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Abstract. Various writers have dealt with the subject of optimal starting approxi- 

mations for square-root calculation by Newton's method. Three optimality criteria 

that have been used can be shown to lead to closely related approximations. This 

fact makes it surprisingly easy to choose a starting approximation of some pre- 

scribed form so that the maximum relative error after any number of Newton 
iterations is as small as possible. U 

1. Introduction. The choice of polynomial and rational starting approximations 

for square-root calculation by Newton's method has been the subject of various 
investigations (e.g., [1]-[5]). These approach the problem from several different 

points of view. In this paper we will show how approximations obtained from these 

different viewpoints are related and how some of them can be derived from others. 

The problem of evaluating V/x for any x > 0 is easily reduced to the problem of 

evaluating V/x for x in some closed interval [a, b] such that 0 < a < b. Here [a, b] 

depends on the radix of the floating-point number system of the computer to be 

used; typical possibilities are [1/16, 1] and [-, 2]. The following procedure is used to 

compute an approximate value for VIx. Using a polynomial or rational approxima- 
tion f(x) to V/x, valid in [a, b], compute a starting value yo = f(x) and then obtain 

Y1, Y22 .2 Yn by means of the relation 

Yk+1 = 12 (Yk + Xl8k), k = O. 1, * ,n - 1 . 

Then Yn V/x. It is customary not to test for convergence, since the number of 

iterations required in practice is quite small. Instead, the number of iterations n is 

chosen so that yn is a sufficiently accurate approximation to V/x for all x in [a, b]. 

Let the relative error in the kth Newton iterate be denoted by Rk(x); that is, let 

RkW =Yk 
- V\X 

Rk(x)= -t Vx/ 

Then Ro(x) is the relative error of the starting approximation; that is, 

R o(x) - fx - V\/x 

It is well known that 

(l) Rk+( - Rk 2(x) 

The better the approximation f(x) is, the fewer iterations will be required. Thus we 

wish to select the coefficients of the approximation f(x) in order to obtain a best fit 
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in some sense. We will look for a best-fit approximation in a set V of admissible 
functions. Here either V is the set of all polynomials of degree ? M or else V is the 
set of all rational functions p(x)/q(x) where p(x) and q(x) are relatively prime 
polynomials of degree < M and N respectively and q(x) does not vanish 
for a _ x ? b. Let W be the set of all f(x) in V for which f(x) > 0 for a _ x ? b. 
Now f(x) = V/a is in W, and we find that for this function IRo(x) I < 1 for a ? x ? b. 
For any f(x) in V but not in W we would have fRo(x) I > 1. Therefore, in searching 
for a best-fit approximation to V/x we restrict our attention to W. 

2. Optimality Criteria. In trying to select the best approximation from W, three 
criteria have been used. First, we can try to minimize the maximum of IRo(x) for 
a < x ? b. This leads to the best-fit approximation to V\x in the relative-error sense 
for the interval [a, b], a type of approximation treated extensively in the literature 
(e.g., [2] and [4]). Another criterion, for which it may be easier to find the optimal 
approximation by analytical methods, is to minimize the maximum of I5(x)f, where 

(2) 5 (x) = log f(x) 

Here 

(3) a5(x) = log [1 + Ro(x)]. 

Several approximations to >/x that are optimal in this sense also appear in the 
literature (e.g., [1] and [3]). A third approach is to note that we are going to use a 
fixed number of Newton iterations and always going to take yn as an approximation 
to v\x. Therefore, we can try to minimize the maximum of fRn(x)l for the last 
iteration. It is easy to show (see [5]) that the f(x) that minimizes the maximum of 
fR1(x) I also minimizes the maximum of IRn(x) I for every n > 1. The three alterna- 
tives are thus to select the f(x) in W that minimizes the absolute value of either 
Ro(x), RI(x), or 5(x). 

Minimizing JRl(x) I (and consequently also fRn(x) I) would appear to be what we 
would like to do in practice, but this would also appear to be the most difficult of the 
three alternatives to deal with analytically. Thus Moursund [5] in his results con- 
cerning the existence of an f(x) optimal by this criterion resorted to a generalization 
of the classical Chebyshev approximation theory. Fortunately, as we will show be- 
low, there are surprisingly simple relationships among the three optimization criteria 
which make it possible to avoid such difficulties. 

3. Relationships Among Optimization Criteria. It follows from (3) that 
Ro(x) = e'()- 1. Therefore, we have 

RI (x) = [ea(z)-1]2/2e) 

which simplifies to 

(4) RI (x) = cosh 5(x) - 1. 

Since cosh x is an even function and is monotone for all x > 0, this yields 

max IRI (x)| = cosh (max 1(x) -1 
[a, b] [a ,b] 
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Therefore, if we minimize the maximum of 13(x)I, we have also minimized the 
maximum of fRi(x) f. Thus, we have 

THEOREM 1.* A function f(x) in W minimizes the maximum of IS(x) f if and only if 
it minimizes the maximum of IR1(x) f- 

We now turn to the relationship between 6(x) and Ro(x). We note that for any 
a and any f(x) in W, 

(5) aaf(x)- Vx e -1, 

and, if a > 0, 

(6) log =log [a(1 + Ro(x))]. 

LEMMA 1. For f(x) in W, let the minimum and maximum of 3(x) for a < x _ b 
be denoted by XI and X2 respectively. Let X be the larger of X11, 1X21; and let 

A = max |Ax()/cosh -X - Vx 

Then p = tanh X. 
Proof. From (5), 

f(x)/cosh X - V/x 1 
Vx cosh X 

so the minimum and maximum of this expression are 1,u and I.12 respectively, where 

1 H 
cosh X e -1. 

Now either X = X2 or X = -Xi, so 

erx 
=max -1 

[ab] cosh X 

Since 

e'Y/coshX- 1 = Itanh , 

the lemma follows. 
LEMMA 2. For f(x) in W let the minimum and maximum of Ro(x) for a < x ? b 

be denoted by ,uj and U2 respectively. Let ,u be the larger of jBUMS, 1/.s21 ; and suppose that 
,u < 1. Let 

(X) = log 2(x)1/2 
(1- A.t2 \/vX 

and let the minimum and maximum of g(x) for a ? x ? b be denoted by X1 and X2 re- 
spectively. Let X be the larger of IXi, 1fX21. Then X = arctanh ,u. Moreover, if g1 =-A2, 
then X, = - X2. 

Proof. From (6), 

* We are indebted to the referee for pointing out that this result was also discovered by King 
and Phillips and will appear in [6]. 
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g(x) =log 1 + Ro(x) 

and therefore 

(1 -p Xi = log (1_2)/ 

Then 

(7) XI > log (1 _ 

(8) X2 _ log1 _ 2)1/2 

Now either = -ml ore j= MU2, so equality holds in at least one of (7) or (8). Since 

I_____ ____1/2 

log 1 -=+ log + = arctanh 1, 
(1 -,2)1"2- 

we have X = arctanh ,. If A2 = -,41, then equality holds in both (7) and (8), and 
X1 = -X2. 

Now let f*(x) be the best-fit approximation to V\x in W in the sense of relative 
error; that is, let f*(x) be that function in W which minimizes max[a ,b] IRo(x)l. 
From the theory of best-fit approximations (see, e.g., [7]), we know thatr*(x) exists, 
is unique, and is characterized by the fact that it yields an equal-ripple Ro(x) with a 
sufficient number of extreme points. Let 

= max f* (x) 

Since, as we have observed, there is anf(x) in W for which IRo(x) I < 1 for a < x < b, 
it follows that /'* < 1. Now let 

7(x) -f*(x) 
(1 )1/2 

and 

X = max log Ax) 

By Lemma 2, 

(9) A=arctanh,u*. 

Now, by Lemma 1, 

max 7(x)/cosh X - /x = tanh X 
[a, b] A\/X 

If f(x) is any function in W, and if X = max[a b] I5(x) I, then by Lemma 1 

max | (x)=/cosh X-a/x = tanh X. 
[a, b] \/X 
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But f(x)/cosh X is in W, and therefore 

(10) tanh X > A*. 

Then 

(11) X> X. 

Therefore 7(x) minimizes the maximum of I6(x) f. To prove the uniqueness of 7(x), 
we note that if f(x) is any function in W with X = X, then by the uniqueness of 
f*(x) we have f(x)/cosh X = f*(x) and 

f(x) = f*(x) cosh arctanh jA = (1 - 

Thus 7(x) is the unique polynomial in W which minimizes the maximum of I6(x)). 
Moreover, since f*(x) yields an equal-ripple Ro(x) and since x yields an extreme 
value for f*(x) if and only if it yields an extreme value for 7(x), it follows from 
Lemma 2 that 7(x) yields an equal-ripple 6(x) with the same number of extreme 
points that Ro(x) has. The fundamental relationship between 7(x) and f*(x) is 
given by 

(12) 7(x) = f*(X)/(1 - A 2)1/2 

(13) f*(x) = 7(X)/COSlI X. 

Thus we have proved 
THEOREM 2. There is a unique function J(x) in W which minimizes the maximum 

of f (x) I for a _ x < b. It is characterized by the fact that it yields an equal-ripple 
3(x), and it is related to the function f*(x) in W which minimizes the maximum of 
fRo(x)| by (12) and (13). 

4. Conclusion. The significance of the above results can be illustrated in the 
following way. Consider the problem of approximating V/x in the interval [1/16, 1] 
by means of a rational function expressible in the form A + B/(x + C). The co- 
efficients of the rational function fi(x) that makes the maximum of I (x) I a minimum 
can easily be obtained with the aid of formulas given by Maehly (posthumously in 
the appendix of [3]). (It may be noted that Maehly showed by analytical methods 
how to get exact values for the coefficients, not just approximate numerical values.) 
Numerical values for the coefficients of the rational function f2(x) that makes the 
maximum of IRo(x) I a minimum were given by Fike [4]; these results were obtained 
with Remez' method. Numerical values for the coefficients of the rational function 
f3(x) that makes the maximum of fRi(x) I a minimum were also given by Fike [8]; 
these results were obtained by an ad hoc method similar to Remez' method. It is 
now clear from the results stated in this paper that fi(x) and f3(x) are the same and 
that f2(x) is merely a constant multiple of them. 
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