area of application in situations when the integrand is known to be (nearly) 
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periodic; the period can then be normalized to 2ir, so that the formulas become 
immediately applicable. 

Boeing Company 
Renton, Washington 98055 

1. E. ISAACSON & H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966. 
MR 34 #924. 

2. G. BIRKHOFF, D. M. YOUNG & E. H. ZARANTONELLO, Numerical Methods in Conformal 
Mapping, Proc. Sympos. Appl. Math., Vol. 4; Fluid Dynamics, McGraw-Hill, New York, 1953, 
pp. 117-140. MR 15, 258. 

3. F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, NewYork, 1956. 
MR 17, 788. 


