
On the Approximate Minimization of Functionals* 

By James W. Daniel 

Abstract. This paper considers in general the problem of finding the minimum of a given 
functional f(u) over a set B by approximately minimizing a sequence of functionals 
fn(un) over a "discretized" set Bn; theorems are given proving the convergence of the 
approximating points un in Bn to the desired point u in B. Applications are given to the 
Rayleigh-Ritz method, regularization, Chebyshev solution of differential equations, 
and the calculus of variations. 

1. Introduction. Many theoretical and computational problems either arise or 
can be formulated as one of locating a minimizing point of some real-valued (non- 
linear) functional over a certain set; such variational settings often lead to existence 
theorems as well as to computational methods for solving the problems in question. 
Computationally, however, one is generally forced to deal with discrete data in 
place of the original functional; it is therefore necessary to analyze the relationships 
between variational problems and their discretized analogues. 

In [7, Section 4], we first studied under certain equicontinuity assumptions the 
question of approximately minimizing one functional by minimizing a sequence of 
nearby functionals. In this present note we state the problem generally, give some 
convergence theorems, and describe some particular examples. 

2. Minimization over W-Compact Sets. Let E be a normed linear space and 
let f be a real-valued (nonlinear) functional on E. Let there be another notion of 
convergence (i.e., a topology) in E in addition to norm-convergence, W-continuity, 
W-compactness, etc. For example, if E is a reflexive Banach space, the W-topology 
might be the weak-topology. We wish to minimize f over a W-compact set B. 

Definition 2.1. A discretization for the functional f on E consists of a family of 
normed linear spaces E., a family of real-valued functionals fn on En, a family of 
mappings pn of En into E, and a family of mappings rn of E into En. 

Definition 2.2. A discretization for f on E is consistent if 
(1) limn >N0 sup fn(rnt) ? fQu) if u minimizes f over the set in question, 
(2) lim' . sup [f(pnun) -fn(u.)] ? 0 for any sequence un C En such that pnun 

remains in the set B over which we wish to minimize f. 
Remark. Generally one would demonstrate that (1) is valid for u by proving its 

validity for all u in E. 
We now state the basic minimization problem over B (MPB): Let f be W-lower 

semicontinuous and bounded below on a W-compact set B; find u C B such that 
f(u) ? f(u) for all u C B. 

Remark. At least one such u exists [17]. Recall that lower semicontinuity means 
f(u) ? lim inf f(un) whenever u, W-converges to u. 

We wish to find u solving MPB by solving similar problems for fi on En. Thus 
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consider the basic approximating minimization problem over Bn (MPBn): Let f. be 
bounded below on sets Bn satisfying p.Bn C B and rnB C Bn; find Un E B. such 
that f. (u) < f,(u,) + en for all un C Bn, en > 0 converging to zero. 

We can now prove the following fundamental theorem on the approximate 
minimization of functionals. 

THEOREM 2.1. Let f be W-lower semicontinuous and bounded below on a W-compact 
set B and suppose fn, En, pn, rn gives a consistent discretization for f on E with sets 
Bn C En satisfying pn Bn C B, rn B C Bn. Then there exist u' and U'n solving MPB and 
MPBn. For any such solutions, limner f(pnun) = limper fn(A ) = f(u') and all W-limit 
points of puan, at least one of which exists, solve MPB. If MPB has a unique solution, 
then Pnun W-converges to it. 

Proof. The existence of u' was noted earlier; the existence of n is obvious. Since 
u solves MPB, for all n we have fQu) ? f(pnUn) fUnZ) + ran where 77n f(pni n) 
fU(un) satisfies limnw sup r7n < 0 by part two of the consistency assumption. On the 
other hand, 'n solves MPBA in the sense thatfn( n) < inf. fn(un) + en; therefore we 
have fQu) ? f(p'Un) = fU(n) + 'n < infBn fn(un) + en + I < fn(ruC) + en + n, 
the latter inequality resulting from the fact that r nU C Bn. By part one of the con- 
sistency assumption limn w sup fn(r'C) < f(u); therefore by letting n tend to infinity 
in the last string of inequalities we obtain limUn f(pnun) = lim Un fn(u) = fQu). 
Since B is W-compact and pn Un C B, there exists at least one W-limit point of 
pnUn in B; let u' be any such point associated with a subsequence PnjUnj. The W- 
lower semicontinuity of f yields f(u) ? f(u') < limn,. inf f(pnjunj) = f(u), so 
solves MPB; if the solution to MPB is unique, the sequence pnUn clearly is W- 
convergent to it. Q.E.D. 

This theorem is a strengthening of Proposition 1, Section 4, in [7], which is con- 
cerned with collective compactness and thereby with approximate solutions of 
integral equations. Somewhat similar results, in essence directed toward Hammer- 
stein equations, were obtained in unpublished notes by J.-P. Aubin and J. L. Lions 
[4]; their results, other than those giving explicit conditions on the Hammerstein 
operators which guarantee the satisfaction of the assumptions of our theorems, are 
contained in Theorem 2.1. The general ideas concerning discretization schemes are 
those of [2], [3], in which examples of pn and rn are given. 

In practice it is often necessary to minimize a given functional over the entire 
space E; under further restrictions on the discretization scheme, we can handle this 
case also. 

3. Minimization over E. Consider the following global minimization problem 
over E (MPE): Let f be W-lower semicontinuous and bounded below on E; find u 
such that f((a) < f(u) for all u C E. 

Remark. A solution to MPE need not exist. 
We approximate this problem by the following approximating global minimiza- 

tion problem over En (MPEn): Let fn be bounded below on En. Find An such that 
n - fn(un) + En for all un C En, where en > 0 converges to zero. 
Remark. MPEn always has a solution. 
We now wish to study situations in which solutions to MPE exist and can be 

obtained via solutions to MPEn. The type of condition that usually is imposed to 
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guarantee the existence of a solution to MPE is a growth condition enabling us to 
restrict ourselves to bounded sets and then use results for that case. Therefore we 
now assume that solid spheres in E are W-compact, i.e., for all real R, SR 
- {u;juj < R} is W-compact. 

Definition 3.1. The functional f is said to satisfy a T-condition if there exists an 
R > 0 and uo in E with Iluoll < R such that 1jull > R implies f(u) > f(uo). 

Remark. If there exists a real number b and a monotone function s(t) such that 
limn~ Ss(t) = oc and such that f(u) > b + s( IulI), then f satisfies a T-condition. 

Thus, for a functional satisfying a T-condition, problem MPE can be reduced 
to problem MPB over the W-compact set B SR, for which we know a solution 
exists. It is possible, however, to have a consistent discretization for a functional f 
satisfying a T-condition but such that the points un satisfy limbo |p. = ??; 
thus we need further conditions in order to solve MPE via MPEn. What we need is a 
type of uniform growth condition on the functional fn and a stability condition on 
the discretization. 

Definition 3.2. A discretization for f on E satisfies a uniform growth condition if 
limn,0 sup fn(un) = oo whenever lim , sup jjunjjn = 00o 

Definition 3.3. A discretization for f on E is stable if there exists a constant A 
such that llpnun < Ajl unln for all un C En for all n. 

Now we can prove the following theorem on solving MPE via MPEn. 
THEOREM 3.1. Let solid spheres in E be W-compact. Let the W-lower semicontinuous 

functional f be bounded below on E and satisfy a T-condition with R = Ro. Let the 
given discretization for f on E be stable and consistent (condition 2 must hold if IjpnUnjj is 
bounded) and satisfy a uniform growth condition; suppose each fn is bounded below on 
En. Then solutions u and n exist solving MPE and MPEn respectively. For any such solu- 
tions limn S. f(pnUn) = lim UnS fn(u) = fu), and all W-limit points Of Pnfln, at least 
one of which exists, solve MPE. If the solution to MPE is unique, then pnun W-con- 
verges to it. 

Proof. By our assumptions, u and u exist. Since r u C En, we have fn(A) ? 

fn(rzu) and limnO sup fn(rnu) < f(ia) by the consistency assumption; therefore there 
exists a constant C such that fn(A) ? C for all u and hence, because of the uniform 
growth condition, there exists a constant D such that iUnjn < D. Therefore, by 
stability, 11pnA411 < Ajjunjjn < AD. Let R = max (Ro, AD). Let Bn = {un; JjUnjn- 

D}, B = SR = {u; u < R }. The theorem now follows by applying Theorem 2.1 
with the sets Bn and B as defined above, recalling that B is W-compact. Q.E.D. 

It is quite straightforward to apply our two main theorems to generate results 
concerning, for example, the approximate solution of nonlinear operator equations 
(by looking at conditions guaranteeing that u is an interior point of B or of E and 
deducing that the derivative of f must vanish there) and the approximate solution 
of nonlinear eigenvalue-eigenvector problems (by guaranteeing u to be on the 
boundary of B for certain types of sets and applying the extended Lagrange multi- 
plier theorem). Results of this type are contained in Sections 4 and 5 of [7]; we 
pursue this no further here. Instead we look briefly at a number of methods cur- 
rently in use for solving certain types of problems to see how they fit into the above 
theory and how the theory indicates the necessary characteristics of the particular 
methods. 
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4. Examples. 
I. Rayleigh-Ritz. Perhaps the simplest and oldest example is that of the Rayleigh- 

Ritz procedure. Here we let E be a Hilbert space with complete basis 41, * * *, O., . * . 

and for each n let E. be the subspace of E spanned by 41, **, onn with pnun = Un 

considered as an element of E, and r Eu = i= (u, 4)c where (u, v) is 
the inner product on E; the inner product on En is the one induced by ( *, ) on 
E. Given a functional f, let fn = f for all n. Such a discretization is stable and, if f 
is norm-continuous, it is consistent. A great deal of interest has arisen lately in the 
application of this method to the numerical solution of differential equations using 
various bases 41, ** i, that is, different finite-dimensional subspaces En. In par- 

ticular, in [5] it is shown how very good error bounds can be computed; essentially 
this approach assumes that f has a differentiable gradient J = Vf with uniformly 
positive-definite derivative J'. If ' (' ) minimizes f (fJn) on E (En) then J(u') = 0 
and (J(2), c/'i) = 0, i = 1, *l , n; hence 0 = (JQu) - J(un) ct'i) = 

(J' (n + Un -Ui))(C - Un) /t) which states that Un is the projection under 
the inner product [u, v] = (J'un + u - Un)) ) of u onto 

En. Thus ['- Un, U - n] ? [U - Un, U un] for all uE En which provides an 
error estimate. Details and extensions of this approach are contained in [5], [6]. 

One difficulty not mentioned in the above papers is that of minimizing fn over 
En; in this case fn is an integral of a complicated differential form, often nonlinear. 
In practice this is discretized by a quadrature sum so that we do not in fact have 

fn = f. The difficulties therein created are treated in [9]. 
II. Regularization. Often one seeks not just any arbitrary minimizing point to a 

functional but one which, in some sense, is smoothest or most regular. For example, 
let f and g be weakly lower semicontinuous functionals on a reflexive Banach space 

E, and let g be nonnegative. Let En = E, pn = rn = the identity, fn = f + ang 

where an > 0 converges to zero. Let B be a weakly compact set in E with f bounded. 
below on B. The consistency condition (1) becomes limn, sup [f(u) + ang(u)] < 

f(u) which clearly is satisfied. Condition (2) becomes limnos sup - ang(un) < 0 

which follows from the nonnegativity of an and g. For future reference we note that 

f( +) + an9g(A) ? f(An) + ang() ? f + implying q(fA) < gq( A). It follows 
then from Theorem 2.1 that any weak limit point u' of {un } minimizes f over B; 
moreover, since g(u') < limnO inf q(u2) ? q(u), g(u') is the minimum value of g 
over the set of minimizing points of f in B. One says that the minimizing point has 
been regularized by g [11], [16]; if B is convex and g is uniformly convex, then u' is 
in fact a norm limit point and moreover if f is quasi-convex [12], the entire sequence 

Un } converges in norm to u' [11]. 
III. Chebyshev Solution of Differential Equations. Suppose one seeks to solve 

Au = b where A is a uniformly elliptic linear differential operator in two variables 
over a bounded domain D, under the condition u = 0 on F, the boundary of D, 
assumed to be sufficiently smooth; more general types of equations may also be 
treated by the method to be presented. A numerical method of recent popularity 
[10], [14] given a sequence of functions {4)} satisfying the boundary data, consists in 
choosing numbers an, *, an, . to minimize maxli<<M i [A (-Z~ ar, ?4) ?)] (x -b(xi) I 
where the M points {xj} form a "grid" over D. Strictly for convenience we take 
M = 4n and suppose that the grid is such that any point in D is at a distance of 
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at most hn from a grid-point x;. We wish to find conditions under which Un_ 

Ei., a, Ads will converge, in some sense, to the solution u of our problem. 
Since we seek to minimize a supremum norm, the norm must be defined; so let 

E = { u; u = 0 on F, all partial derivatives of u through second order are continuous 
on D = D U F}; for u C E, let 1lull = 1jull. = max5 Ju(x)j. Letf(u) = JjAu - b1100 
where we now need to assume that b is bounded on D. Let E. be that subset of E 
spanned by the functions 4i, * * *, On, assumed to lie in E; let pn be the identity map- 
ping, and rn be at the moment undefined. Define 

fn(un) = J|Aun- b|l 4n,, = max I [Aun](xi) - b(xZ)|; 
1?< i?4n 

we now seek conditions for consistency. Consider (2) of our Definition 
2.2. f (pun) - fn(un) = J Aun- bfll. - JlAun -bl 4n,. Since this quantity is always 
nonnegative, the requirement limnO sup [f(pnun) - fn(un)] < 0 in fact demands 
convergence; in order to compare suprema over discrete and continuous sets, we 
need to know something about the growth of the functions Aun - b between grid- 
points. Hence we now need to assume that Ad), satisfies a Lipschitz condition with 
Lipschitz constant Xi (this restricts A somewhat also) and that b satisfies one with a 
constant X0. From this it follows that f(pnun) - fn(un) I< hn Z'=o jan,|j jX j, where 
an, = 1. Thus we need next a growth condition on Eji=o Ian, i IX i1. For example, the 
conditions that (i) there exists a constant C such that E =o I an, i I < C for all n, and 
(ii) hnAn tends to zero, where An = maxi<i<n iX, would be sufficient; in practice the 
An do in fact become large, while the restriction on the an, is easy to implement. In 
essence, the above restrictions are defining Bn, i.e., Bn = {un; EZ=O jani, < C}. 

Next consider condition (1) of Definition 2.2, where rn is to be defined. We re- 
quire limn,. sup fn (rnu) < f(u). Now fn (rnu) < f(rnu), so we need only require that 
limn,0 sup f(rnu) < f(u); this is certainly true if rnu is an approximation method in 
which Arnu converges uniformly to Au, for example, if rnu and all its partial deriva- 
tives through second-order converge uniformly to those for u. We remark that it is 
necessary to have rnu in Bn. 

Under the above conditions, it follows from Theorem 2.1 and its proof that 
limn fn (Pn) =nlim f(pn) = f(u') = 0, where u solves Au = b and lies in E; the 
conditions on W-compactness and W-lower semicontinuity are needed only to prove 
convergence for pnun, a problem easily handled differently here. We know that 

-Abunf-l b = f(pnun) converges to zero. By a simple use of the maximum principle 
[13], we deduce Ilun -ul0. < JAUn - b~l. 11wflj where w solves Aw = -1 in D, 
w = 0 on F; therefore Un converges uniformly to the solution u. 

The application of the theory in Section 2 to this problem indicates the type of 
approach necessary to prove convergence for this numerical method. One requires: 
(1) smooth functions ci with Lipschitz constants Xi for Acp that do not grow too 
rapidly, (2) results from approximation theory that state that if one approximates 
functions b by combinations of functions AO i, the sums E =1 Ian, iI remain bounded, 
and (3) functions b can be approximated by functions A4i. The requirements (1) 
and (3) here are probably less difficult; generalized Bessel inequality results like (2), 
however, are not known to this author for general cases. While numerical work with 
this method proceeds, theoretical results of the type suggested by our theorem 
should be sought. 
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IV. Calculus of Variations. Consider the problem of minimizing the functional 
f(u) = j' g(t, u, i)dt, u(O) = u(1) = 0, where i = du/dt. The following simple 
case of a general numerical method has been suggested [8]: minimize 

fn(un) = E hig - 1, U inf 'l Ui -), un, = Unn =0 hi = ti - tji. 

where the minimization is over the set of values of Un, , un ,n_; this method can 
be fit neatly into the theory of Theorem 2.1. In [8], under the assumption that 
there exist unique minimizing points for f (in C1[O, 1]) and fn satisfying the "spike" 
condition I (n,i - Un,i-)/hil < A for some constant A independent of n, it was 
purportedly proved that pTAU, the piecewise-linear interpolation to Un, converges 
uniformly to u'; because the authors inadvertently left out an assumption guarantee- 
ing a lower semicontinuity property for the functional, the proof is in fact incorrect. 
However, as we shall show below by use of Theorem 2.1, the usual assumptions 
guaranteeing a unique minimizing point for f, in conjunction with an assumption 
guaranteeing the satisfaction of a type of spike condition, yield a convergence proof. 

For convenience let us take hi = h = 1/n for all i. For a fixed p > 1, let E = 
{u; u(0) = u(1) = 0, u is absolutely continuous on [0, 1], it E Lp[O, 1]}; for u E E, 
let 

11ull = jjijj1p= {L I(t)IPdt} 

For each n, let En be (n - 1)-dimensional Euclidean space, where Un En has the 
norm 

flunfln = th E [U Unih } '/P 
where un, 0 = Unn = 0 by definition. Let pn be the mapping defined by piecewise- 
linear joining of the values Un i at the points ti = ih, thus pnun E E. Define the 
mapping rn via (rnu)i = u(ti), i = 1, * * *, n - 1. Define W-convergence as follows: 
A sequence U(n) in E W-converges to u in E if f 

1 (u(n) - u)v dt converges to zero for 
every function v(t) E Lq(O, 1), i/p + 1/q = 1. 

PROPOSITION 4.1. Solid spheres in E are W-compact. If 8(n) W-converges to u, 
then U (n) converges to u uniformly, i.e., in the supremum norm. 

Proof. If we take any sequence Urn) in E with flu(n)Jl = 11u(n)JIp < R, then, by 
Alaoglu's Theorem [15, p. 228], there exists a subsequence U(n P and a function s in 
Lp such that for all v in Lq, j (it(nj) -s)v dt tends to zero. Let u(t) = t' s(t) dt; it 
follows that u C E and U(nj) W-converges to u. For the second part of the proof, we 
note first that JJU(n)JJ is bounded, by the uniform-boundedness principle [15, p. 202]. 
Thus 

{t2 t2 - /p 

I Un) (ti) 
- i ? t (t2) 1 < Idt < J Ia(n) IPdt] t2 -tl I1 

Iq 

11 (nu '11 Jt2 - t1111' 

which implies that the sequence u(n) is uniformly bounded and equicontinuous. If 
U (n) does not converge uniformly to u, then there exists e > 0 and a sequence tj such 
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that ju(ni)(tj) - u(tj)l > e-; applying Ascoli's theorem [15, p. 276] to the bounded, 
equicontinuous sequence u(nj) yields a contradiction. Q.E.D. 

We now make the standard type of assumption in the calculus of variations in 
order to guarantee the existence of a minimizing point for f(u). 

Assumptions. (i) g(t, u, w) is jointly continuous in its variables for 0 < t < 1 and 
- 00 < U, w < oo. (ii) There exist constants a, b with b > 0 such that g(t, u, w) > 
a + b IwIP for all t in [0, I, u finite. (iii) g is differentiably convex in w, i.e., g(t, u, wi) 

- g(t, u, W2) > (W1 - w2)gw(t, U, W2). 

PROPOSITION 4.2. The functional f is W-lower semicontinuous on E, bounded below, 
and satisfies a T-condition. 

Proof. For the last two statements, note that f(u) = ' g(t, u, it) dt 
= Jo [a + b jItIP] dt = a + b IuIIP. The proof of the W-lower semicontinuity is 

straightforward using the convexity of g; details may be found in [1, p. 137-139]. 
Q.E.D. 

PROPOSITION 4.3. The discretization scheme defined above is stable and satisfies a 
uniform growth condition. 

Proof. 
/*1 ~~~n ti 

|JpnunIJ' = J i (pnun) I~dt = E I (PnUn) Idt 

- h UnIui -hUn, i11 Il~IunI7 

fnOun)=h~a~tii~un~i Un, i U ii) un, n hi 
n U)= f, 9 i-1,Un,i-l] a+ blm 

it=lhh 

= a + bjjunjllP. Q.E.D. 

The only remaining ingredient for application of Theorem 3.1 is the consistency; 
in [8], the spike condition was needed for this. In our case, we must make the follow- 
ing assumptions. 

Assumptions. (iv) Some solution ut minimizing f(u) lies in C'[O, 1], i.e., u" is 
continuous. (v) There exist constants c and d and a continuous function s(t, v) such 
that Ig(ti, vi, z) - g(t2, V2, z)I ? (c + dIzIP)ls(ti, v1) - s(t2, V2)I where t1, t2 are 
arbitrary points in [0, 1] and vi, V2, z are arbitrary real numbers. 

Remark. If g(t, u, w) = w2/2 + r(t, u), then (v) is satisfied with s = r. If g(t, u, w) 
l(w)m(t, u) with 11(w)l < c + dlwIP, then (v) is satisfied with r _ m; many 

actual problems are of the above types. 
PROPOSITION 4.4. The discretization is consistent. 
Proof. For condition (1), we prove limn., Ifn(rnu') - f(ft)l = 0. Since, by as- 

sumption, uz is in C'[O, 1], given E, for sufficiently large n, ju(ti_) -u (t) < e and 
Iu (t) - (2i ui-1)/hl < e for ti_1 < t < ti. For convenience, we write merely 
u for U. 

If(u) - ft(ru)-< E | f g(t, u, u) - g(ti1, ui_1, u u )dt 

But, by uniform continuity of g, given a > 0 there exists e > 0 and then N such that 
n > N implies If(u) - fn(rnu) I _ ? ti l dt = &. Since a > 0 was arbitrary, con- 
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dition (1) is proved. For condition (2), we show that 1imn If(pu.) - fn(un) = 0 
if flp tpu, Il is bounded. 

| f (PnsU) -fn (Un) ? h E L ia(tii + ah, (1 - a)Un, 1 + aUn,, ij h ' ) 

-9 (ti U, un,&i, Un- U -l) da 

~~J~ ~d Ufl, Ufl /-1 < h , c+ d 8 -nil|P 
h 

Is(ti-1 + ah, (1 - a)Uni-l + auni,) - 8(ti1, Un,i-1)jIda. 

Now flUnfln = flpnUnfl is bounded, Iun il is bounded, and Iuni -Un i-11 uh1-1 P jUnjn 
Thus, using the uniform continuity of s(t, u), given e> 0 there exists N such that 
n > N implies 

If(pnan) - fn(un)l ? h I, c d J Eda E[c + dlun -Ind] 

since E > 0 was arbitrary, condition (2) follows. Q.E.D. 
We now can state the following theorem which follows immediately from 

Theorem 3.1 and the above propositions. 
THEOREM 4.1. Let Assumptions (i) - (v) be valid and let the discretization method 

described above be used. Then all W-limit points of PnUn (at least one of which exists) 
minimize f. If the solution I is unique, then in particular Pn n converges uniformly to 
u and the derivatives converge Lp-weakly. 
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