On Relatively Prime Odd Amicable Numbers

By Peter Hagis, Jr.

Abstract. Whether or not a relatively prime pair of amicable numbers exists is still an open
question. In this paper some necessary conditions for m and n to be a pair of odd relatively
prime amicable numbers are proved. In particular, lower bounds for m, n, mn and the
number of prime divisors of mn are established. The arguments are based on an extensive
case study carried out on the CDC 6400 at the Temple University Computing Center.

1. Introduction. Two positive integers m and n are said to be amicable if

1) a(m) =m-4+n=od(n)

where o(k) is the sum of the positive divisors of k. To date almost 900 pairs of
amicable numbers have been found (see [1], [2], [3], [4], [7] and [8]), none of which is
relatively prime. In [6] Kanold has shown that if m and n are relatively prime
amicable numbers then mn > 4-10%, In [5] the present author has shown that if m
and 7 are relatively prime amicable numbers of opposite parity then mn > 10
The purpose of the present paper is to improve Kanold’s lower bound for mn in case
m and n are relatively prime odd amicable numbers. To be precise, we shall prove
the following
TueorEM. If

N
2) m = III rit, n= III s;7 (where M +N =T)
1= J=

are amicable numbers such that the odd primes r; and s; are distinct then

(a) if (mn, 15) = 1, then T = 606 and mn > 101,

(b) of (mn, 15) = 5, then T = 140 and mn > 4-10%%;

(c) if (mn, 15) = 3, then T = 53 and mn > 3-1018;

(d) if (mn, 15) = 15, then T = 21 and mn > 109,

The proof involves an exhaustive, and rather exhausting, ‘“case’” study. This
was carried out with the aid of the CDC 6400 at the Temple University Computing
Center.

2. Some Preliminary Results. In what follows p and g denote primes and the
notation p?||k means that pe/k but pst{k. m and n will always be understood to be
a pair of relatively prime odd amicable numbers. From (1) and (2) and the multi-
plicative property of ¢(k) we see that

3) m4+n=loe0¢") = ITo(s)
where, for convenience, we have omitted the subscripts.
Lemma 1. If gmn and p®||mn, then qia(p2).
Proof. If qlmn and q|o(p®), then from (3) we see immediately that q|m and q|n.
This is impossible since (m, n) = 1.
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Lemma 2. If g|mn, p®||mn, and p = gk — 1 then 2|a.

Proof. If p = gk — 1and @ is odd, theno(p®) =14+ p + p2 + --- + p* =
1—141— --- —= 1= 0 (mod g). Since this contradicts Lemma 1 we conclude
that a is even.

Now, since m 5 n we have (m + n)?/mn > 4. Therefore, letting [Jr?- [[sc =
DP1% -2+ - -pr°T where p; < p; if ¢ < j, we have from (3)

LemMA 3. If mn = HL pa%i, then 4 < [T o(p.2i)/p®i.

3. The case (mn, 15) = 1. In the sequel we shall denote the jth odd prime by
P;. If (mn, 15) = 1 then py = 7 = P;. Since ¢(p®)/p* = (p — p9)/(p — 1) <
p/(® — 1) we see from Lemma 3 that

T+2

4 < gpi/(pi -1 = 11=13P1-/<Pf -1).

It follows that if NV is the smallest integer such that [[)s P,/(P; — 1) > 4, then
T =z N — 2and mn = J]_; P,. Making use of the CDC 6400 it was found that
N =608 and mn = 7-11-13 - - - 4483 > 109,

4. The case (mn, 15) = 5. In this case p1 = 5 = P Therefore, if N is the
smallest integer such that [[. P;/(P; — 1) > 4, then T = N — 1. It was found
that N = 141. From Lemma 2 we see that if p¢||mn and p = 5k — 1 then 2|a. We
conclude that mn = 5-192-292-F(7,1093) > 4-10% where F(7,1093) denotes the
product of the 137 primes between 7 and 1093, inclusive, which are not congruent
to —1 modulo 5.

5. The case (mn, 15) = 3. In this case p; = 3 and p, = 7. It follows that

T+1

s<IIp/@:i=D =151 Py/P; = 1)

so that if NV is the smallest integer such that [[3_s P;/(P; — 1) > 8/3, then T =
N — 1. It was found that N = 54. From Lemma 2 we see that if p¢||mn and p =
3k — 1 then 2|a. We conclude that mn = 3-112-172-232-G(7,571) > 3-1018. Here
G(7,571) is the product of the 49 primes between 7 and 571, inclusive, which are
congruent to 1 modulo 3.

6. The case (mn, 15) = 15. This case is far more troublesome and requires the
examination of a multiplicity of subcases before the lower bound given in (d) of
our theorem can be established. We shall present the results of our investigation in
tabular form after some preliminary remarks.

We assume that 3¢||mn, a = 1; 5%||lmn, b = 1; 7¢|jmn, ¢ = 0; 11¢||mn, d = 0;
13¢|jmn, e = 0; 177|mn, f = 0; 19%||mn, g = 0; 23*|mn, b = 0; 297||mn, r = 0;
31¢||mn, s = 0. Since ¢(3?) = 40 and 5/mn we see from Lemma 1 that a = 3. From
Lemma 2, since 15/mn, b =d = f =g = h = r = 0 (mod 2). Since ¢(7%) = 57
and ¢(7%) = 400, from Lemma 1 we have ¢ = 0, ¢ = 1, or ¢ = 4. Since ¢(19?) =
3:127,g = 0org = 4.
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Now assume temporarily that 7|mn. Since ¢(3%) = 4-7-13, a # 5. Since o(112) =
7-19 and o(114) = 16105,d = O ord = 6. Since o(13) = 14, ¢(13?) = 3-61, o(13%) =
2380,¢ = Qor e = 4. Since ¢(23?) = 7-79, h = Oor h = 4.

If 11|mn then a # 4, since ¢(3%) = 121; and b = 4, since o(5*) = 11-71. If
13|mn then r = 0 or r = 4, since ¢(29%) = 13-67.

From Lemma 3 it follows that

(4) 4 < ABC ITlei/(pi — 1) £ ABC fr P;/(P;—1).

Here H = 3if 7{mn, H = 4 if 7|mn. The asterisk indicates the (possible) omission
of certain factors due to restrictions on mn. For example, if 17{mn then 17/16 is
omitted. If 5%||mn then, since o(5?) = 31, 31{mn and therefore 31/30 will be
omitted. The number of factors in [[*is 7 — H 4+ 1. A = ¢(3%)/32 if the value
of a is specified; A = 3/2 otherwise. B = o(5%)/5% if b is specified; B = 5/4 otherwise.
C = o(79)/7¢ if ¢ is specified; C = 7/6 otherwise.

From (4) we see that lower bounds for 7', and consequently mn, can be de-
termined by finding the smallest integer N such that A BC ly:H P;j/(P;—1)>4.
Our results appear in the accompanying table.

In each case Py*(p, q) denotes the product of the k£ primes between p and g,
inclusive, which are not congruent to —1 modulo any prime known to be a divisor
of mn. For example, in the last case

P11(31,397) = 73-127-157-163-193-211-277 -283-313 - 331 - 397.

None of these primes is congruent to —1 modulo p where 3 < p < 31.

In this case, since ¢(313) = 2:157, we can improve the lower bound
to 38567411613417219423429431 -73-127 -157 -163-193 -211 -277 - 283 -331-397 - 421 >
1097,

Since the cases discussed are mutually exclusive and exhaustive we conclude
that T = 21 and mn > 109 if 15|mn.

7. Lower bounds for m and n. Without loss of generality we assume that
m < n.If n < 4m then from our theorem we have 4m? > mn > 10%. It follows that
m > 10%.

If n > 4m then from (1) we have o(m)/m = 1 + n/m > 5. Arguing as in Section
3 we see that if N is the smallest integer such that [[: P,/(P; — 1) > 5 then m
has at least N different prime divisors and m = ][]’ P;. It was found that N = 54
andm = 3-5 --- 257 > 8-101%2,

We have proved the following

COROLLARY. If m and n are relatively prime odd amicable numbers then m > 10%
and n > 10%.

This improves Kanold’s result [6] that n > m > 10%. We also remark that the
adjective “odd” can be omitted in the statement of the corollary. For in [5] it has
been proved that if m and n are relatively prime amicable numbers of opposite
parity then m > 10% and n > 10%.
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