On Designs of Maximal (+1,—-1)-Matrices
of Order =2 (mod 4). IT*

By C. H. Yang

Abstract. Finding maximal (+1, —1)-matrices Ms,, of order 2m (with odd m)
constructible in the standard form

(g 4n)
—BT 4T

is reduced to the finding of two polynomials C(w), D(w) (corresponding to the
circulant submatrices A, B) satisfying

* IC@)|*+ D@)|* = 3m — 1),

where w is any primitive mth root of unity. Thus, all Ms, constructible by the
standard form (see [4]) can be classified by the formula (*). Some new matrices
Mo, for m = 25, 27, 31, were found by this method.

Let M, be a maximal (41, —1)-matrix of order 2m and let S = ((s.)) be the
circulant matrix of order m with the first row entries s; (0 < 7 < m — 1), all zero
but s; = 1.

When m is odd, it is known that (for m = 27, except m = 11, 17; see [1]—[4]),
M s, can be constructed by the following matrix **

m—1 m—1
1) R= < gT ir), where A = Y axS*, B = 2, bS* with
—_ k=0 k=0

ar and by, 1 or —1, and T indicates the transposed matrix. Then the gramian matrix

of R becomes
r (P 0)
RR _<O P/’

m—1
2) AAT + BB = 2(mI + > S") ,
k=1

where I is the identity matrix of order m.

By applying to the both sides of (2) the transformation L which transforms S
into a diagonal matrix W = [wy, - -+, wx,] With w;, all distinet mth roots of unity,
(namely, L(S) = U*SU = W, where U is unitary and * indicates the conjugate
transpose; see [5]) we obtain

where P is equal to
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** For n = 25, without circulancy of submatrices A and B, see [2]; also see Addition of this
paper.
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3) A@A@™ + BB = 2(n+ 3 ')
where
Aw) = 12; aw®, Bw) = :2: baw”

and w is any mth root of unity.
Since w and w™ ! are conjugate to each other, (3) is also equivalent to

@) LI + B =2+ S u).

Let p and ¢ be respectively the numbers of —1’s in each row of 4 and B. By re-
placing 1 by 0 and —1 by 1 in A and B and performing the similar process as above,
we obtain the following formula corresponding to (4).

m—1
) [C@)* + D@ =p +g+r 2o,
TasLe I
m C(w) D(w) N4 Nz N
3 0 1 1 1 1
5 1 1 1 1 1
7 1 14+w+w. 1 1 1
9 14w 14+ w? 4+ wb 3 3 3
13 14w+ w+ w 1+ wo + wo® + we’ 2 2 4
14+ w4+ wt 14w+ w4 w4 w4+ v
or 2 4 4
14 w4 v+ w4+ w4 wb
15 14+ w4 w 4wt 14w+ w + w+vf -+ w 4 8 8
Or1+w+w3+w5+w3+w9
14 w4 w4 w® 14w+ w4+ w4+ w + wt 2 2 2
19 1+ w+w + wb + wf + w 1+w+w+w +w +w®+wt 9
14w+ w ot wt o w? o+ 14w+ w4 wt o+ wb - wl® + wM
or or 6 6 12
1+w+w3+w12+w14+w15 1+w+w3+w5+w9+w10+w16
14w+ w4+ w + w4 w? 14wt w+w +wF+w2+ws 9 .9 9
14w+ w4+ w4 w4 w? 14 w4 w + w4 w + w'? 4wt
or 9 18 18

14w+ w4 w? + w4 wit 4 wis
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ON DESIGN OF MAXIMAL (41, —1)-MATRICES
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where C(w) = > =y ciw* with ¢, = 0 whenever a; = 1 and ¢; = 1 whenever a; =
—1; D(w) is similarly defined. The following relation is satisfied by r, when w = 1 is
put into (5).

(6) P+ge=p+qgt+rim—1).
Similarly from (4), we have

(M) (m — 2p)* + (m — 29)* = 4m — 2.
When w # 1, from (5), (6), and (7), we obtain

* |ICw)[* + [D(w)|* = (m — 1) .

All maximal (+1, —1)-matrices My, for odd m constructible by (1) with the re-
striction p = ¢ < im, for m = 19 were listed in [4].

Thus construction of maximal matrices is reduced to finding of polynomials
C(w), D(w) satisfying (*). Table I is obtained according to this classification for
n = 2m =< 38. In this table, N, N4, N5 are respectively numbers of distinct
types of matrices M,, A, B; w and w, are any primitive mth roots of unity.

For example, when n = 18, m = 9; primitive 9th roots of unity are w = exp
(27i/9), w?, w*, w* for k = 5, 7, 8. Since w* and w™* are symmetric with respect to
w™ = 1 which corresponds to the main diagonal, C'(w*) and C'(w™*) produce designs
of the same type. Consequently we can omit the cases for w* withk = 5. C(w) = 1 +
wand D(w) = 1 + w? + w’ produce the corresponding designs — — +4+ +++4+
and —+ —++4 — 4+ + respectively. Similarly, C(w?) = 1 + w?and D(w?) = 1 +
w* 4+ w produce the designs —+ —++ ++-++ and — —++ — ++ -+ + respec-
tively. Likewise, C(w*) = 1 4+ w* and D(w*) = 1 + w® 4+ w? produce —++—+—
++++ and —+—++ +++—. When m = 19, it is sufficient to consider primi-
tive roots w = exp (27%/19), wkfor 2 < k < 9. For the case C(w) = 1 +w + w? +
w* + w? + w'?; we have C(w?) = 1 + w? 4+ w* + w® 4+ w* 4+ w’ C(w?) = 1 + wd
+ wb 4+ w? + w? + W'’ = w20 (Ww?), and C(w) = 1 4+ w* + w'® + w + w'® 4+ w?
= w’C(w~?%), which produce the corresponding designs —+——+— —4++—+
++++- ++++, -+--+ +-+++ ++-++ ++—-+, and
-——4+—-4+ —+4++4++ —4+++4++ + —++ respectively. All of these three de-
signs are of the same type and their finite sequences are equal to —1, 3, 3, 3, 3, 3,
—1, —1, 3. Similarly it can be shown easily that C(w*) for k = 4, 6, 9 produces
designs with the finite sequences 3, —1, —1,3, —1, 3, 3,3, 3;fork = 1, 7, 8, it pro-
duces those with 3, 3, 3, —1, 3, —1, 3, 3, —1. In general, it can be shown that de-
signs produced by C(w), w*C(w), and w*C (w=1), are of the same type for any integers
k and h.

Table II is obtained by applying this method of finding polynomials C'(w) and
D(w) to the previously known designs for m = 21, 23, and 27.

For example, when m = 27, with primitive roots w* = exp (2rk7/27), (Table I1I)
designs of distinct types are obtained.

Addition. The following new designs for M50, M54, and M2 with the correspond-
ing C(w) and D(w) have been found.

When m = 25, we have

Clw) =1+ w+ w + w® + w® + w° + w' + w* + w', ,
Dw) = C(w") =1+ w? + ws + w® + w" + w" + w7 4+ w? 4 w®.
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When m = 27, we have

C(w)=1—I—w+w2—|—w3+w6+w1°+wl2+w15+w23,
D(w) =1+ w+ w4 uf + w’ + w® + w'® + w7 4 W + W + WS,

When m = 31, we have

C(’w)=1+’w—I—'w2—I—w3+w4+w3+w13+w19+'w23+w26,
D(,w)=1+w+w2+w3+w6+w7+w10+w12+w14+w15+w17+w18
4 w4 w4 2,
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