Extremal Properties of
Balanced Tri-Diagonal Matrices

By Peter A. Businger

Abstract. If A is a square matrix with distinct eigenvalues and D a nonsingular
matrix, then the angles between row- and column-eigenvectors of D*AD differ
from the corresponding quantities of 4. Perturbation analysis of the eigenvalue
problem motivates the minimization of functions of these angles over the set of
diagonal similarity transforms; two such functions which are of particular interest
are the spectral and the Euclidean condition numbers of the eigenvector matrix X
of D'AD. It is shown that for a tri-diagonal real matrix A both these condition
numbers are minimized when D is chosen such that the magnitudes of corresponding
sub- and super-diagonal elements are equal. |l

If a tri-diagonal matrix A is such that corresponding sub- and super-diagonal
elements have equal magnitude then A is said to be balanced or equilibrated. Wilkin-
son [5, p. 424] uses norms of balanced tri-diagonal matrices for error analysis of the
eigenvalue problem. He observes that, given a tri-diagonal matrix A = [a.;] all of
whose sub- and super-diagonal elements are nonzero, a diagonal matrix D = diag
(d1, ds, - - -, d) can be found such that D2AD is balanced. In fact, such a D is de-
fined by

din/di = (|asrd/lasu)™, ©=1,2--,n—1.

If some sub- or super-diagonal element of A is zero then finding its eigenvalues can
be reduced to finding the eigenvalues of submatrices, each of which can be balanced
separately.

It is an immediate consequence of Osborne’s Lemma 2 [3] that a balanced tri-
diagonal matrix A has the extremal property

4]z = inf [D7AD],

where || -||z denotes the Euclidean mairiz norm (Schur norm, Frobenius norm). Our
Theorem 1 states the analogous result for the spectral norm; Theorems 2 and 3
show that the eigenvalue problem of a balanced tri-diagonal matrix is optimally
conditioned in the sense that no matrix of the form D—'AD has smaller angles be-
tween corresponding row- and column-eigenvectors.

We use || - || to denote the Euclidean vector norm, || |2 for the subordinate matrix
bound (the spectral matriz norm), ka(-) for the spectral condition number of a non-
singular matrix, and kgz(-) for the Euclidean condition number (defined by kz(X)
= || X||e | X~||z). Absolute value signs applied to vectors are understood component-
wise. D, Dy, and D, denote diagonal matrices with positive diagonal elements.

TuEOREM 1. If A s a balanced tri-diagonal real matriz then

l4]ls = igfl|D_lAD”2 .
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Proof. There exists a real diagonal matrix E with |E| = I such that B = EA is
symmetric. Since, for all D,

|IDAD||; = |[ED7'AD||s = ||D'EAD||» = ||D™'BD]|:,

the conclusion follows from the observation that for a symmetric matrix B, ||B|2
< |[D7'BD||; for all D.

The following theorem deals with the secants ||y#|| ||z||/|y#z| of the angles be-
tween corresponding row- and column-eigenvectors of a matrix.

TarEOREM 2. If A s a balanced iri-diagonal real mairiz with distinct eigenvalues
Ay, A2, -ty A, corresponding colummn-eigenvectors &1, Tz, ¢+ +, Xn, and corresponding
row-etgenvectors Y1, yo#, - - -, y.2 then

lly &Il ol _ inf llys" DIl [|1D~"|
|Z/iH$i| D |?/iH$il

Jort=1,2 -+ 'n
Proof. Basing his argument on a theorem due to Stoer and Witzgall [4], Bauer
[1] showed that for any vector pair y¥ and z,

DY D7 _ 1] Je]
> |y x| |y x|

Since A = EATE for some real diagonal matrix E with |E| = I, y; = ¢;Ez; for
some scalars c;. Hence

”yiH” [l _ lny| |2
ly e lyia|
fors =1, 2, - -+, n, which completes the proof.
COROLLARY. A has an eigenvector matrix X = [x1, @2, + -+, a] such that kx(X)
= infp,,p, k(D1 XDs).
Proof. By Theorem 2, each term in the sum on the right of the relationship

inf ks(DyXDy) = int 37 1l D]
D1,Dy Dy =1 ly .l
is minimized when D; = I. This implies the corollary.

TaEOREM 3. If A s a balanced iri-diagonal real matriz with distinct eigen-
values then A has an etgenvector matriz X = [x1, x2, - - -, Ts] such that ko(X) =
iIlf]_)l,D2 kz(.Df—lXDz).

Proof. Bauer [2] showed that

1nf k(DX Ds) = p(BLXEX)
D3

for all diagonal matrices E1 and E, for which |E1| = |E:| = I (p denotes the spectral
radius). Hence it suffices for us to obtain equality for some eigenvector matrix X of
A and for some such E; and E,.

Let @ be a unitary matrix such that if Z = X@Q then J = Z—'AZ is the direct
sum of 1 by 1 and 2 by 2 matrices. (The latter are of the form
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and correspond to conjugate compkzx pairs of eigenvalues X == 4u.) If the permuta-~
tion matrix P is chosen such that X = XP, invariance of k. implies that for all D,
and D,

k(DyXD,) = k(D17XDs) = k(D1 XDs)
= k(D1 XPD;) = k(D' X(PD,PT)) .

Hence no generality is lost if we assume that those pairs of diagonal elements of D,
are equal which correspond to a complex conjugate pair of eigenvectors. Under this
assumption

k(D1*XD,) = k(D:'XDsQ) = k(D1'X@QD:s) ,

which allows us to replace the problem of minimizing k(DX D) by that of finding
infp, p, k(D17'ZD2). Now Z7'AZ = J implies

ZTATZ T = JT = E\JE,

for some real diagonal matrix E; such that |E.| = I. Hence, if AT = E,AE,, it

follows that E.Z—TE, = ZD, for some diagonal matrix D,. Thus there exists a
matrix Zo such that Z¢14AZ, = J as well as Z¢! = E1ZTEs. Hence

k(Zo) = ||Zo||2|EvZoTEslz = || Zolls? = p(Zo™Z0) = p(ErZo™EoZy) .

The result of Bauer stated at the beginning of this proof now establishes the theo-
rem.
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