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1. Abstract and Introduction. In the January 1962 issue of this journal R. Bell- 
man and B. Kotkin published a short paper under the same title as this one (cf. [1]). 
In that paper Bellman and Kotkin presented some of their results concerning the 
numerical computation of the continuous function y(x), defined by 

y(x) =1 (O x < 1) 

1 
y'(x)= - -y(x-1) (x>1). 

Tables of y(x) were given for x = 1(0.0625)6 and x = 6(1)20. In the process of 
extending these tables beyond x = 20 we discovered that the second table was 
rather inaccurate for all values of x > 9. Bellman and Kotkin found, for example, 
that y(20) = 0.149 10-8, whereas the actual value of y(20) can be shown to be 
smaller than 10-20. Moreover, in view of the method used by Bellman and Kotkin, 
one may expect that it would be quite time consuming to compute y(x) for values 
of x up to say x = 1,000. 

In this paper we describe a different method which enables us to compute y(x) 
for values of x up to about "as far as one would like." * 

2. The Main Formula and Some of its Consequences. The function y(x) defined 
in the introduction satisfies the following fundamental 

LEMMA 1. 

x~y(x) = f y(t)dt (x?1). 

Proof. Cf. de Bruijn [2]. 
A simple consequence of this lemma is 
LEMMA 2. 

y(x) > 0 (x > 0). 

As an easy consequence of this lemma and the definition of y(x) we find that 
y(x) is monotonically decreasing on x > 1. 

LEMMA 3. y(x) is concave on x > 1. 
Proof. From the definition of y(x) it follows that 

y (x) = 1 -log X (1 < x <2), 
so that 

y(x) is concave on 1 < x < 2. 
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Also from the definition of y(x) it is easily seen that y(x) is twice differentiable on 
x > 2, whereas y(x) is precisely once differentiable at x = 2. On x > 2 we have 

y"(x) = d - - y(x-1)) = 28y(x- 1)+ xy(x-2) > - 

Since y(x) is concave on the intervals 1 ? x < 2 and x > 2 and differentiable at 
x = 2, we may conclude that y(x) is concave on x > 1. 

LEMMA 4. 

Y (X) < 21I(Xy -1), (x > 2). 2x - 1 

Proof. On x _ 2 we have by Lemma 3 that 

x-y(x)= f y(t)dt< 2 {y(x - 1) + y(x)} 

and consequently 

y (X) < 2 1 Y(X-1). 

From Lemma 4 one easily deduces by induction that 

~~~ ~1 2 _ _ _ 

y (n) < - nt (n =2,3, 4, * 3-5-7. Ale (2n-1) (2n) ( 

Hence, for example, 

20 20t 20 20 
20-20! _ 2 2 

lo2 y(20) < 20 * * _ ^ < - -010- 40! 21*22-23 - - *40 2020 

This rough upper bound for y(20) shows that the value of y(20) given by Bellman 
and Kotkin is not even of the proper order. 

3. The Numerical Computation of y(x). Our starting point is the result of 
Lemma 1 

y (X)= 1 (O < x 1) 

(x + 1) y(x + 1)= y(t)dt (x >0). 

We have already mentioned that 

y(x) = 1-log x, (1 ? x < 2) 

so that we only have to compute y(x) on x > 2. 
If we approximate the integral 

X20+1 

I1= f y(t)dt, (X0 > 1) 
b0 

by means of the trapezoidal formula 
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-{y (xo) + 2 y(xo +-) +y(xo+ 1)} 

we obtain, because of the concavity of y(x) on x > 1, that 

(Xo + l)y(xo + 1) = (t)dt< Y(xo) + 2 E y 0 + n + y(xo + 1)}- 

It follows that 

1~~~~~~- 
y (x0o+ 1 ) < 2n(xo + 1)-1 {y(x) + n 

Thus, if one has upper bounds for y(x) at the points 

xo+ k/n, (k = O 1,2, ...,n-1), 

one may compute an upper bound for y(xo + 1). 
Continuing in this way one may compute upper bounds for y(x) at the points 

xo+ 1 +v/n, (v = 1,2,3, *..). 
On the other hand, approximating I by 

1 + ( 
2k- 1i 

n k=18 2n 

one finds, also because of the concavity of y(x) on x > 1, that 

y(xo+1)> 1 0Y( 0+ 2k -) n (xo )k1 2 

Hence, as soon as one has lower bounds for y(x) at the points xo + (2k - 1)/2n, 
(k = 1, 2, 3, ** , n) one may compute a lower bound for y(xo + 1). If one also 
knows lower bounds for y(x) at the points xO + k/n, (k = 1, 2, 3, ***, n - 1), one 
can apply the same method to compute a lower bound for y(xo + 1 + 1/2n). 
Repeating this process one finds lower bounds for y(x) at the points xo + 1 + k/2n, 
(k = 2, 3, 4, ** ). As a starting point for the computations one may take of course 
Xo = 1. 

If one chooses the grid sizes in the above integral-approximating procedures 
small enough, one may expect that the corresponding upper and lower bounds for 
y(x) will not differ very much. Actual computations show that this is indeed the 
case. 

Performing the computations on the Electrologica X8 of the Mathematical 
Centre in Amsterdam, using an ALGOL-60 program (with grid size 0.005), we found 
that the corresponding upper and lower bounds for y(x) were equal up to at least 
the first significant digit for all x < 100. 

Using more refined integral-approximating formulae and smaller grid sizes we 
were able to compute y(x) for values of x up to at least x = 1,000. Below we include 
a table for y(x) with an accuracy of five or more significant figures. 

Finally we will compare some of the results of Table 1 with the known asymptotic 
formula of de Bruijn (cf. [2]) 

y(x) e f e_-+ 
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where t is the positive root of e - 1 = xt and oy is Euler's constant. De Bruijn's 
formula can be rewritten in terms of the exponential integral Ei(t) = ftoe. (e8/s)ds as 

1 1 y (X) (21/2 t x -x {+Eit)} I (x -- x) 

which is somewhat more convenient for numerical computations. Writing B(x) for 
de Bruijn's asymptotic approximation we have 

TABLE 1. Y(X) = a(x).10 -b(x) 

x a(x) b(x) x a(x) b(x) x a(x) b(x) 

2 0.306852 0 36 0.121869 62 70 0.702809 147 
3 0.486083 1 37 0.622168 65 71 0.162933 149 
4 0.491092 2 38 0.307395 67 72 0.371471 152 
5 0.354724 3 39 0.147112 69 73 0.833076 155 
6 0.196496 4 40 0.682549 72 74 0.183819 157 
7 0.874566 6 41 0.307253 74 75 0.399153 160 
8 0.323206 7 42 0.134297 76 76 0.853156 163 
9 0.101624 8 43 0.570381 79 77 0.179535 165 

10 0.277017 10 44 0.235551 81 78 0.372043 168 
11 0.664480 12 45 0.946492 84 79 0.759361 171 
12 0.141971 13 46 0.370280 86 80 0.152686 173 
13 0.272918 15 47 0.141120 88 81 0.302503 176 
14 0.476063 17 48 0.524252 91 82 0.590640 179 
15 0.758990 19 49 0.189943 93 83 0.113672 181 
16 0.111291 20 50 0.671533 96 84 0.215679 184 
17 0.150907 22 51 0.231788 98 85 0.403511 187 
18 0.190135 24 52 0.781464 101 86 0.744510 190 
19 0.223542 26 53 0.257465 103 87 0.135495 192 
20 0.246178 28 54 0.829313 106 88 0.243271 195 
21 0.254805 30 55 0.261272 108 89 0.430958 198 
22 0.248638 32 56 0.805427 111 90 0.753402 201 
23 0.229371 34 57 0.243046 113 91 0.129996 203 
24 0.200549 36 58 0.718206 116 92 0.221416 206 
25 0.166580 38 59 0.207907 118 93 0.372331 209 
26 0.131725 40 60 0.589802 121 94 0.618228 212 
27 0.993606 43 61 0.164025 123 95 0.101374 214 
28 0.716213 45 62 0.447329 126 96 0.164183 217 
29 0.494179 47 63 0.119673 128 97 0.262667 220 
30 0.326904 49 64 0.314165 131 98 0.415161 223 
31 0.207626 51 65 0.809545 134 99 0.648360 226 
32 0.126782 53 66 0.204821 136 100 0.100059 228 
33 0.745257 56 67 0.508958 139 200 0.983383 530 
34 0.422222 58 68 0.124246 141 500 0.505734 1558 
35 0.230808 60 69 0.298056 144 1000 0.458767 3463 

TABLE 2 

y(x) 
x y(x) B(x) B(x) 

20 0.246178-10-21 0.219619 -10-21 1.121 
100 0.100059- 10-22S 0.090892-10-228 1.101 

1000 0.458767. 10-3463 0.422946.10-3463 1.085 
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