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Abstract. Let D be a plane domain partly bounded by two line segments which 
meet at the origin and form there an interior angle 7ra > 0. Let U(x, y) be a solution 
in D of Poisson's equation such that either U or a U/an (the normal derivative) 
takes prescribed values on the boundary segments. Let U(x, y) be sufficiently 
smooth away from the corner and bounded at the corner. Then for each positive 
integer N there exists a function VN(X, y) which satisfies a related Poisson equation 
and which satisfies related boundary conditions such that U - VN is N-times con- 
tinuously differentiable at the corner. If 1/a is an integer VN may be found ex- 
plicitly in terms of the data of the problem for U. a 

In solving an elliptic partial differential equation by numerical methods the 
results proved about convergence of the numerical approximation to the actual 
solution frequently depend on differentiability properties of the (unknown) solu- 
tion. In the work of Gerschgorin [2] and other papers written since, it is assumed that 
the solution of the partial differential equation has derivatives of order four which 
are continuous up to the boundary. If the boundary and all the data are sufficiently 
smooth there is, of course, no problem. In many cases, however, the boundary pos- 
sesses a finite number of singularities, usually (in the two-dimensional case) in the. 
form of corners; occasionally too, the boundary data may have jumps. Laasonean 
[3] has proved that convergence of the discrete solution to the actual solution holds 
for the Dirichlet problem, but that the convergence is slow in a neighborhood of the 
corner. 

In this paper we will consider a method to subtract off the singularity. The 
method is quite old (see Fox [1]), but includes results on the asymptotic behavior of 
solutions near a corner. In this light see the works of Lewy [4], Lehman [5], Wasow 
[6], and the author [7]. We consider a problem for which the solution is not known too 
be smooth. We then find, explicitly in terms of the boundary data, a solution to a 
related problem; then the difference between these two solutions is a solution to a. 
third problem, and is sufficiently well-behaved to insure convergence of difference 
schemes. Finally, the sought solution can be found by adding the explicitly given 
one to the numerically-solved one. 

Let D be a plane domain partly bounded by two open line segments ri and r2, 
which share the origin as a common endpoint and form there an interior angle 
7ra > 0. We assume that ri is a subset of the positive x-axis and r2 makes an angle 
7ra > 0 with the positive x-axis. Let F(x, y) be given in D and ib(x, y) (respectively 
''(x, y)) be given on ri (i = 1, 2). Let U(x, y) be a solution of AU = F in D, and. 
have boundary values U(x, y) = bi(x, y) on ri (respectively a U/an = i; a/an is 
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the outward normal derivative). We assume that U is bounded and has continuous 
second derivatives in D, and is continuous (respectively has continuous first de- 
rivatives) in D U ri U r2. Throughout the paper we have the independent var- 
iables z = x + iy = rei0. Depending on circumstances we will sometimes write 
u(z, 2) for u(x, y). 

In general U is smooth along ri and r2 but possesses singularities of its deriva- 
tives at the corner. We do, however, have knowledge of the asymptotic behavior of 
U and its derivatives (see [5], [6], [7]). For simplicity let us assume that F is analytic 
in D U ri U r2 U { 0} and that bi (respectively T's) is analytic on TP . Weaker con- 
ditions on the data could be used [7]. Let N be an integer > 2. Then there exists a 
polynomial PN(Z, , Z1 ,Zl/a, log z, log 2) such that as z - 0, z CED U riU r2, 

(1) U(x, y) = PN(Z, 2, Z1/ z/ log z, log 2) + o(zI) 

Derivatives of U(x, y) of order < N have asymptotic expansions obtained by 
differentiating (1) formally; thus the kth derivative of the error term o(zV) is an 
error term o(zNk). If we wish to examine the derivatives of U(z) of order < 4 we 
can take N = 4. Then the error term will have continuous fourth derivatives, and 
the singularities of U(z) and its derivatives of order < 4 are exhibited in the polyno- 
mial PN. Thus for numerical purposes it would be desirable to calculate, in terms 
of the data, the coefficients of PN; or at least the coefficients of those monomials of 
PN which do not have fourth order derivatives at z = 0. 

In this paper we will indicate a method to find most of the coefficients. To be 
more specific we will give an algorithm to calculate all of the coefficients of PN except 
those which are coefficients of monomials of the form (Zm/a - 2m/a). Thus the 
singularities of U of order < N are known explicitly up to some polynomial 

[Na] 

QN = E Am(Zm/a _ tm/a 
m=O 

where [ ] is the greatest integer. 
Let us assume for the moment that the algorithm has been demonstrated. Then 

we have two cases. 
Case I. 1/a is an integer. Then QN is smooth at the origin, and the singularities 

of U(x, y) of order < N are known explicitly. Let us use the symbol RN to denote the 
polynomial formed by taking those monomials of PN which have singular deriva- 
tives; since 1/a is an integer, these will be precisely the terms of PN which involve 
logarithms. Then the function V = U - RN belongs to CN at the origin. If we then 
replace the original differential equation AU = F, U = 4i (a U/an = T') with the 
problem AV = F - ARN, V = bi - RN ( V/an = Tj - aRN/an), we know in 
advance that the solution V = VN will belong to CN. Thus we can solve the new 
problem numerically and are assured of convergence of the discrete solution to the 
actual solution. Then by adding RN to this discrete solution of the new problem we 
get a good approximation to U(x, y). 

Case II. 1/a is not an integer (the most common case in practice seems to be 
a = 3/2). If the proof of Gerschgorin's results are examined (see, e.g., Forsythe and 
Wasow [8, pp. 283-288]) it is seen that the difficulty lies with the unboundedness 
near z = 0 of certain fourth derivatives of U(x, y). Let us, as before, construct the 
polynomial RN consisting of the singular terms of PN. Then the function VN has for 
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its singularities precisely those monomials of QN = E Am(Zm/a - zm/a). It may be 
possible to devise a numerical method of approximating the coefficients Am. Suppose 
that Am is such an approximation and that VN is the function obtained by replacing 
QN with 7N = E jmm(Zm/a - 2m/a). Then VN will have singular derivatives, but if the 
approximation Am of Am is good enough the singularities may still be small. Thus 
for a given mesh size h one could approximate Am with Tm(h), then find a discrete 
approximation fV(h) to V using the Gerschgorin method. Knowing V(h) one could 
then find a better approximation Tm(h/2) to Am, and then repeat the process. 

We now discuss the algorithm for finding the coefficients. First we reduce the 
problem to the simpler case F 0. Consider the transformation v = z' a In a 
neighborhood of the corner it has the effect of straightening out the corner; in fact 
it maps a neighborhood of the corner conformally into some semicircle about the 
origin in the upper half of the c-plane and maps ri and r2 into the diameter of the 
semicircle. We define u(v) by u(r) = U(z) and then, for some ro > 0, we have 

(2) 'AU(z) = a2 , apqz(1+l)a 12(q+1)a-1 
p ,q=O 

for 0 < lzi < ro, Im z > 0. Here the apq come from the complex form 

F(X, y) = ap 
p, q=O 

of the Taylor series of F. 
Since 

Au=4 aza U azaz 
where a/az = (a/ax - ialay), a/la = ' (a/ax + ialay), we see by integration 
with respect to z and 2 that if u were asymptotic to a power series in Za and a , then 
u would be asymptotic to the series 

2 X 
= aP + + 1 P+ 1)a (q+1)a (3) U (x,y) - 

L) pq 4pq~o (p + l)a(q+ )a~ 

If we define v(z, 2) to be the right side of (3), then the function w = u -v satisfies 
Aw = 0. Setting V(z, 2) = v(zl/a, z1 /a) and W(z, 2) = w(zl /a, 21/a) we have W = U - 

V where 

4 p qO (p + 1) (q + 1 

Thus if we set hi = - V (respectively Ti = a-aV/an), we have AW = 0 
in D, W = b (aW/an = 'i) onr i. 

Thus by replacing U with W and bi with si, (Is with TIs) we can assume 
F 0 and AU = 0. 

Now let us assume that U is prescribed on ri U r2. Thus we have AU = 0 in D 
and U = (Di on rP. Let the Taylor series for 4b and 4?2 be 

00 00 

(r)= E ar' and 42(r) = Eb> r 
S=o v=O 
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where r = Iz denotes arc length on ri. For every integer N ? 2 we will find a 
polynomial vN(Zac, z, log z, log 2) such that WN = U - VN satisfies AWN = 0 in D and 
WN(X, 0) = o(IXIN) on Im z = 0. 

For convenience of notation we drop the subscript N. 
We begin by setting 

vi(z, Z) = 2 daI(za + 2' ) 
2 =O 

Then for z = = r > 0 we have 

(5) vi(r, r) = aprta = u(r, r), 
v=O 

and for z = =-r < O if w, = U- lj 
00 00 

W1(Z Z) = E - ap(cos vra)rva. 
v=O v=O 

We now look for a function v2(z, 2) which is harmonic, vanishes on the positive 
x-axis in a neighborhood of the origin and agrees with wl(z, z) on the negative x-axis 
in a neighborhood of the origin. It is reasonable to hope that such a function would 
be given by powers of zva va. Indeed, for irrational a we can choose v2 by 

0b,- ap cos viia (Zva- Y) 

V2 =E -ya O X!(v 
V =o 2i sin ver 

It may happen, of course, that this series does not converge; in this case we take, 
for N _ 2, 

bN - ap cos vra Pa va 
V2 = E - (Z ) 

PV E 2i sin vira 

Then with w(z, 2) = wl(z, ) -V2(Z, 2) = u(z, Z) - vi(z, ) -V2(Z, 2) we get 

Aw(z, 2) = 0 for0< ? zI < ro, 

w(x, x) = 0 for x > 0, 

w(x, x) = O(IXINa) forx <0. 

If a is rational, the preceding method fails precisely for those terms of v2(z, z) for 
which sin vi7ra = 0. We now indicate how to modify v2(z, 2) in this case. Let a = p/q, 
ged (p, q) = 1, and let us concentrate first on the problem of finding a function 
V2 = (z, 2) which is harmonic, vanishes on the positive real axis, and on the negative 
real axis satisfies, for some integer k > 0O 

V2(X, X) = (bkq - akq cos kqr)r = (bkq - akq cos kpxr)r 

It happens that the introduction of terms in log z and log 2 will give such a function 
v2(z, z). In fact, we take 

V2(Z a) = ((2)k (bkq - ak, cos kpir) (zk, log z - 2k, log 2) 

For the general case, where k now varies over the positive integers, we take 
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N 

6)v2(zZ) = E by-a, cos vra 
(6) v= 0; v 0O(mod q) 2sn~a ( 

[N+ p _ 1)E (bkq - akq cos kpir) (z log z - 2 log z) 
+=O 2-7ri 

Then as before w(z, 2) = u(z, ) -Vl(Z, Z) - V2(Z, 2) satisfies 

Aw(z,z) =0 forO ?< [z <ro, 

w(x,x) =O forx > O, 

w(x, x) = o(IXIN) for x < 0. 

In both cases we have constructed a function v(z, 2) such that w(z, 2) = u(z, 2)- 
v(z, z) has derivatives at the origin of order < [Na]. Thus w(z, z) has a Taylor ex- 
pansion at the origin and we can write 

[Yal -1 

(7) w(I . ) - x: A,,,z? z +o(IzI[ ) . 
mn=o 

Since w(z, 2) is harmonic, real-valued, and vanishes on the positive x-axis, we can 
rewrite (7) in the form 

[Nal]-1 

w(Z. ) = L An(Z" - '_n) + O(IZI[Na]) n=o 

where An = Ano- A On and all the other Amn'S vanish. There is no other information 
about the An's which is obtainable without turning to global considerations of the 
original differential equation and its domain. Indeed, if An' are arbitrary pure 
imaginary numbers then 

[Nal-I 

,&(z = hi An (z - 
n=0 

satisfies all the properties listed for w(z, 2). 
We now set W(z, 2) = w(Zl/a, z1/a) and V(z, z) = V(Zl/a, zI a), and get 

(Nag -1 

W(z, Z) = xE A~(Zn/a _ zn/a) + O(IZI[Na] /a) 
n-0 

where W(z, z) = U(z, 2)- V(z, z). The function W(z, 2) is the function QN men- 
tioned in the introduction, and V(z, 2) + W(z, Z) is the function PN. 

For the case of the Neumann boundary condition for u(z, 2) we proceed in 
exactly the same way. Since the calculations are somewhat more tedious but 
intrinsically no more difficult, we merely state the results. In particular let us re- 
strict ourselves to the case a = 1/n, n an integer. Let a U/an = T,= Do acr" on 
rP, and a U/an = 'P2 = ,Po bare on r2. If n is odd we set 

N-1 1 N-1. 
V(Z,) = 1 (b - a,-,C.) (z' + Z') + - (Z 

v=1;vO0(mod n) 2Vv S=1 2v 
[N/n] 

+ Z nA k(z log z + zn logz) 
k =1 

where 
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SP = sin (v/n - 1)r, C" = cos (v/n- 1)-r 

27rnkAk = (-1)kI (bk-1 + (-1)kank-1) 

If n is even, n = 2m, set 

V(z, -) = E aViCe (zy + 2") 
vP O,m(mod n); O<I<N-1 2iS, 

+ , b^_l (z" + ") - [N/n] 
ank-1 + (- 1)k bnki1 

v-m(inod n);m<v<N-1 2vS, k=l 2-rk 
N-1 

X k 
log z + nk logz) - z a- (Z -Z) z z 

P~~~~=i 2iv 
( 

Then there are constants Am such that the function W = U- V satisfies 

[N-1 /n] 

W(z, ) E Am (Zmn + 2mn) + (ZN) 
m=O 

Example. Let a = 3/2, p = 3, q 2, F 0, 1 = ar2 + Or4 (2 = yr2 + 6r4. 

Then a2 = a, a4 = f, b2 = Py, b4 = 6. 
Set 

Vi(ZZ) = 2[a(z3 + 23) + 
# 
(z6 + 26)] 

and 

V (Z, 2) = 2[a(Z2 + 22) + # (z4 + 24)] 
1 

v2(z,2) = - 2. (y-a cos 3r)(z3 log - 
23 log 2) 

+ (6-,B)(z6 log z _ 6 log 2) 

and 
- _ a _a ~~~~~q/p _qlp 2/3 _2 3 

V2(z, 2) = V2(Z, Z = V2(Z, Z /) = V2(Z , 2) 

V2(z'2) = - y + a 2 
(Z2 logz 

- 221og2) + 6-f 2 (Z4 log -4 
V2 (ZI 2rin 3 lg + 

27,ni 3 lo 

Then W(z, ) = U - V1 - V2 satisfies 

W(z, )=O on ri Ur2 

AW O inD. 

Thus w(z, 2) = W(z213, 22/3) satisfies 

Aw = O forO < IzI < ro, lim z > O 

and 

w = 0 forlimz =O.-ro < x < ro . 

So w(z) is analytic on 0 ? Izi < ro, and 

w(z,z) = ZAm(zmzm) m=O 
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Then W(z, ) = w(z312, 23/2) = . Arn(Z3m/2 - 23m/2), so W differs from a C4 func- 
tion by the polynomial Q(z, 2) = A 1(z3 /2 - 23/2). By picking a mesh size h and getting an 
approximation to W, one may be able to get an approximation A 11 to A 1. Then, with 
a mesh size hi < h, one could get an approximation to W1 = W - A11(z32 -3/2) 

and then get an approximation A12 to All. It is not known whether this process 
works, but in some cases, where great accuracy is needed near the corner, it may 
be worth attempting. 
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