
Computation of Minimal Length Full Steiner Trees 
on the Vertices of a Convex Polygon 

By E. J. Cockayne* 

Abstract. A Steiner minimal tree is a tree of minimal length whose vertices are a given set 
of points al, ** , an in E2 and any set of additional points 81, ***, Sk (k> 0). In general, 
the introduction of extra points makes possible shorter trees than the minimal length tree 
whose vertices are precisely a,, *. . , a, and for which practical algorithms are known. A 
Steiner minimal tree is the union of special subtrees, known as full Steiner trees. This 
paper demonstrates the use of the computer in generating minimal length full Steiner trees 
on sets of points in E2 which are the vertices of convex polygons. The procedure given is 
a basis from which further research might proceed towards an ultimate practical algorithm 
for the construction of Steiner minimal trees. 

1. Introduction. There are simple algorithms available for constructing the 
minimal length tree(s) whose vertices a,, * * *, a, are a given set of points in E2 [7]. 
However, it is often possible to construct even shorter trees connecting ai, - * *, an 
by introducing a number of extra vertices si, . . *, Sk. Hence the following problem 
which is known as the Steiner problem: Given n points a,, ***, an in E2, to construct 
the tree(s) with vertices ai, *, a, and any k additional vertices Si, * Sk (k > 0) 
whose total length is minimum. Solutions are called Steiner minimal trees. The 
problem and its generalizations have received much attention in the literature 
recently due to the wide variety of applications. Principally Z. A. Melzak [5] pro- 
vided an algorithm for solution and in fact proved that a finite number of classical 
ruler-compass constructions would solve the problem. E. J. Cockayne [1] developed 
this procedure and discussed certain generalizations. Melzak and Cockayne [2] have 
extended their algorithm to cover the case where the ai are sets rather than points. 
The principal problem remaining at this time is that of increasing the efficiency of 
the algorithm so that one can implement it on a digital computer and construct 
Steiner minimal trees, say for n = 20 or 30. As it stands, the number of steps re- 
quired renders the algorithm completely impractical, except for a very small 
number of points. A few suggestions on efficiency were given in [1]. E. N. Gilbert 
and H. 0. Pollak [4] have also attacked this aspect of the problem, giving a variety 
of geometric criteria which might be useful in reducing the algorithm. Their paper 
also contains work on generalizations, an excellent review of known results and an 
extensive bibliography. In the present work, we have adopted some of their ter- 
minology. This paper, also, is concerned with implementing the algorithm and its 
efficiency. In order to be more specific, we shall need a little mathematical back- 
ground. 

If a,, a2, a3 are points in E2 such that no angle of the triangle is > 1200, then the 
point S which minimises the sum of distances a1S + a2S + a3S is the unique point 
(called the Steiner point of the triangle) at which each side subtends 1200. From this 
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fact one deduces (see [3]) that Steiner minimal trees have the five properties (P1) - 

(P5) listed below, i.e. Steiner minimal trees are Steiner trees. 
Definition. A tree U with vertices a,, * * * 2 an, s8, . . . 2 Sk (k > 0) is a Steiner tree 

on a,, ..., an if and only if it has the following properties: 
(P1) U is non-self-intersecting. 
(P2) w(si) = 3, 1 < i < k. (w(x) is the valency of vertex x.) 
(P3) w(aj) < 3, 1 < j < n. 
(P4) Each si is the Steiner point of the triangle formed by the points which 

directly connect si in U. 
(P5) 0 < k ? n - 2. 
The original method of [5] consists of a proof that there are finitely many 

Steiner trees on any given set a,, * *, an and a geometric method of constructing 
these, which must include all Steiner minimal trees. 

A full Steiner tree on a,, ..., an is a tree which satisfies (P1) - (P4) and also 
has k = n - 2. The construction of minimal length full Steiner trees on a set is the 
essential step in the author's algorithm for the Steiner problem; the reason being 
that any Steiner minimal tree is a union of full Steiner subtrees. The present work 
is devoted to computing minimal length full Steiner trees (i.e. implementing the 
geometric procedure given in [1] on a machine) for vertex sets of convex polygons. 
The mathematical structures used give further insight into the Steiner problem 
and indicate the way that further research might proceed towards an ultimate 
solution. Sample results are supplied and the FORTRAN IV programs appear in 
the microfiche section of this issue. 

Finally we note that in our previous paper [1] Steiner trees, full Steiner trees and 
the Steiner point of a triangle were termed S-trees, s-trees and the S-point of a 
triangle respectively. 

2. Associations of Full Steiner Trees. Denote by (pq) and (qp) the third vertices 
of the equilateral triangles on pq as base, (pq) being the point to the left looking 
from p towards q. Below, we shall have cause to consider "higher order equilateral 
points" e.g. ((plp2)p3) which is the third vertex of an equilateral triangle whose base 
is the line joining (plp2) and P3 (see Fig. 1). 

((PlP2)P3) 
A 

(P1P2) P2 

P3 

P1 
FIGURE 1 
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If ai, a2, a3 is a clockwise order of the vertices of a triangle having a Steiner point S, 
then the line segments (ala2)a3, (a2a3)al, (a3aa)a2 are concurrent at S and further 
each of these line segments has length equal to a1S + a2S + a3S. This provides a 
simple construction for S (we term it the "equilateral construction") which plays a 
fundamental role in the Steiner algorithm. 

In [1] we defined the term "association of a full Steiner tree." This definition is 
repeated here for completeness. Let U' be such a tree on Al = {a,, * * *, a.} with 
extra vertices sl, * * *, sn-2, (these will be called a-points and s-points respectively). 
U' has at least one pair of a-points (say a,, a2) which are directly joined to the same 
s-point (say si) in U'. In fact a portion of the tree appears as in Fig. 2. 

a 2 

( )120? 
S a1 

*o~~~~~00 

a 1a2)~~~~~ 

FIGURE 2 

X is the third point which directly joins si in U'. si is the Steiner point of the 
triangle aja2X, hence by the equilateral construction the line Xs1 produced passes 
through (ala2). Therefore the tree U2 on A2 = { (aia2), a3, - * *, an} with s-points 
S2, . . *, Sn-22 formed from U' by replacing the segments aisi, a2s1, s1X by the single 
segment (ala2)X, has all the Steiner tree properties except perhaps (P1). a,, a2 are 
said to be "paired" in the formation of U2 from U1. This process may be repeated 
forming trees U3 on Al, ... , Un-' on An-1. At each stage two points of Ai are paired 
to form A i+1 and Ui+1 has one less a-point and s-point than UP. The process ter- 
minates since Un-' has two a-points and no s-points. The two points of An-' can 
be expressed in terms of the original a-points of U' and the equilateral point bracket- 
ing notation defined above. This representation of An-1 is called an association of 
U' and the segment joining the two points of An-' is called an "axis" of U'. There 
are many associations and axes of a given full Steiner tree. 

Any formal combination of the symbols a,, * , an by bracketing as above 
which forms precisely two points is called an association of ai, . * an and defines 
a possible structure for a full Steiner tree. Whether or not there exists a full Steiner 
tree, having this structure, on a particular set of points ai, . * an in E2, depends 
on their geometric locations. Associations which define the same full Steiner tree 
structure are said to be equivalent (written -). 

The equilateral construction shows that length is preserved at each stage of the 
above process, i.e. for all i = 1, . . *, n - 1 the length of Ui is constant. Thus the 
length of a full Steiner tree is equal to the length of any of its axes. This is an 
important fact which will be used in the computation. 
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Example. In Fig. 3. the continuous line is U1, a full Steiner tree on Al = {1, 2, 
3, 4, 5}. 

(13)\ 

1 5 

((42)(13)) 2 S2 

4 

(42) 
FIGURE 3 

We "pair" the points 1 and 3 giving 

A2 = { (13), 2, 4, 5} and U2 with branches (13)83, 835, 8283, 282, 482. 

Next we pair 4 and 2 

A3 = { (13), (42), 5}, U3 has branches (42)83, (13)83, s35 . 
Finally we pair (13) and (42) 

A4 = {((42) (13)), 5}, U4 has branch ((42) (13))5. 

((42) (13)), 5 is an association of U1 and the segment joining ((42) (13)) and 5 is an 
axis of U1. 

Let (ab), c be an association of a full Steiner tree on a,, *.*, a, (i.e. a, b, c are 
themselves combinations of a,, **.*, a. with equilateral point bracketings). Then by 
inspection of the unique full Steiner tree on the three points a, b, c it follows that 

(1) (ab), c a, (bc) (bc), a b, (ca) (ca), b c, (ab) 
i.e. we get equivalent associations by interchanging the comma and parentheses or 
by permuting the letters provided that the cyclic order of the letters is left invariant. 
As a consequence, any full Steiner tree has an association in which any specified 
point appears last and is immediately preceded by the comma. Geometrically, this 
means that any a-point of a full Steiner tree may be used as one of the vertices of 
an axis. Further this association is unique. As an example, using two applications of 
(1) we determine the association of the tree U' of Fig. 3 terminating in ", 1" 
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((42)(13)), 5 (5(42)), (13) (3(5(42))), 1. 

We notice that repeated applications of (1) do not disturb the cyclic order of the 
points. Summarising, we have proved: 

THEOREM 1. Any full Steiner tree has a unique association terminating in the comma 
and a specified point. All associations of a full Steiner tree have the same cyclic order 
of points. 

Theorem 1 is extremely useful in the struggle to improve the efficiency of our 
Steiner algorithm. We strongly suspect that for any set of points {a,, *., an}, 
geometric considerations (perhaps of the type discussed in [4]) will allow only very 
few cyclic orders of the ai in associations of minimal length full Steiner trees. The 
following theorem shows the truth of this conjecture when convexity is assumed. 

THEOREM 2. Let H be the set of vertices of the polygon C(A) which bounds the con- 
vex hull of A = { .al, *, a. } and let w be any association of any full Steiner tree U on 
A. Then the order in which the points of H appear in w, is a clockwise order of the 
vertices of C(A). 

In other words the theorem states that the cyclic order of the a-points in any 
full Steiner tree association and the clockwise order of the vertices of the convex 
hull boundary are compatible. We offer an illustration before proceeding with the 
proof of the theorem. Let H = { a,, a2, a3, a4, a5 } be a clockwise ordering of the 
vertices of C (A) where A = {as: i = 1, ** *, 7}. The theorem asserts that associa- 
tions of full Steiner trees on A do not have orders of A such as a5aia4a2a6a3a7. For 
the points of H occur here in the order a5ala4a2a3 which is not a clockwise order. 

LEMMA. Let ai, a1, ak be distinct a-points of U and let a- be the s-point of U at which 
the unique paths aiaj, aiak of U split. Suppose that xia-, xjo-, Xk0f are the last edges of 
the paths aio-, ajo-, ako- respectively (see Fig. 4). For t = i, j, k either x t is another s-point 
of U or xt = at. If (as in Fig. 4) looking from xi along xia-, the path a-aj branches to 
the left and o-ak to the right, then in any association of U, ai, aj, ak occur in this cyclic 
order. 

Proof. By successive pairings as above, we can reduce U to a tree Un-2 having 
the point a- as its only s-point and 3 a-points ai, caj, ak which are bracketing com- 
binations of the original a-points of U containing as, aj, ak respectively and which 
lie on a-x , a-xj, a-Xk (perhaps produced) respectively. The final pairing forming the 
association (aia1), ak of U and Theorem 1 complete the proof of the lemma. 

Proof of Theorem 2. Let auavaw be any three consecutive points in clockwise order 
on C(A) and a- be the s-point of U where the paths auaV and auaw split. Since all 
s-points of U are within C(A) and U is non-self-intersecting, in the terminology of 
the lemma, a-av branches to the left and a-am to the right. By the lemma auavaw have 
this cyclic order in any association of U. Hence Theorem 2. 

COROLLARY. Let a,, * * an be the vertices of a convex polygon. Then the cyclic order 
of the ai in any association of a full Steiner tree on a,, *.* , an is the clockwise order of 
vertices on the polygon. 

The methods of the subsequent sections successively generate associations of 
A = {a,, * * an} and endeavour to construct the full Steiner tree on A from each 
association, if it exists. The above theorem shows that all full Steiner trees on a set of 
n points, r of which are on the convex hull boundary, may be constructed from the 
subclass of associations of the ai in which the clockwise order of the r vertices of the 
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convex hull boundary is preserved. An elementary combinatorial argument shows 
that only (n - 1) !/(r - 1)! cyclic orders of the total (n - 1)! cyclic orders need to 
be considered. In particular, for the present case where we have a convex polygon, 
r = n and only 1 cyclic order need be processed (which reduces machine time 
considerably!). 

a:j\ 

N 
k 

Xi 

FIGURE 4 

3. The A-Matrix. In this and subsequent sections al, *, a. denote, in clockwise 
order, the vertices of a convex polygon and the ai are assumed to be complex 
numbers wherever necessary. 

Our algorithm will process each element of Q, the class of all associations of 
a,, * * *, an which exhibit the ai in this order and in which the comma directly pre- 
cedes a,. For each co El Q by means of an A-matrix for co (defined below), the com- 
puter will test whether or not U(co), a full Steiner tree on a,, * * *, a. with association 
co, exists and will isolate a tree of minimum length from the set { U(co): co E Q 1. 
Theorems 1 and 2 imply that this will be the required minimal length full Steiner 
tree on the as. 

Let co E Q and assume, for the moment, the existence of U(co). Suppose that 
A', A2, *..., An-' are successive sets of points encountered in the construction of 
w from U(w) (cf. Section 2) where for each i the equilateral bracketing representation 
of A i exhibits the ai in their natural order. By an A-matrix of co, we mean an n X n 
matrix of complex numbers in which the first (n - i + 1) elements of the ith row 
contains the points of Ai (i = 1, *.*, n - 1) and the remaining elements are zero. 
Examples will be useful at this point. The matrices M1, M2 are both A-matrices for 
the association (((12)(34))5), 6. 
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1 2 3 4 5 6 
(12) 3 4 5 6 0 
(12) (34) 5 6 0 0 

((12)(34)) 5 6 0 0 0 
(((12)(34))5) 6 0 0 0 0 

o o 0 0 0 0 

Matrix M1 

1 2 3 4 5 6 
1 2 (34) 5 6 0 

(12) (34) 5 6 0 0 
((12)(34)) 5 6 0 0 0 

(((12)(34))5) 6 0 0 0 0 
o o 0 0 0 0 

Matrix M2 

4. The Pairing Vector. In this section we show how to ensure that the computer 
considers all the associations of Q precisely once. 

To each A-matrix there corresponds a vector v, of dimension n -1, with non- 
negative integral components where v(1) = 0 and for each i = 2, *, n-1 the 
ith row of the A-matrix is formed from the (i - 1)th row by pairing the v(i)th and 
(v(i) + 1)th elements. This vector we call the pairing vector of the A-matrix. This 
correspondence is 1-1 between the class of all A-matrices of associations in Q and 
the set V of all vectors v, of dimension n - 1 with nonnegative integral components 
satisfying 

v(1) = 0 and 1 l v(i) n-i, i = 2,*,n-1. 

For example, the pairing vectors of the A-matrices M1 and M2 given in Section 3 are 
{0, 1, 2, 1, 1} and {0, 3, 1, 1, 1} respectively. 

Pairing vectors are easily generated on the machine and given a pairing vector 
and the original ai, * *, a. it is a simple process for the computer to pair the ap- 
propriate points and form the corresponding A-matrix. 

The correspondence of A-matrices and associations of Q and hence the cor- 
respondence of pairing vectors and Q is many-one. Thus, in order to generate pre- 
cisely one A-matrix for each w E Q, we (fortunately!) do not have to use all the 
(n - 2)! vectors of V. In fact it is sufficient to use the subclass V* of V whose 
vectors also satisfy 

v(i) _ v(i + 1) fori = 2, ***, n-2 . 

It is left to the reader to show that the correspondence of Q and V* is one-one. 
To complete this section we enumerate the associations which our algorithm 

must process in its search for a minimal length full Steiner tree on n a-points with 
k = n - 2 s-points, i.e. we determine the cardinality N(Q) of U. Ignoring the con- 
vexity assumption, we state that there are (k + 1) N(U) nonequivalent associations 
because, by Theorem 1, only those associations terminating in ", a." need be counted 
and the remaining (k + 1) a-points may be permuted in (k + 1)! ways. Since an 
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incidence matrix does not reflect the fact that ordered pairs of points are bracketed 
to form equilateral points at each of the k pairing stages, there are 2k nonequivalent 
associations for which the corresponding full Steiner tree structures have the 
same incidence matrix. Therefore the total number of incidence matrices is 
(k + 1) !N(Q)/2k. We equate this to the expression obtained by Gilbert and Pollak 
[4] and obtain 

(k + 1)!N(Q)/2k = (2k)!/k!2k 

i.e. 

N(Q) = (2k)!/k!(k + 1)! . 

This formula is also obtained in a book by Ivan Niven [6, Chapter 11]. 

5. Computational Details. The first part of our algorithm generates the pairing 
vectors of V*. For each pairing vector v, the corresponding A-matrix is computed. 
The ordered n-tuple of complex numbers a,, * * *, an is read into the first row of the 
A-matrix, and the remaining rows are generated recursively as follows. For each 
i from 2 to n - 1 the subroutine EQPT calculates the equilateral point for the 
ordered pair A (i - 1, v(i)), A (i - 1, v(i) + 1) and the other elements of the ith 
row are identical to elements in the (i - 1)th row. The axis, corresponding to the 
vector v is the distance between the two points in the (n - 1)th row of the A-matrix. 
Should this axis be longer than the axis of a tree that has already been constructed 
by the procedure, then v cannot yield a minimum tree and we proceed to the next 
pairing vector, otherwise the s-points for the tree are computed. At this stage we 
may well discover that no full Steiner tree on al, , an may be drawn with pairing 
vector v. 

We now give details of the procedure for computation of the s-points from an 
A-matrix. Each s-point is computed as a Steiner point of a certain triangle by a 
subroutine known as STEIN. The first s-point is the Steiner point of the three 
points in the (n - 2)th row of the A-matrix. We then work with progressively 
higher rows of the matrix, considering successively the (n - i)th row as i varies 
from 3 to n - 1. For each i, let x(n - i), y(n - i) be the two elements (say a, A) 
of the (n - i)th row which are paired in the formation of the (n - i + 1)th row 
and let z(n - i) be the s-point which has already been computed as the Steiner point 
of a triangle, one of whose vertices is the equilateral point (ac). Then the next s-point 
is the Steiner point of x(n - i), y(n - i), z(n - i). If at any stage no Steiner point 
for the triangle exists, there is no tree corresponding to v and we proceed to the next 
pairing vector. As an illustration we list the steps in the construction of the s-points 
from the A-matrix M1 of Section 3. 

X Y z 
sl is the Steiner point of ((12)(34)) 5 6 
S2 is the Steiner point of (12) (34) sl 
S3 is the Steiner point of 3 4 S2 

S4 iS the Steiner point of 1 2 S2 

Assuming the existence of a minimum length full Steiner tree on a,, ...*, an, the 
output from the program gives the length of such a tree, the pairing vector which 
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produced it, the s-points of the tree and the triangles from which they were com- 
puted. The incidence matrix is simply derived from this information. 

On the IBM 360/44 machine at the University of Victoria, approximately 25 
minutes of computing time were used for examples with n = 12. With the present 
program and comparable times on a faster machine, we estimate one could run 
the algorithm up to n = 17. 

We are presently trying to increase the efficiency of the program by implement- 
ing the "deciding region" criterion of [4], a geometric method for rejecting certain 
pairings of points in associations. We note here that this criterion can be used at 
any stage in the formation of an association. 

y 

2 
al 

a a~S a10 1 2 

S3 

S2 
a3 

a9 0 1 2 
x 4 

S 4 

a8 8 

S5 

a4 

S6 

a 
7 a6 a 7 

a~~~5 

FIGURE 5. Sketch of the Minimal Length Full Steiner Tree Computed in Example 3. 
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APPENDIX I. Sample Results. 
Example 1. 

N-4 
A-POINTS 

-3.000, 1.000 
3.000, 1.000 
3.000, -1.000 

-3.000, -1.000 

FULL STEINER TREE 
LENGTH = 9.464 
PAIRING VECTOR IS 0 2 1 

X Y Z S-POINT 
1 -3.000, 1.000 4.732, 0.0 -3.000, -1.000 -2.423, 0.0 
2 3.000, 1.000 3.000, -1.000 -2.423, 0.0 2.423, 0.0 

Example 2. 

N = 5 
A-POINTS 

-1.000, 2.000 
1.000, 1.000 
1.000, -1.000 

-1.000, -1.000 
-2.000, 0.0 

FULL STEINER TREE 
LENGTH = 7.433 
PAIRING VECTOR IS 0 1 1 1 

X Y Z S-POINT 
1 4.598, 1.232 -1.000, -1.000 -2.000, 0.0 -0.974, -0.847 
2 0.866, 3.232 1.000, -1.000 -0.974, -0.847 0.258, -0.387 
3 -1.000, 2.000 1.000, 1.000 0.258, -0.387 0.457, 0.797 

Example 3. 

N = 10 
A-POINTS 
0.0 , 2.000 
2.000, 1.000 
2.000, 0.0 
1.500, -1.500 
1.000, -2.000 
0.500, -2.000 
0.0 , -2.000 

-1.000, -1.000 
-1.000, 0.0 
-0.750, 1.000 
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FULL STEINER TREE 
LENGTH = 11.938 
PAIRING VECTOR IS 0 7 7 5 4 4 2 2 1 

X Y Z S-POINT 

1 0.0 , 2.000 6.165, -7.214 -0.750, 1.000 -0.375, 1.055 
2 2.866, 0.500 -2.165, -6.214 -0.375, 1.055 0.355, 0.132 
3 2.000, 1.000 2.000, 0.0 0.355, 0.132 1.736, 0.334 
4 1.933, -2.616 -3.232, -0.866 0.355, 0.132 0.156, -0.369 
5 1.500, -1.500 0.750, -2.433 0.156, -0.369 1.097, -1.559 
6 1.000, -2.000 0.500, -2.000 1.097, -1.559 0.948, -1.934 
7 -1.366, -2.366 -1.000, 0.0 0.156, -0.369 -0.618, -0.483 
8 0.0 , -2.000 -1.000, -1.000 -0.618, -0.483 -0.813, -0.973 
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c 20 
c 
C OBTAINS N-Z S-POINTS FROM PAIRING AtCTOR V A-MATRIX. 

C 
20 00 50 Ia2,M 

I1aM+2-I 
XZ I-1 )wAX I1-l ,V Ijl t 

Y(I-1)sA(Il-1vV( I11) 
IF (1.EQ.2) GO TO 51 
I 31-2 
DO 54 12=1,13 
PsA( I1,V( 11) )-X( 13+1-12) 
QuA I1,V( I1))-Y(I3+1-I2) 
P1Po 
Q1RQ 
P2P*( O.O-l .0) 
Q2=Q*(0.O,-1.0) 
IF ((Pl.NE.O..OR.P2.NE.0.).ANO.(Q1.NE.O..OR.Q2.NE.O.))GOT054 
Z( I-l )wS(13+1-I'2) 
GO TO 52 

54 CONTINUE 
51 l(I-l)mA(1,N) 
52 CALL STEIN (X(1-1)Y(1-1),Z(-l)tS(I-l)tTEST) 

IF (.NOT.TEST) GO ro 3 
IF (.NOT.EUREKA) GO TO 50 
14I1-1 
WRITE (6,53) 14,X(14),Y(14)Z(14)S( 14) 

53 FORMAT ('0',12,3X,4(F?.3,'tFT.372X2)) 
50 CONTINUE 

IF (EUREKA) CALL EXIT 
FAXIS*AXIS 
DO 22 Kxl,M 

22 W(K)*V(K) 
GO TO 3 

C 
C ALL PAIRING VECTORS PROCESSED. 
C 

80 EUREKA a TRUE. 
IF.(FAXIS.EQ.O.O) GO TO 24 
WRITE (6,101) FAXIS,(W(J5),J5w1,M) 

101 FORMAT (11/, FULL STEINER TREE',///,' LEMGTH.',F7.3, 
i/I/Ot PAIRING VECTOP IS ',20(12,LX)) 

WRITE (6,102) 
102 FORMAT(///,' ',T14,'X',T31'Y',t4B,'tZ',T62,'S-POINT') 

DO 10 K3*1,M 
10 V(K3)mW(K3) 

GO TO 2 
24 WRITE (6,23) 
23 FORMAT ('INO FULL STEINER TREE EXISTS') 

CALL EXIT 
END 



SUBROUTINE STEIN(X,,LW,WTEST) 
C 
C STEIN CALC tLArES STEINER POINT W OF TRIANGLE XYV. IF NO 
C STEINER P04NT EXISTS,, TEST IS SET TO .FALSE. 
C 

IMPLICIT REAL*8(A-HO-S),CO0PLEX*16(T-Z) 
LOGICAL TEST 
AaCDABS(X-Y) 
BuCDABS (Y-Z ) 
CaCOABSS(-X) 
TESTu.TRUE. 
IF(A.NE.O.O.AND.8.NE.O.O.ANO.C.NE.O.O)GO TO 2 
TEST-.fALSE. 
RETURN 

2 IFU1B**2+C**2-A**2)/(2.O*B*C).LE.-O*5DO)GO TI 3 
IF(CC**2+A**2-B**2)/(2.0*C*A).LE.-O.5DO)GO TO 3 
IF((A**2+S**2-C**2)/f2*0*A*BJ.GT.-O.50O)GO TO 5 

3 TESTU.FALSE. 
RETURN 

5 CALL EQPT(XY-,UTEST) 
7 DI=X 

02n(X-01 )*(0,09-1.0) 
EIsY 
AE2=(Y-El1*10.09-1.00 
Fl=U 
F2=(U-Fl)*(O.O,-l.O) 
Glst 
G2w(Z-Gl)*(0.09-1.0) 
AwE2-D2 

CsD1*E2-02*E 1 
IF((A*Fl+S*F2-C)*(A*GI+B*G2-C).LT.O.DO)GO-TO 6 
TEMPmX 
XSY 
YeTEMP 
CALL EQPTIXYtUTEST) 

6 CALL EQPT(YZVTEST) 
S CALL POINTIUVYVX#W) 

RETURN 
END 



SUBROUTINE EQPT(XYtZ ,TEST) 
C 
C EQPT COMPUTES THIRO, VERTEX Z OF EQUILATERAL TRIANGLE ON XY 
C AS BASE. CLOCKWISE OfRtER ON TRIANGLE IS XAY. 
C IF XXY,TEST IS SET TO .FALSE. 
C 

IMPLICIT REAL*8(A-HI,0U-V) 
COMPLEX*16 WXtYZ 
LOGICAL TEST 
WsY-X 
TESTm.TRUE. 
IF(CDABS(W).NE.0.O)O TO 2 
TESTm.FALSE. 
RETURN 

2 8l1W 
82=(O.Ot-1.0)*(W-Bl1) 

IF(Bl.NE.0.0)GO TO 3 
C2*82/2.0 
C 1 -C2*OSQRT (3.00) 
GO TO 6 

3 THETA'OATAN(B2/B1)+DATAN(OSQRT(3.DO)) 
IF(B1.GT.O.OO)GU TO 4 
THETAnTHETA+OARCOSP-l D0) 

4 RAOIUSaCDABS(W) 
ClwRADIUS*cOCS( THETA) 
C2RAOIUS*OSIN(THETA) 

6 ZLOCMPLx(ClC2)*X 
RETURN 
END 

SUBROUTINE POINT(WXYZV) 
C 
C POINT COMPUTES THE POINT OF INTERSECTIUN V OF LINES JOINING 
C THE PAIRS OF POINTS WX AND Y,. 
C s 

IMPLICIl REAL*8(A-HO-U),COMPLEX*16(V-1) 

L2r(W-EL )*(0.0,-1 .0) 

E 2 =(X -E 1 }* { .0 ,- X .0) 
FlY 
F2(Y-Fl )*(0.0,-l.0) 
GlzZ 
GZx(Z-Gl )*(O.0,-1.0) 
AlsE2-02 
81l01-El 
C 1D1*E2-02*El 
A2sG2-F2 
82F l-Gl 
C2sF l*G2-F2*Gl 
Pls( 82*CA-B1*C2 )/(AI*B2-A2*81) 
P2. ( Al*C2-A2*Cl ) It AI*62-A?*BI) 
VuDCMPLX(PIP2) 
RETURN 
END 



TABLE OF CMHBUSHEV POLYNO41AL EVISIONS 

OF BOSE-EINSTEIN FUNCTIONS OF ORDEtS 1 TO 10 

BY 

E. W. MG, C. J. DEVINE, AND R. F. TOOPER 



E. W. Rg, C. J. Devine, and R. F. Tooper, Table of Cheb hev 
tlynom2al Expansions of Dose-Einstein Functions of Orders 

1 to 10, Addendum to Math. of Ccop. this issue. 

Coefficients are given in Tables Lthrouc X for 3 seU of Chebyshev 

polynomial expansions given by 

B (r) T J $P)T*(.T+l) 
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for S T R s 1 , 
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for -A s s 1, 
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Ba ( b 0) + 4n1 4jjTj(n) trlhl 
kwO~~~lm 
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where in the lest equation, 

%1 

s(p) spn 

The coeffcients %P appear at the end of Tables 1, I1, III, IV, and V. 

In all the tables %b nuter in parenthesis before each coerfitgnt 

repes"ents the r of ten wicb multiplies the coefficient. For examle 

cowider the follow coefficient trom TOW I: 

(.12) 5.f21359CA5 is the sum as 

5.2135%A5 x 10-2 . 


