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Abstract. If A is a square matrix with distinct eigenvalues and D a nonsingular 
matrix, then the angles between row- and column-eigenvectors of D-'AD differ 
from the corresponding quantities of A. Perturbation analysis of the eigenvalue 
problem motivates the minimization of functions of these angles over the set of 
diagonal similarity transforms; two such functions which are of particular interest 
are the spectral and the Euclidean condition numbers of the eigenvector matrix X 
of D-'AD. It is shown that for a tri-diagonal real matrix A both these condition 
numbers are minimized when D is chosen such that the magnitudes of corresponding 
sub- and super-diagonal elements are equal. * 

If a tri-diagonal matrix A is such that corresponding sub- and super-diagonal 
elements have equal magnitude then A is said to be balanced or equilibrated. Wilkin- 
son [5, p. 424] uses norms of balanced tri-diagonal matrices for error analysis of the 
eigenvalue problem. He observes that, given a tri-diagonal matrix A = [aij] all of 
whose sub- and super-diagonal elements are nonzero, a diagonal matrix D = diag 
(d1, d2, * * *, dn) can be found such that D-1AD is balanced. In fact, such a D is de- 
fined by 

di+1di = (ai+i,i/Iaj,j+iI )1/2 i = 1, 2, *., n -1 

If some sub- or super-diagonal element of A is zero then finding its eigenvalues can 
be reduced to finding the eigenvalues of submatrices, each of which can be balanced 
separately. 

It is an immediate consequence of Osborne's Lemma 2 [3] that a balanced tri- 
diagonal matrix A has the extremal property 

JJAIIAE = inf ID 'ADJJE, 
D 

where 11 |IE denotes the Euclidean matrix norm (Schur norm, Frobenius norm). Our 
Theorem 1 states the analogous result for the spectral norm; Theorems 2 and 3 
show that the eigenvalue problem of a balanced tri-diagonal matrix is optimally 
conditioned in the sense that no matrix of the form D-1AD has smaller angles be- 
tween corresponding row- and column-eigenvectors. 

We use JJ 1 to denote the Euclidean vector norm, 11 * 112 for the subordinate matrix 
bound (the spectral mat?ix norm), k2(.) for the spectral condition number of a non- 
singular matrix, and kE(*) for the Euclidean condition number (defined by kE(X) 
= IIXIIE IIX-111E). Absolute value signs applied to vectors are understood component- 
wise. D, D1, and D2 denote diagonal matrices with positive diagonal elements. 

THEOREM 1. If A is a balanced tri-diagonal real matrix then 

JA 112 = inf[JD-'AD112 
D 
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Proof. There exists a real diagonal matrix E with JEI = I such that B = EA is 
symmetric. Since, for all D, 

jID-'AD112 = JIED-'AD112 = jID-1EAD112= JJD-'BDJ12, 

the conclusion follows from the observation that for a symmetric matrix B, JIB! 2 
< JID-'BDJ12 for all D. 

The following theorem deals with the secants JlyHll llxll/lyHxI of the angles be- 
tween corresponding row- and column-eigenvectors of a matrix. 

THEOREM 2. If A is a balanced tri-diagonal real matrix with distinct eigenvalues 
X1, X2, **, Xn corresponding column-eigenvectors xi, X2, ***, xn, and corresponding 
row-eigenvectors ylH, y2H, .**, ynH then 

jj~HjjJ~ jjyiHDjjj JJD-'xill ||Y, || ||xi|| inf I l I XI 
lyiH xil D lyiHXil 

fori= 1,2, *,n. 
Proof. Basing his argument on a theorem due to Stoer and Witzgall [4], Bauer 

[1] showed that for any vector pair yH and x, 

inf IYHD I IDY I 
X 

H| 
Y 

j 
D |YHYX 

Since A = EATE for some real diagonal matrix E with JEJ = I, yi = ciEx, for 
some scalars ci. Hence 

llyiH'1lx ll ly~ lIHxil 

for i = 1, 2, ***, n, which completes the proof. 
COROLLARY. A has an eigenvector matrix X = [Xi, X2, *.*. Xn] such that kE(X) 

= infD ,D2 kE(Dl'XD2). 
Proof. By Theorem 2, each term in the sum on the right of the relationship 

inf kE (Dj1 XD2) = inf ly HD ilDl'x l 
D1 ,D2 D1 i=l |iH XiI 

is minimized when D1 = I. This implies the corollary. 
THEOREM 3. If A is a balanced tri-diagonal real matrix with distinct eigen- 

values then A has an eigenvector matrix X = [Xl, X2 *, Xn] such that k2(X) = 

infD,,D2 k2(Dl-lXD2). 

Proof. Bauer [2] showed that 

inf k2(D1V'XD2) > p(EX-lE2X) 
D1,D2 

for all diagonal matrices E1 and E2 for which IE1J = JE2f = I (p denotes the spectral 
radius). Hence it suffices for us to obtain equality for some eigenvector matrix X of 
A and for some such E1 and E2. 

Let Q be a unitary matrix such that if Z = XQ then J = Z-'AZ is the direct 
sum of 1 by 1 and 2 by 2 matrices. (The latter are of the form 
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[4 X] 
and correspond to conjugate complex pairs of eigenvalues X 4i i,u.) If the permuta- 
tion matrix P is chosen such that X = XP, invariance of k2 implies that for all Di 
and D2 

k(Dl-lXD2) = k(D -1XD2) = k(D -1XD2) 

= kl(D -'XPD2) = k(Di-'X(PD2PT)). 

Hence no generality is lost if we assume that those pairs of diagonal elements of D2 
are equal which correspond to a complex conjugate pair of eigenvectors. Under this 
assumption 

k(D1-'XD2) = kl(Dl-'XD2Q) .= k(Dl-'XQD2), 

which allows us to replace the problem of minimizing k(Dr-'XD2) by that of finding 
infD,,D2 k(D1-'ZD2). Now Z-'AZ = J implies 

ZTATZ-T = JT = ElJEl 

for some real diagonal matrix E1 such that IE1l = I. Hence, if AT = E2AE2, it 
follows that E2Z-TE1 = ZD2 for some diagonal matrix D2. Thus there exists a 
matrix Zo such that Zo-0AZo = J as well as Zo-' EiZoTE2. Hence 

k(Zo) = IZOJJ2J1E1ZoTE2112 = IfZo12f2 = p(ZoTZo) = p(EiZo'1E2Zo) 

The result of Bauer stated at the beginning of this proof now establishes the theo- 
rem. 
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