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Abstract. Let f(z) = ao + aiz + * be regular for jzI < 1 and never take the 
values 0 and 1; then ja,l has a bound depending only on ao. J. A. Jenkins gave an 
explicit bound (Canad. J. Math. 8 (1956), 423-425) lail < 2laol { ilog laoll + 5.94 1. 
The author investigates the shapes for the curves Jail < L(ao) for given ao by the aid 
of a computer and shows that although Jenkins' result is about right when ao is 
negative, 4.38 will be the best possible constant in his form and that a much smaller 
estimate should be available when ao is positive or complex. U 

1. Introduction. The theorem of Landau in question may be stated in the form 
that if the function f(z) = ao + alz + * - - is regular for jzI < 1 and never takes the 
values 0 and 1, then lail has a bound depending only on ao. Hayman [1] gave the 
explicit bound Jail ? 2laol { Ilog laoll + 57r} and Jenkins [2] improved it to lail ? 
21 aol { Ilog laoII + 5.94}. For a given value of ao, there is a certain possible region of 
values of a,. This region is probably not a circle jail ? K (ao). This region will 
probably have a different shape when ao is near 0, 1 and oo. In this paper, I shall 
show that although Jenkins' result is about right when ao is negative, 4.38 will be the 
best possible constant in his form and that a much smaller estimate should be avail- 
able when ao is positive or complex. 

2. Preliminaries. Let X(r) be an elliptic modular function, 

X (T) = 02 (0)/O34(0) 

= 16q(1 + q2 + q6 + q2+ .. .)4/(1 + 2q + 2q4 + 2q9 + 4 

where q = e7rr. By a transformation 

= (r - ro)/ (r - o),- Im (ro) > 0 

we have g(?) = X(T) which is regular and q(r) 0, g(?) 5 1 for lJl < 1. Hence 

aO = g (O) = X(ro) 
and 

a, = 9'(0) = X'(ro)2Im(ro). 
Thus, the problem of finding a better inequality in Landau's theorem may be solved 
by tabulating Ig'(0) I and g(O). Hence, the matter simply depends on calculating the 
elliptic modular function X(r). 

3. A Bound of jail for small laol. When Im(T) is large and hence jql small we have 
9(0) !:z- 16qo where qo = eilro and 

9'(0) ? 16iire "r02Im(ro) 

Hence 
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lg'(0)l r lg(0)l(2/1r)l log lg(0)/1611. 
Therefore 

gu'(0) 212lg(0) l{log lg(o)l + 2.7726}. 

Thus, for small lao!, Landau's inequality is approximately 

tail ? 2laol{log a + 2.7726}. 

4. Computer Investigation. 
4.1. The Case of aO Real. When ao is real, we need only to compute the value of 

a, = X'(,ro) 2Im( ro) against ao = X(ro) which varies from 1/2 to 0 and -1 to 0. The 
other values can be obtained by the following transformations: 

U= 1 - W, V= 1/U; 
here of course, I U'l = lW'l and I V'l = I U'l/l U12. A simple computer program will 
give us a sufficient amount of information about the values of ao and ai. I shall list 
only a few of them below and show the part of the curve in the attached figure. The 
computation is made by taking 

X(r) = 16q(1 + q2 + q6 + q12 + q20)4/(l + 2q + 2q4 + 2q9 + 2q'6)4. 

TABLE 

ao tail ao lail ao lail ao tail ao lail 

0.5 2.1884 -0.1 1.0744 -0.6 5.3195 -1.1 9.6336 -1.6 14.1583 
0.4 2.1177 -0.2 1.9587 -0.7 6.1661 -1.2 10.5220 -1.7 15.0870 
0.3 1.9020 -0.3 2.8063 -0.8 7.0203 -1.3 11.4187 -1.8 16.0234 
0.2 1.5263 -0.4 3.6432 -0.9 7.8829 -1.4 12.3237 -1.9 16.9670 
0.1 0.9527 -0.5 4.4793 -1.0 8.7538 -1.5 13.2371 -2.0 17.9173 

4.2. tail < 21aol {log laolI + 4.38 1. From the above table, we notice that the con- 
stant F4(1/4)/4,X2 = 4.376 ... in Littlewood's result [3] at ao =-1 is very sharp and 
by using the inequality in 3 and the numerical tabulation of 21aol { Ilog laoll + 4.38 }, 
we can read that 4.38 will be the best possible constant in Jenkins' form. 

Remark 1. In fact, we have tail = 2.18843961 and tail = 8.75375837 for 
ao = X(i) = 0.50000000 and ao = X(1 + i) = -0.99999999 respectively. Hence, 
even if we consider a few more terms in X(r), almost no change in the value of tail 
can be expected. 

4.3. The Case of ao Complex. I shall illustrate the best possible numerical bound 
of tail foreachgivenaowiththeargument a = nr/10, n = 1, 2, ... ,10 inthe figure. 
These curves are drawn from the values prepared by a computer by taking 

X(r) = 16q(1 + q2 + q6 + ql2)4/(1 + 2q + 2q4 + 2q9 ) 4. 

Remark 2. From the table and the figure and from the transformations 
U = 1 - W and V = 1/U, we can obtain the values of ao and its corresponding 
values of a, I which suggest the shape of a possible region of values of ai for a given 
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ao. For instance, we may draw the contour lines of L(ao) = constant in the ao-com- 
plex plane. It is interesting to mention that Jenkins' result would just give concentric 
circles in that representation. 
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