A Note on a Generalisation of a Method of Douglas

By Graeme Fairweather

1. Abstract and Introduction. In this note, the high-order correct method of
Douglas [1] for the diffusion equation in one space variable is extended to ¢ < 3
space variables. The resulting difference equations are then solved using the
A. D. I. technique of Douglas and Gunn [3]. When ¢ = 2, this method is equivalent
to that of Mitchell and Fairweather [5] while ¢ = 3 provides a method which is
similar to Samarskii’s method [6] and of higher accuracy than that of Douglas [2].

When the proposed methods are used to solve the diffusion equation with time-
independent boundary conditions, they have the advantage that no boundary
modification (see [4]) is required to maintain accuracy. i

2. Derivation of Difference Equations. Consider the initial-boundary value
problem
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where X = (1, - -+, xg) € [0, 1]¢ = I,, R is the interior of I, and dR its boundary.
A set of grid points with space increments Az; = 1/h, (¢ = 1, - - -, ¢) where Nh = 1
and time increment At = T/M where N and M are integers is imposed on the
region & X [0, 7], where E = R + dR. Denote by w, an approximation to u(x, f)
= wu, at the grid point (mih, msh, --., msh, nAt) where m; = 0,1,---,N,
¢=1---,¢9gandn =0,1, ---, M.

To derive the high order methods, we observe that
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where A2, = (1/h?) 62, 82, being the usual central difference operator.
Now
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Henee if we set r = Ai/h?, the scheme
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is locally fourth-order correct in space and second-order correct in time.

By an analysis similar to that presented in [2] it can be shown that if ¢ < 3 the
solution of the difference equation (2.2) converges in the mesh L; norm on R, the
global discretisation error being fourth-order correct in space and second-order
correct in time.

3. A. D. I. Technique. The use of (2.2) in practice would require the solution
of a large system of linear equations at each time step. This problem may be
simplified by the use of the Douglas-Gunn A. D. 1. technlque [3]. Equation (2.2)
may be rewritten in the form
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which can be solved by constructing a sequence 83y, - - -, 847", B = Wnyr Of

intermediate solutions in the following way:
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Thus the intermediate solutions are obtained by solving only tridiagonal systems
of equations.

It is interesting to note that if ¢ = 2 and-the intermediate solution B{}; is
eliminated from (3.2) we obtain the formula derived in [5]. In a similar way, the
formula presented by Samarskii [6] is obtained from (3.2) when ¢ = 3.

4. Stability and Accuracy of A. D. I. Method. The stability of (3.2) is proved by
modifying Theorem 2.2 of [3]. This modification is necessary since the operators
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are not positive semidefinite for all values of r.
THEOREM. Let (3.1) be written in the form

(I + A)wpy1 + Bw, =0

where A = D i-1 A, A given by (4.1). Since the difference operators Ay, - -+, A,, A
and B satisfy

1. I/q + A is positive definite, © = 1, - -+, q,

2. B is Hermitian,

3. Ay, - -+, Ay, B commulte,
the stability of (3.1) tmplies the stability of (3.2).

The proof follows the same lines as that of Douglas and Gunn if we make use of

LeMMA. If I/q 4 A ;s positive definite, i = 1, - - -, q, then Y s<lel<q Ao is positive
semidefinite where ¢ = (1, T2, ) tm), 11 < T2 < o+ < Im |0] = m
and A, = A‘il A,'2 s Aim-

That (3.2) is globally fourth-order correct in space and second-order correct in
‘time is an immediate consequence of Theorem 2.3 of [3].

5. Intermediate Boundary Values. If the boundary conditions are time depend-
ent the boundary conditions for the intermediate solutions 8{%; (i = 1, - -+, ¢ — 1)
appearing in (3.2) must be chosen in a particular way in order that the global error
of (3.2) remain O(h* + (At)?) otherwise a loss of aceuracy will occur. For example,
if ¢ = 2 and the boundary values at the intermediate step are chosen to be those at
the time level (n + 1) A, it can be shown that the global error is then O(( Af)2/h3/2
+ h* + (Af)?) and if the boundary values at time level (n + 1/2) At are chosen an
even worse error results. To maintain the O(h* + (At)?) accuracy the boundary
values at the intermediate step should be determined from the second of formulae
(3.2) in the manner prescribed in [4]. If ¢ = 3, accuracy can be maintained by carry-
ing out a similar procedure.

It can also be shown using the techniques developed in [4] that no boundary
modification is required at the intermediate levels when the boundary conditions
are independent of time. In particular, formulae (3.2) with ¢ = 2 can be used as an
iterative method for solving Laplace’s equation in two space variables without any
cumbersome boundary modification like that required by the method proposed in
[4]. The new procedure will provide more accurate approximations than the Peace-
man-Rachford method [3] with little additional computational effort.
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