
Applications of Hilbert Transform Theory 
to Numerical Quadrature* 

By W. E. Smith** and J. N. Lyness 

Abstract. Some finite integrals are difficult to evaluate numerically because the 
integrand has a high peak or contains a rapidly oscillating function as a factor. If 
the integrand is an analytic function Cauchy's theorem may be applied to replace 
the integral by a contour integral, the path being chosen to avoid singularities of the 
integrand, together with a possible residue contribution. If the integrand has branch 
singularities in the complex plane close to the interval of integration, the direct 
application of Cauchy's theorem is not practical. In this paper we show how the 
theory of Hilbert transforms may be applied to replace the integrand by a different 
complex valued function whose real part coincides with the integrand on the real 
line, but which has no singularities in the upper half plane. Using these transforma- 
tions, integrands whose difficult behavior arises from a factor whose Hilbert trans- 
form is known analytically may be treated by carrying out a contour integral of a 
different function and taking the real part of the result. It is shown by means of 
examples that such a procedure may result in significant savings in terms of com- 
putational effort. U 

1. Introduction. In this paper we shall be in general considering the calculation 
of a definite integral having finite limits. We take the integration interval to be 
[-1, 1] as a matter of convenience. The integrand is a real function f(x) which is. 
analytic on the integration interval. In cases where no confusion is likely to arise, 
we refer to the analytic continuation of f(x) into the complex plane as f(z). 

It will be seen that the condition that f(x) be real when x is real plays a basic role 
in the subsequent theory. The theory may still be applied to complex-valued func-- 
tions if both the real part and the imaginary part of the function are independently 
real analytic functions; but each part has to be considered separately. 

In the text we shall give several numerical examples. For comparison purposes 
we have used the Modified Adaptive Simpson method (McKeeman [8]) and the 
Romberg Integration technique (Bauer, Rutishauser and Stiefel [3]) using a practical 
convergence criterion suggested by Havie [6]. Both routines require a tolerance E and 
produce a numerical result for which this accuracy is claimed. However, in practice, 
the accuracy is usually far higher than the required tolerance E, and so the number of 
function evaluations used is larger than is in fact necessary. We refer to these 
routines by the initials (ASM) and (R) respectively. 

As an introductory example, we suppose that the value of 
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(l~~l) }_lz2+~~ zdx, a = 0.01, 
X2 + a2 

is required to a prescribed accuracy e= 10-6. The direct application of standard 
quadrature routines produces the result 313.172056 only after a large number of 
function evaluations has been made. For example, the Modified Adaptive Simpson 
Routine requires 2779 and Romberg Integration requires 4097. The reason for these 
large numbers of function evaluations is that the integrand has a high peak at 
x = 0; f(0) = 10,000 while its value near the end points is near unity; f(? 1) = 

e'/1 .0001. 
A simple way of avoiding this difficulty is to apply Cauchy's Residue Theorem. 

Thus 

f 2 2 J 2 d+ (-1.2) | , +a , cZs = | , + a + a 

where C is some contour connecting -1 to + 1 lying in the upper half-plane, for 
example the semicircle 

(1.3) C:jzj =1, 0<argz<_r, 

and 

(1.4) R = eia/2ia 

is the residue of the integrand at its only pole (at z = ia) within the region R 
bounded by the axis and the contour C. 

For the purpose of numerical evaluation it is necessary to parameterise the curve 
C along which the contour integral is required. We may set z = - exp (-irt); the 
parameter irt is then the arc length in the direction of integration. This leads to 

f e1 I l-exp(-rTit) e-Tt re a 

(1.5) 1-l + j dx e= + dt + (1.5) -l~~x 2+a 2 e2rit __ a2 a 

It is also convenient to take advantage of the fact that the left-hand side of (1.5) 
is clearly real. Consequently we need only calculate the real part of the right-hand 
side of (1.5) which may be written in the form 

e ~ ~ i1 e e ire 
(1.6) f e dx= | Re { r + t + Re 

x 2+ a o2(e rtt)2 + a2) atRe- 

The second term on the right has the value 314.143558. The integral may be 
calculated to the accuracy E = 10-6 using any standard quadrature routine. Its 
value is -0.971501 and this calculation requires 151(ASM) or 33(R) function 
evaluations. These numbers are relatively small partly because of the small magni- 
tude of the integrand (of order unity) but mainly because the integrand is a smoothly 
varying function of t not having high peaks. However, in making any comparison 
it should be remembered that the integrand on the right in (1.6) is more difficult to 
calculate at any point than the integrand on the left. 

The foregoing rather trivial example follows a familiar method suggested by 
Abramowitz [1]. It is included here to provide the background against which a wider 
theory given below may be described. However, even this simple example does 
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indicate the nature of the results to be obtained and their relative advantages and 
disadvantages. Briefly, a small amount of analytical work is required. In return for 
this we may be able to exchange a large number of real function evaluations for a 
small number of complex function evaluations. 

It is necessary at this stage to indicate more clearly the type of integrand for 
which these transformations are likely to be useful. These are integrands of the form 

(1.7) f(x) = w (x)c (x) 
where w(x) and c(x) have the following broad characteristics. c(x) the numerically 
critical factor is an analytically simple function whose properties are well known, 
but which is responsible for making the numerical integration difficult. Usually if 
w(x) = 1, the integral could be evaluated analytically. For example, the functions 

(1.8) (X2+a2)312' sinnx-1.O1- cosnx, a= 0.01, n =20, 

occurring as a factor in an integrand cause considerable difficulty and, though 
simple in structure, are critical here. On the other hand, the same factors with 
a = 20 and n = 0.01 present no difficulty and would not be considered critical. 
w(x) is a function which has the opposite characteristics. It may be quite compli- 
cated in structure, for example 

(1.9) w(x) = exp [-0.1x3](x2 + 36)1/2 In ((x + 20)1/3 + (x + 15)1/3) 

and consequently rule out entirely any analytic solution. However, it is smoothly 
varying in the interval of integration and, if c(x) = 1, the integral could be evaluated 
numerically with little difficulty. 

In the example given above the function 1/(x2 + a2) is a critical factor. If the 
only singularities of the critical factor are poles, all that is necessary is to choose a 
contour which avoids these poles and to take into account the residues of the poles 
lying between the chosen contour and the real axis. We deal with this problem in a 
later section. However, this simple procedure does not work if the function has 
singularities other than poles. To illustrate this we consider the calculation of the 
integral 

(1.10) 1 (X2 + a2)1/2 dx, a = 0.01 

to an accuracy e = 10-6. The critical factor 

(1.11) c(x) = (X2 + a2)f1/2 

has branch point singularities at z = + ia. Thus any contour is constrained to pass 
between these points and consequently passes close to them. This rules out the 
direct transformation described in the previous example. 

In this case we proceed in the following manner. We introduce the function 

(1.12) sfx) = ( 2 + 2)"2 {arc sinh (x/a) } 

(this is in fact the Hilbert transform of -c(x)) and we define the complex function 
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(1.13) b(z) = c (z) + is (z) 

This function has the following properties: 

(1.14) (i) Re (?(z)) = c(z), z real, 

(1.15) (ii) ? (z) has no singularity in the upper half plane, Im (z) > 0. 
In view of these properties, we may write 

(1.16) J w(x)c(x)dx = Re (IW (wx)q (x)dx) = Re (I w(z)4 (z)dz) 

where C is any contour*** in the upper half-plane connecting -1 to +1. Since 
4(z) like c(z) and s(z) has a branch point singularity at z = - ia, we choose a con- 
tour which comfortably avoids this singularity, such as the semicircle used pre- 
viously: 

(1.17) C:IzI = 1, O < argz < r. 
The numerical results are of the same nature as in the previous example. The 

evaluation of (1.10) directly requires 991(ASM) or 2049(R) function evaluations of 
ex/(x2 + a2)"12 (x real). The evaluation of (1.16) requires 65(R) or 295(ASM) 
evaluations of ez(1 + (2i/ir) arc sinh (z/a))/(z2 + a2)"12 at complex points z lying on 
the unit circle. 

The key to this procedure is the construction of the function +(z) which satisfies 
(i) and (ii). In fact the unfamiliar reader may be surprised that the function 

(1.18) (Z) = (Z2 1 + 2i arc sinh (z/a)} 

has no branch point singularity at z = +ia in spite of the fact that both (Z2 + a2)-1"2 
and arc sinh (z/a) do have branch point singularities at this point. In effect, the 
function is (z) when added to c(z) eliminates the branch cut which terminates at 
z = + ia and reinforces the branch cut which terminates at z = - ia. It is this 
elimination which allows us to use contour integration in the upper half-plane, and 
is vital to the whole method. 

In Section 2 we discuss the general theory of constructing functions O(z) = 
c(z) + is(z) satisfying (i) and (ii) with respect to a given c(x). 

In subsequent sections we illustrate, mainly by use of examples, how the method 
may be applied, with various modifications, to several simple and familiar critical 
functions c(z). 

2. Construction of Analytic Functions 4(z) = c(z) + is(z). In this section we are 
concerned with the following problem. Given a real analytic function c(x), find a 
complex analytic function 4(z) having the properties: 

(2.1) (i) Re (4(z)) = c(z), z real, 

(2.2) (ii) 4(z) has no singularities in Im (z) > 0 . 

A basic theoretical approach to this Dirichlet problem is provided by Cauchy 

*** The contour must not extend so far as to encounter nonanalytic behaviour from w(z). 
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integral and Hilbert transform theory. The following theorem summarizes some 
results of relevance here (Tricomi [10, Section 4.2]; Muskhelishvili [9, Section 4.2]). 
Following conventional practice we denote the Cauchy principal value of an integral 
by P and the Hilbert transform operator H., { is defined by 

(2.3) H f } = 
P f J ) dt. 

THEOREM 1. (i) If the real function c(x) is L,(- Xo, oo), p > 1, then 

(2.4) s(x) = -Hz{c} 

defines a conjugate function for almost all x which is also Lp(- Ao, cA), p > 1, and 

(2.5) c(x) = Hags} 

for almost all x. 
(ii) Associated with the conjugate pair c(x), s(x) is the function 

(2.6) +(Z) = 2i c(t) + is(t) dt 

This function has the properties: 

(2.7) p(z) is analytic for Im (z) > 0, 

(2.8) 4(x + i0) = c(x) + is(x) . 

Further, Muskhelishvili [9] shows under less general conditions that 

(2.9) 4(z) = 1 t(t) dt. 

Thus if c(x) satisfies the specified integrability condition, a conjugate function 
s(x) can be found from the Hilbert transform of c(x). Associated with this conjugate 
pair is the desired analytic function +(z). The problem of finding +(z) is essentially 
solved if either the Hilbert transform of c(x) or the Cauchy integral (2.9) can be 
evaluated analytically. 

In the subsequent treatment we make use of two corollaries of this theorem. 
COROLLARY 1. If +(z) is analytic for all Im (z) > 0 and if c(x) = Re(4(x)) is 

Lp(- Ao, oo), p > 1, then s(x) = Im (+(x)) - Im (4( X )) and c(x) are Hilbert trans- 
form pairs. 

COROLLARY 2. If c(x) and s(x) are Hilbert transform pairs Lp(- Xc, Xc) and if 
c(x) and s(x) are both analytic on the real axis, then the function +(z) defined as the 
analytic continuation of c(x) + is(x) in the upper half-plane is identical with the func- 
tion p(z) defined by (2.6) or (2.9) and has no singularities in Im (z) > 0. 

In applying Corollary 2, we have to be careful to note that in general the 
analytic continuation of either c(x) or s(x) separately is not defined unambiguously. 
Thus if we write 

(2.10) 4(z) = c (z) + is (z) , 
both c(z) and s(z) may have branch singularities in the upper half-plane which 
eliminate each other. It is important to choose c(z) and s(z) so that the branch cuts 
in the upper half-plane coincide, for Eq. (2.10) to represent +(z). 
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As an example we construct s(x) and +(z) corresponding to the function 

(2.11) c(x) = (x2 + a2)1/2 

of the example in Section 1. Applying Eq. (2.4) of Theorem 1 we find 

(2.12) s(x)=- i 0 (t2 + a2)12(t - x) 

2 
=ir(x2 + a2)"/2 arc sinh (x/a) 

In order to apply Corollary 2, we define 

(2.13) c(z) = (z2 + a2)12' 

(2.14) (z) ='(z2 + 2)"2arc sinh (z/a) 

which are analytical continuations of c(x) and s(x) respectively. We note that in 
accordance with standard definitions (Abramowitz and Stegun [2]) the branch cuts 
of both c(z) and s(z) in the upper half-plane coincide, lying immediately to the left 
of the line x = 0, y > a. Thus the function +(z) is given by 

(2.15) 4(z) = c(z) + is(z)= (Z2+ a2)/2f1+ f 7a inhf(z/a) 

and according to Corollary 2, this function has no singularities in Im (z) 2 0. 
Some examples of analytic Hilbert transform pairs satisfying the L, integrability 

criterion are given in the upper section of Table 1. When the corresponding 4(z) is 
easily recognized to be reducible to a simpler form than c(z) + is(z), this function of 
z is also entered. Table 2 lists some general properties of Hilbert transforms, useful 
for extending known transforms. Of special interest is the reciprocity, which 
enables columns in transform pair tables to be interchanged with a relative change 
in sign. Differentiation also generates a new transform pair. In some cases new 
transform pairs can be obtained by integration; for example the sixth entry in Table 
1 can be obtained by integrating the first entry and inserting a factor x- (or z-' in 
+(z)) for convergence. 

Tables of Hilbert transforms useful for the present application are limited 
(Erdelyi et al. [5, Vol. 2], Macdonald and Brachman [7]), since only transforms of 
critical factors are of real interest here. If the appropriate indefinite integral is found 
listed in conventional integral tables, it may be used to deduce the Hilbert trans- 
form. Another method is to recognize that Fourier sine and cosine transforms of the 
same function are formally Hilbert transform pairs. For example, the first four 
entries in Table 1 may be obtained in this way from standard tables of sine and 
cosine transforms (see Erdelyi et al. [5, Vol. I]). 

Rational functions play a special role in the subsequent theory. Although the 
Hilbert transform of a rational function is not essential for the applications de- 
scribed here, we do require the Hilbert transform of the product of a rational func- 
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tion r(x) with a function c(x) whose Hilbert transform is known. 
We consider rational functions r(z) which have no poles on the real axis, and 

which are real for real z. To simplify the discussion, it is convenient to restrict 
attention to rational functions in which the degree of the denominator exceeds that 
of the numerator. This restriction is not always necessary but avoids complications 
of a nonessential character. If r(z) has poles of order n8 at z8 and Z8, (S = 1, *, n, 
Im (z8) > 0), r(z) may be expanded in partial fractions as follows: 

n 8) ~~~( 8) ( 8) 
r(z) = n8 + a-n8+1 I + a - 

(2.16) 8={(Z _z,)n8+ (zz)nl8- +ZZ 

_(8) ~ () 8 
+ (za-n8 + a-n8+1 + a ( 

(Z - z8) 8 (z -z8) Z - Z8) 

where bars denote complex conjugates. We define 

f -8) (8)~ a-n _ 
(2.17) +t/8(z) = (z _z8) +l+ Z-Z8j { (_8) + 

and 
n 

(z) = r(z) -E 1P (z) 
(2.18) 8=1 

= 2 ( 
r a88) (8)1 

2 a-n8 a -n8+1 _______ 

(z - z8)n8 (z Z 

Clearly Re (II8(x)) = 0 and Re (+(x)) = r(x). Also ?(z) is analytic for Im (z) _ 0 
having poles only at the points z = -z8 in the lower half-plane. It follows from Corol- 
lary 1 that the Hilbert transform of r(x) is Im ?(x). Simple meromorphic functions 
can sometimes be handled in the same way by using the Mittag-Leffler expansion 
instead of the partial fraction expansion (see entries 11 and 12 in Table 1). 

We now turn to the problem of determining the Hilbert transform of 

(2.19) c(x) = r(x)c*(x) 

where the Hilbert transform s*(x) of - c*(x) and the corresponding function 

(2.20) ?*(z) = c* (z) + is* (z) 

are known, and r(x) is given by (2.16) above. We apply the same principles as in the 
case of the rational function, with the modification that Laurent expansions of 
r(z)o*(z) are used instead of the partial fraction expansion of r(z). This expansion, 
about one of the poles z8 of r(z), is 

+ nR~ 
2.1 k(z) = (p*(z)r(z) = 

08n) 
8 + - (8 

_ - + + z-(8 
(2.21) ~~~~~(Z _ 

z,8)n8 (z - Z8 )nR z -8 

+ bO(8) + bi(8)(z - Z8 + 

where the numbers bN(s) (i = -n8, -n8 + 1, * * *,-1) are calculated from the first 
n8 derivatives of 4*(z) at z8 and the coefficients a,(8) (i =-n8, -n8 + 1, * -1). 
In analogy to (2.17), we define 
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b ,8n, b 
-s),g+l 

bts) 

(2.22) 
8 

(z )n8 (z - 
Z ) Z -Z 

5 b8) 
6 

8)1b8 {( nLI 8 + + 
(z - z 8) (z 

n z 

+'8(z) has a pole at z = z8 of precisely the same nature as the corresponding pole of 
A&(z), and Re (+fr8(z)) = 0 when z is real. 

We now define 

'O()=q 
n n 

(2.23) do4(z) = &( (z) = 4*(z)r (z) - z 
8=1 8=1 

+0*(z) by definition is analytic in the upper half-plane. Thus the only possible 
singularities of A&(z) in the upper half-plane are poles at z = z8 (s = 1 *** n). Each 
of these is precisely cancelled by the subtraction of the corresponding +&8(z). Thus 
4(z) is analytic for Im (z) > 0. 

Moreover, when z is real, r(z) is real, Re (+O*(z)) = c*(z) and Re (+,t8(z)) = 0, SO 

that 

(2.24) Re (+(x)) = c*(x)r(x). 

Thus +(z) satisfies the conditions of Corollary 1 and the Hilbert transform of 
r(x)c*(x) is Im ?(x) where 4(x) is given by (2.23). 

As an example we compute the Hilbert transform of c*(x)/(x - 3)(x - 

Im (A) > 0 where the Hilbert transform of c*(x) is -s*(x) and 

+0*(Z) = C*(z) + is*(z) 

is analytic for Im (z) _ 0. The Laurent expansion of i/(z) = 0*(z)r(z) about z = A is 

= (fa) 1 - + bo + bl(z- + 

Thus 

+8(Z)= (a_ 
:-(z 

_ A 
(z 

(a (-A 

and 

(2.25) 4(z) = f*(z)r(z)-(I - F)(- ) (I - :)(z)- 

which may be put in the form 

__ __ __ __ __ __ _ *(z) + 
(2.26) 4(Z) = I {(z -I*(f-) 

This function is analytic for Im (z) > 0 and the Hilbert transform of c*(x) 
-((x -) (x - ))-' is -Im (+(x)). 

Up to this point we have considered the Hilbert transform and associated 
function 4 (z) only of functions c(x) which are analytic for all real x, and Lp(- ?, ??), 
p > 1. The integrability condition ensures that the Hilbert transform exists. 
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For functions c(x) which are finite over a segment of the real axis, the integrabil- 
ity condition can be met by defining a function equal to c(x) in some interval (a, b) 
and zero elsewhere. The Hilbert transform then exists and Erdelyi et al. [5, Vol. 2] 
tabulates transforms of this type. However, because of the discontinuities at the end 
points a, b of the interval, the corresponding +(z) exhibits nonanalytic behavior at 
these points. Transforms of this type have not been employed in the applications 
reported here, but they may be used provided the end points of the interval of 
integration are not close to the singularities at x = a, b. 

While the L, integrability condition, by ensuring the existence of a Hilbert 
transform, guarantees that an associated ?(z) exists, this condition is by no means 
necessary. For example, addition of constants to c(x) and s(x) destroys the L, 
integrability, but alters the associated ?(z) only by the trivial addition of a complex 
constant. A list of some functions c(x), s(x) which are not Lp(- ?, ?o), p > 1, but 
are Hilbert transform pairs, appears in the lower part of Table 1. In each case the 
associated function 4(z) is given which satisfies, 

Re (4(x)) = c(x), 

Im (cP(x)) = s(X), 

+(z) is analytic for Im z _ 0. 

In some cases such as c(x) = cos x, there is an essential singularity at infinity 
in both c(z) and in s(z) = sin x. Nevertheless, the associated function +(z) = eiz is 
regular in Im (z) _ 0. In the applications described in Section 5, this is important. 
However in other applications, the property of interest is that singularities in +(z) 
in a particular finite region of the upper half-plane should not occur, and it is im- 
material whether or not ?(z) has a singularity at infinity. For example, from Tables 
1 and 2 we find that corresponding to 

c(x) = (1/2x) In (1 + x2/a2) 

is the conjugate function, 

s(x) = -(I/x) arc tan (x/a), a > 0 

and 

qaz) = (1/z) In (1 -iz/a) 

is analytic in Im (z) _ 0 with 

Re (4 (x)) = c (x) ; Im (4(x) = s (x) 

If we are interested in a function having a critical factor In (1 + x2/a2) we may well 
dispense with the 1/x factor. In this case it follows that if we define 

c(x) = (1/2) In (1 + x2/a2), 

s(x) = -arc tan x/a, 

and 

(z) = ln (1 - iza), 

we have as before that 
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Re ()(x)) = c(x); Im (+ (z)) = s(x) 

and now +(z) has no singularities in any finite region of the upper half plane (but 
does have a singularity at infinity). The functions c(x) and 9(x) are not Hilbert 
transform pairs (except perhaps in some generalised sense). However in the appli- 
cations given here the pair c(x), f(z) is just as useful as a basis for the calculation 
as the pair c(x), +(x). 

Consequently, although Hilbert transform theory forms a convenient basis 
for the procedures described here, some of the restrictions associated with this 
theory are not relevant to the applications. 

3. Application to Numerical Quadrature (General Remarks). In the previous 
section we showed that for a very wide class of analytic functions c(x), it is possible 
to define corresponding functions s(x) and +(z) having the properties 

(i) ?(z) has no singularities in the upper half-plane, 
(ii) Re O(z) = c(z) , z real. 

Consequently if we define a contour C which connects z =-1 to z = 1 in the upper 
half-plane and define the region R to be that bounded by C and the real axis, we 
may write 

(3.1) f c(x)dx = Re f (x)dx = Re f (z)dz. 

Moreover, if w(x) is a real analytic function and w(z) has either no singularities or 
only poles in the region R, we may write 

f w(x)c(x)dx = Re f (x) (x)dx 
(3.2) -l 

= Re f w(z)q$(z)dz + 27ri E R(w4) 

where ZR R(w4) stands for the sum of the residues of the poles of w(z)4(z) in the 
region R. In principle therefore, when 

f(x) = w(x)c(x) 

we may generally apply transformation (3.2) and evaluate, numerically or other- 
wise, the expression on the right-hand side instead of the expression on the left-hand 
side. In many cases illustrated by examples in the following sections, the latter 
calculation is significantly easier than the former. 

We must emphasise that in practice this choice exists only if the integration re- 
quired to calculate 4(z) from c(x) has been carried out analytically and some simple 
analytic form for 4(z) is known. Thus while the theory as presented in the previous 
section is quite general, this particular application of this theory is restricted in 
practice. 

There are two distinct types of limitations to the use of this theory. The first 
is that it should be possible to use it and the second that it should be desirable to use 
it. These may be summarised in a nonrigorous manner as follows: 

(i) Practical Possibility. It must be possible to factorise f(x), f(x) = w(x)c(x), 
in such a manner that: c(x) is a function for which a simple analytic expression for 
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the corresponding +(z) is known; and w(z) has no singularities other than poles in R. 
(ii) Desirability. The function f(x) should be "difficult" to integrate along the real 

axis (possibly because c(z) has branch singularities close to the real axis), but the 
function w(z)sb(z) should be "easy" to integrate along the contour C and any residues 
at poles of w(z)o(z) within R should be easy to calculate analytically. 

The above remarks are clearly only a qualitative guide to the limitations. Ob- 
viously the terms "difficult," "easy," and "simple" have to be taken in a relative 
sense. If c(x) is given, the function 4(z) may be expressed 

0 WZ = A T t (tdz 

and in other contexts this might be described as "a simple analytical expression." 
In this context, where the original problem consists of an integration which may be 
simpler than this, this form is not simple enough. 

So far as "difficult" and "easy" to integrate are concerned, this depends on the 
locations of and the nature of the singularities of f(z). In general a singularity close 
to the integration path is associated with a peak in the integrand on the path close 
to the singularities. This has the effect that standard quadrature routines require a 
large number of function evaluations to attain an approximation of particular 
accuracy. There is also the subsidiary effect of the accuracy being limited by round- 
off error in function evaluations near the peak. This is not the whole story. The 
function cos (nx) has no singularities, except for an essential singularity at infinity. 
This single singularity even though it is at infinity causes "difficult" integration if n 
is large. However, the relative difficulty depends also on the facilities available to 
the user. If a special quadrature routine is available designed to take into account 
as a weighting function the critical factor, then instead of being "difficult," a 
quadrature may be "easy." 

4. Examples Using a Semicircular Contour. In this section we apply the method 
outlined in Section 3 to specific cases in which there is a branch singularity in the 
integrand close to the interval of integration. In this section we use the same semi- 
circular contour C to evaluate the contour integrals. Since a general discussion is 
rather difficult to follow we present the material in the form of examples together 
with a discussion of that particular example. 

Example 1. 

(4.1) -111q )dx, j>O, 
-1 (a2 + X2)1/2((x 7 X)2 + 12) 

where g(x) is an analytic function having the same characteristics as w(x), that is it 
is not a numerically critical factor. This integrand may be written 

(4.2) f(z) = g(z)/((z2 + a2)1/2(z - 3)(Z - T) 

and has branch singularities at z = hLia and simple poles at z = = X + i, and 
at z = , = X - ij. Unless one of these singularities is close to the interval [-1, 1], 
the numerical quadrature is straightforward and should be carried out directly. If 
this is not the case, and if a is small there is at the outset a choice in what we con- 
sider to be the critical factor. On one hand we may choose 
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(4.3) c*(x) = 1/(X2 + a2)1/2; W*(x) = 9(X)/(X - )(X-) 

and proceed along the lines described in the previous section. Reference to Table 1 
indicates that 

(4.4) W = (z2 + 2)1/2 
1 + arc sinh (z/a)} 

The residue of the function 4*(z)w*(z) at the pole z = is 4*(f)g(f)/2iy. Thus we 
find 

(4.5) I, = Re (z g(z)) (z) dz + Re (27riR) 
(z- i) (z - 0 

where 

(4.6) R = 4*(j3)g(j3)/2im 1i1 
< 1, 

R=O, 13j>1. 

This is the first choice. The second is to include the rational function { (x -X)2 + ,2 }-1 

as part of the critical factor. Thus 

(4.7) c(x) = 1/(x2 + a 2)1/2 (X - ) (X-) ; W (X) = g(X) 

Since the Hilbert transform of c*(x) is known together with the corresponding 
function +*(z), the function 4(z) which corresponds to c(x) may be determined using 
the theory provided in the second half of Section 2. This particular calculation is 
carried out there as an example. The result (Eq. (2.26)) is 

(4.8) +(Z)2i {*() - *() (z) + d 

The function 4(z)g(z) has no singularities in the region R. Consequently, 

I, = Re f w*(z)4*(z)dz = f w(z)cp(z)dz 
(4.9) C 

= Ref j [*() - *()- (z) + 4* (f) dz. 

The foregoing results (4.5) and (4.9) are analytic in nature and are valid whatever 
the values of a and f so long as a > 0, ,u > 0. If 3 lies on the semicircle C, i.e. 
j31 = 1, both (4.5) and (4.9) have to be interpreted in a standard limiting sense. 

Moreover, (4.9) is a simple analytic consequence of (4.5) and may be obtained by 
expressing the residue R as a contour integral using as closed contour the semicircle 
C and line interval [-1, 1]. 

In several numerical cases, taking g(z) = 1.0, a small, and various locations for 
the pole, the slightly more complicated form (4.9) is easier to integrate numerically 
than (4.5). A typical example is one with a = 0.001 and f = 0.4 + 0.li. Here to 
obtain an accuracy E = 10- the integration in (4.1) required 1927(ASM) or 16385(R) 
function evaluations of a real function. That in (4.5) required 247(ASM) or 129(R) 
complex function evaluations and that in (4.9) required 163(ASM) or 65(R) complex 
function evaluations. This is despite the fact that the same absolute accuracy 10-5 in 
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the final result was required and the integral in (4.5) whose value is - 1.28 is much 
smaller than the integral, I, = 140.11, in (4.9). The effect of removing all the poles 
from the upper half-plane, rather than relying on the residue term is such that in this 
case a relative accuracy of 107 is obtained with less work than a relative accuracy 
of 10-5. 

The case in which 13j is close to 1, so that the pole is close to the contour C, need 
not arise in practice, as under these circumstances a different contour C' would be 
chosen. However, if for some other reason it is convenient to use the contour C 
unduly large round-off errors in function evaluation may occur at points close to the 
point A. The authors have found in practice that accurate results may still be ob- 
tained using (4.9), but not (4.5). The situation is analogous to integrating the func- 
tion (sin z)/z and the function (cos z)/z respectively along a contour close to or even 
through the origin. In one case, corresponding to (4.9) the magnitude of the function 
is not large at the points where the function value is subject to inaccuracy and these 
errors are averaged out in the integration. In the other case corresponding to (4.5) 
the result depends on adding large numbers having opposite signs where these 
numbers are inaccurate, and this leads to completely unreliable results. 

The conclusion in this example is that under very wide conditions the use of 
(4.9) is to be preferred to the use of (4.5), the additional analytic work required in 
calculating the Hilbert transform of the product c*(x)r(x) rather than that of c*(x) 
being rewarded both by an easier numerical integration and a mitigation of possible 
effect of round-off error. 

Example 2. 

(4.10) 12 = J g(x) In (1 + (x/a)) dx 

where a is small and g(x) is as before not numerically critical. Here we may proceed 
in precisely the same manner as in Example 1. There are branch singularities at 
z = ?ia being the coalescence of a logarithmic branch point and a simple pole. 
Reference to Tables 1 and 2 indicates that corresponding to the function 

(4.11) d(x) = (1/2x) In (1 + x2 /a 2) 

is the function 

(4.12) +(z) = (1/z) In (1 - izla) 

which has no singularities in Im (z) > 0. The discussion at the end of Section 2 
shows that if we are prepared to allow a function having no singularities in any 
finite region of the upper half-plane (but one at infinity) we may set 

(4.13) c(x) = In (1 + x2/a2) 

and 

(4.14) c/(z) = 2 In (1 - iz/a) 

The residue of c(z)g(z)/(z2 + a2) at z = +ia is 

(4.15) R = (g (ia) In 2)/ia. 

Thus 
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(4.16) I2 = Re [I Wz)(s dz + 2 g(ia) In 2 a < 1. 

A calculation regarding 

[2 2] in 1 + 2 

as the critical function leads to the result 

(4.17) I2 = Re 22 (Z) n ( -iz/a) + (iza) In 2 }d a] < 
z +a )- 

which is analogous to Eq. (4.9). Numerical examples give results following much the 
same pattern as in Example 1. For example, with g(x) = 1.0 and a = 10-2, an 
absolute accuracy of 10-4 was obtained in both (4.16) and (4.17) using 55(ASM) or 
17(R) complex function evaluations. The real integral (4.10) required 1135(ASM) 
or 2049(R) real function evaluations. 

The examples chosen have contained a simple critical factor whose Hilbert 
transform was known, and the whole integral was converted into a single complex 
integral around a simple contour. If the singularities of the integrand of the real 
integral are distributed in the direction of the real axis the real integral can be split 
up and each part treated separately. In this way knowledge of the Hilbert transform 
of simple functions, rather than their products, may suffice. For example, suppose 

(4.18) = J 

(x 2 + (x- 2)/a )2d1 

is required, where a and b are both small. The authors do not know the Hilbert 
transform of 

In (1 + (x- /a- 

(b2 + (X + 1)2)1/2 

so they cannot use the method directly. However, writing 

(4.19) I = J1 + J2 

with 

(4.20) Jl = _ {g(x) in [1 + (x - 2/a2]} (b2 + (x + 1)2)1/2 dx 

k4.21) o2 = In [1 + (x - 2 /} 2 ( + 1 )2)1/ 

separates the singularities, and the method can be applied to each integral in turn. 
The appropriate w(x) function to use in each case is contained in the curly brackets 
in (4.20), (4.21). 

The choice of a contour, together with the appropriate quadrature rule is not as 
unimportant as it might seem at first. The points for function evaluation have to be 
calculated and a contour and rule should be chosen with this in mind. A set of 
straight line segments, together with any standard quadrature rule for each, present 
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no difficulty. In this section we have used a semicircular contour. The points for 
function evaluation are of the form exp [7ritj], 0 < tj < 1. If we were to use a rule 
involving a high order Gaussian quadrature, a large number of calls to the expo- 
nential routine would be necessary. On the other hand, a rule depending on equally 
spaced points tj = j/n requires only one call to the exponential routine to calculate 
eri/n. The other points are simply powers of this exp [7ritj] = (exp [7riti])i. In practice 
Romberg integration was considered advantageous. 

It is quite pertinent to suggest that some other contour such as three sides of a 
square having [-1, 1] as base is more appropriate, since there is a wider scope for 
choice of quadrature rules. Any such choice depends on the location of the singular- 
ities. In general a circular segment having the most influential singularity as center 
has the property that the integrand varies smoothly along the contour. In the ex- 
amples in this section +(z) has a branch singularity at z = - ia, which is close to the 
origin. Thus a semicircle centered at the origin is appropriate to these problems. 

5. Examples Using an Infinite Contour. In this section we consider examples in 
which the function exhibits oscillating behavior of a simple nature on the interval 
of integration. This may be due to an essential singularity at infinity or due to an 
infinite sequence of isolated singularities. We give an example of each. 

Example 3. We consider first the Fourier coefficient integral 

(5.1) J-1 w(x) cos (nx)dx 

where n is taken to be large, e.g. n = 10, and need not be a multiple of 7r. 
We refer to Table 1 and find 

(5.2) c(x) = cos (nx) 

4()eins. +(z) =etZ 

Thus, so long as the function w(z) has no singularities other than poles in the region 
R (bounded by C and the interval [- 1, 1]) we have as before 

(5.3) J w(x) cos nxdx = Re {f w(z)efinfdz + 27ri j R (w4)}. 

In this problem, attention has to be focused on the choice of contour C. In any line 
segment (not parallel to the y axis) the function einz has oscillating behavior. How- 
ever, along a line segment parallel to the y axis, the function eins is decaying ex- 
ponentially and has no oscillatory behavior. Moreover, if Im (z) is large and positive, 
the function einz is small in magnitude. Thus a suitable contour C might be three 
sides of the rectangle of height L having the interval [- 111] as base, L being chosen 
to be large enough so that the contribution to the integral along the upper edge of 
the rectangle is smaller than the required tolerance. 

To be specific we consider an example in which a pole of order two a small dis- 
tance u from the real axis presents an added difficulty to the evaluation of (5.1) 
numerically. We set 

(5.4) w(x) = 1/(x - $)2(x - 2 where g = X + iu, JX1 < 1, > 0 . 
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The residue of the pole of einz w(z) at z = fi is 

(5.5) R =-(i/4,j)en'(1 + nq). 
This leads to the result 

[1cos nx 
I' COfflX dx 

k_1 #-)2(X _ )2 

f L 

(5.6) = Re {if e-ny[e-inw(-1 + iy) - einw(l + iy)]dy 

e nxw(x + iL)dx + - 

r 
e 1 + nq) L > . 

This result is of course exact. The only question is that of making a choice of L and 
deciding whether the integrals on the right are easier to evaluate numerically than 
the one on the left. As mentioned above, L may be chosen to make the contribution 
of the second integral negligible; to do this we require a value of L for which 

-nL (5.7) 2e max w(x + iL) < e 
-1<2<l 

and there is no difficulty here. 

TABLE 2 
GENERAL PROPERTIES OF CONJUGATE FUNCTION PAIRS 

C(x) S(x) Corresponding Analytic 

= Ha{S} = -HT{C} Function in Im (z) > 0 

C(x) S(x) +(z) = C(z) + iS(z) 

S(x) . -C(x) -i4 (z) 

C(x + a) 

areal S(x + a) 4(z + a) 

C(ax) S(ax), a > 0 4(az) 

a real -S(ax), a < 0 C(az)-iS (az) 

C'(x) S'(x) +'(z) 

xC(x) xS(x)- | C(x)dx Zq5(z)- i-7r C(x)dx 
_00 -00 

The only other difficulty appears when we consider the first integral on the 
right of (5.6). The function of y in square brackets is a relatively smoothly varying 
function. However, the factor e-88 is the rapidly decaying exponential function. 
Thus standard methods are not readily available (but could be constructed) for 
finite intervals. However, in this example it is more convenient to set L = oo. Then 
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we clearly satisfy (5.7) and we may use methods based on the Gauss-Laguerre 
quadrature formulas for the only remaining interval. It has been shown that a 
sequence of Gauss-Laguerre formulas does converge under these circumstances 
(see Uspensky [11]). 

In a numerical example, with 3 = 0.5 + 0.li and n = 107r the integral in (5.6) 
was evaluated using the two-point Gauss-Laguerre formula to give an overall rela- 
tive accuracy of 10-5. The four-point formula gave 10-7. 

There are two points which should be noticed. First the value of 

sin nx dx 
J (x - )2(x _ P)2d 

is simply the imaginary part of the quantity in curled brackets on the right-hand 
side of Eq. (5.6) and can be calculated at the same time. However, if a set of Fourier 
coefficients are required fAl sin 27rmxf(x)dx, m = 1, 2, 3, ***, each has to be 
calculated separately if this method is used. There are other methods available which 
would use the same function values to calculate all the members of the set, and these 
might be more appropriate. The second point is that, if an infinite contour is chosen, 
the general restriction that w(x) should have no singularities in the region R is of 
course valid, but has to be properly interpreted so far as the situation at infinity is 
concerned. For example w(x) = emx has an essential singularity at infinity. Thus the 
integral 

(5.8) f qkx)e" cos nxdx = Re g(z)e(m+in)zdz 

cannot be treated in this way if jml _ Inf, and the method may be inefficient if 
I mI < Inl. In this case, an appropriate procedure is to choose contours along which 
e(m+in)z is exponentially decaying and has no oscillatory part. These are the lines 
my + nx = in. 

Example 4. The second example we consider here is 

(59) | ~~w(x) dx, a>1, (5.9) -,sin nx - a 

where to avoid complicating matters we suppose that w(z) is regular within 
IRe (z)j I 1, Im (z) _ 0. If a is close to 1 and n is large, the factor 

(5.10) (x) = 1/ (sin nx - a) 

is a critical factor, having period 27r/n and varying in value between - 1/(a - 1) and 
- 1/(a + 1). A simple calculation shows that this oscillatory behavior is due to a 
sequence of simple poles of d(z) situated at intervals of 27r/n on the two lines 
JIm (z)J = ? (1/n) cosh-'(a). 

Before referring to the table of Hilbert transforms, we note that the function 

( i cos nz 
(5.11) (1_-(a2 _ 1)1/2/ 

has zeros which coincide with the poles of d(z) in the upper half plane but not in the 
lower half-plane. Thus the function 
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(5.12) ~ (Z) 12 iCO l 
(sinnz - a) (a2 - 1)1/2) 

is regular in Im (z) _ 0, and it is possible to proceed initially as in the previous 
example. 

Since +(z) has a sequence of simple poles close to the real axis just below it, we 
choose a contour which avoids the real axis by as wide a margin as possible. It is 
convenient to use again the three sides of the rectangle of height L having [- 1, 1] as 
base. Thus we set 

J w (x)e(x)dx 
(5.13) -1 

( f-1 iL {1+ iL {+1 

Re + 
1+iL +1+ iL 

w(z)(z)dz 

When we come to choose L we encounter a difficulty of a numerical nature. The 
function +(z) has the form 

1 a + (a2 -1)1/2 -ienfz 

(5 14) (a -1) a + (a -1)1/2 + ie flz 

_ 1 + 1 2ieinz 

(a2 + 1)1/2 (a2 - 1)1/2 a + (a2 _ 1)1/2 + ieinz- 

Thus for large Im (z), +(z) approaches a constant which overshadows the variations 
in +(z). The calculation involves integrating the sum of this constant and a small 
varying function around an extensive contour. The contribution of the constant is 
to add and subtract relatively large numbers in the numerical integration. 

Once this particular problem is recognised, a method of avoiding it is easily 
devised. This is to subtract this constant analytically before carrying out the 
numerical work. Thus we set 

(5.15) f-l w (x)(x)dx 2 1 ) fX2 w (x)tx + f w(x)c (x)dx 
-1 ~~~(a-1)2 11 

where 

(5.16) c(x) = d(x) + 

and the corresponding +(z) is 
- ~~~~1 

+(Z) (Z) + 2 1/2 
(5.17) (a -1) 

2ie 
(a2 _ 1)1/2[a + (a2 _ 1)1/2 + ieinz] 

The first integral on the right of (5.15) does not involve a critical factor and may be 
evaluated numerically. The standard procedure may be applied to the second 
integral leading to a result precisely analogous to (5.6), namely 
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dx= -1 w(x)dx+Re2I e , sinnx - a (a2 -1)1/2 -1 o 

a e( 1 iw(-1+iy) 

(5.18) La + (a-i) + 
iein(1+ii) 

et w (1 4- y) 1 

a + (a2 _ 1)1/2 + ien(1+iY) 

+ eflL e dx 
-la + (a2 - 1)1/2 + iein(x+iL) 

As before any choice of L is allowable. But if L is chosen to be infinite the final 
term in (5.18) is zero and the infinite integral may be evaluated using the Gauss- 
Laguerre formulas. 

This example is interesting because the original critical factor d(x) is 
one which does not have a Hilbert transform. But after subtracting the con- 
stant - 1/(a2 - 1)1/2, the new critical factor c(x) does have a Hilbert transform. 
c(x) and q$(x) are among those listed in Table 1. 

In a numerical example with w(x) = (x + 2)-2 and a = 1.1, n = 10r and the 
required absolute accuracy E = 10-4, we found that the direct evaluation of (5.9) 
required 3079(ASM) or 2049(R) real function evaluations. The real integral in 
(5.18) whose evaluation in this case may be accomplished analytically required 
127(ASM) or 65(R) real function evaluations. The infinite integral (L = oo) in 
(5.18) was obtained sufficiently accurately using the ten-point Gauss-Laguerre 
formula. However, in our calculation the Gauss-Laguerre formulas requiring 4, 6, 8, 
10, and 12 points were evaluated, making a total of 40 complex function evaluations. 

6. Concluding Remarks. It is perhaps pertinent to state quite clearly the part 
played by these types of transformation in the general scheme of computational 
mathematics. In a very useful article written in 1954, Abramowitz [1] indicates the 
importance of an initial investigation into some of the analytical properties of a 
particular quadrature problem before any numerical work takes place. He describes 
briefly many different transformations which are useful in different problems. These 
have the effect of reducing significantly the amount of numerical calculation re- 
quired, and occasionally removing the need for any numerical calculation. The im- 
portance of this sort of investigation is emphasized by the fact that this article has 
been reprinted, thirteen years later, as part of a standard textbook on numerical 
integration (Davis and Rabinowitz [4]). 

The contents of this paper could be considered as an extension of one of the 
transformations described by Abramowitz. This paper is not directly concerned 
with quadrature methods per se, that is, expressing an integral as a sum of function 
evaluations for general use. Rather it is concerned with the prior investigation. As a 
result one integral which may be difficult to evaluate numerically is replaced by a 
different integral which may be much easier to evaluate. The work involved in this 
replacement is analytical in nature. However account has to be taken of the numer- 
ical procedures which might be used both in the original calculation and in the 
transformed calculation in order to see if such a transformation is of practical value. 
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Consequently while the mathematical basis of the work presented here is quite 
rigorous and unambiguous, the application of these results is a question for personal 
judgement. In the applications we have chosen a particular contour or a particular 
quadrature rule and have given what we consider adequate reasons for these 
choices. But we do not claim that these choices which are subjective in nature are 
necessarily the best, even in our own specific examples. The user should feel free to 
make different choices according to his particular preferences and his particular 
problem. 

Another aspect of the applications is that different examples require slightly 
different applications of the same basic theory. For instance in Section 4 we use a 
different contour from that used in Section 5. In the second example in Section 5 we 
subtract out a constant. If there are poles sometimes we take these into account by 
including them in the 'critical factor' and in other circumstances we use the theory 
of residues. Thus even in cases where the analytical work involved in evaluating the 
Hilbert transform has been carried out, some further analytical work (of a more 
trivial nature) may be required in applying this theory. 

However, in spite of the lack of general uniformity, and the restriction to situa- 
tions which involve functions whose Hilbert transform is known, the examples 
show that this technique is sometimes very powerful and does cover a wide variety 
of problems. At the expense of some analytical work, very significant savings in the 
scope of the numerical part of these calculations can be accomplished. 
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