
A Method for Solving Nonlinear Volterra Integral 
Equations of the Second Kind* 

By Peter Linz** 

Abstract. The approach given in this paper leads to numerical methods for Volterra 
integral equations which avoid the need for special starting procedures. Formulae for a 
typical fourth-order method are derived and some numerical examples presented. A 
convergence theorem is given for the method described. 

1. Introduction. In this paper we consider the numerical solution of the equation 

(1) y(x) = g(X) + jK(x, t, y(t))dt. 

Here y(x) is the unknown function which is to be determined in some interval 
o < x ? a. The function g(x) and the kernel K(x, t, y) are given and are assumed to 
satisfy the conditions: 

(1) g(x) is continuous and bounded in 0 ? x < a, 
(2) K(x, t, y) is bounded and uniformly continuous in x and t for all finite y and 

O _ t < x < a, 
(3) K(x, t, y) satisfies a uniform Lipschitz condition 

IK(x, t, y') - K(x, t, y2)1 < Ljl- Y21 

for all 0 ? t ? x ? a. 
It is well known that under these conditions Eq. (1) has a unique solution 

[8, p. 42]. 
In practice, approximate solutions to Eq. (1) are frequently obtained by finite- 

difference methods, such that approximate values for y(x) are computed at certain 
discrete points (mesh-points) of the range. Several approaches exist for developing 
such numerical methods. The first consists of replacing the integral in (1) by some 
numerical quadrature using values at the mesh-points and satisfying the resulting 
equation at these points. The system of equations thus obtained can be solved, one 
point at a time. Discussions of this approach have been given by Fox and Goodwin 
[2], Noble [5], and Mayers [4]. In general, special starting procedures are needed to 
obtain the solution at the first few points. Some typical starting procedures were 
given by Noble [5] and Day [1]. 

A different class of approximation formulae is based on an extension of the 
Runge-Kutta methods to Eq. (1). This has been studied in detail by Pouzet [6], 
[7]. Runge-Kutta methods are self-starting, but tend to be complicated and in- 
efficient and hence of limited practical use. 

A third approach uses numerical quadrature, but the computations are arranged 
such that several values of y are obtained at the same time. This leads to what are 
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generally called block-by-block methods, and it is with these that we are concerned 
here. The block-by-block approach was first suggested by Young [9] in connection 
with product integration techniques. The present paper extends this idea to develop 
methods which are generally useful. The main advantage of this approach is due to 
the fact that no special starting procedures are needed; thus the methods are simple 
to use and switching step-size presents no problem. 

2. Block-by-Block Methods. The basic interval [0, a] is divided into steps of 
width h, such that xi = ih and Nh = a. The approximate solution will be defined at 
the mesh-points xi and denoted by Yi, such that Yi is an approximation to y(xj). 
We rewrite Eq. (1) in the form 

{Xpn rXn 

y(Xn) = g(xn) + f K(xn, t, y(t))dt + f K(xn, t, y(t))dt, 

where p is some integer and m = integer part of n/p. If the values Yo, Y1, * , Ypm 
are known, then the first integral can be approximated by standard quadrature 
methods. The second integral is estimated by a quadrature rule using values of the 
integrand at t = xp,, xp.+,, * *, xp(m+l). Since the values of Y at these points are 
unknown, we have a system of p simultaneous equations 

mnp P 

(2) Yn = g(xn) + h Ex wni,(xnx in Yi) + h WniK(Xn, Xmp+i, Ymp+i), 
i=O i=O 

for n = mp + 1, mp + 2, ***, p(m + 1), where wn i and wni depend on the quadra- 
ture rule used. For sufficiently small h the system (2) has a unique solution which 
can be determined by iteration (or directly, if the system is linear). Thus, a "block" 
of p values of Y is obtained simultaneously. 

For example, using p = 2 the integration over [0, X2m] can be accomplished by 
Simpson's rule, and the integral over [X2m, xn] by using a quadratic interpolation of 
the integrand at the points X2m, X2m+1, X2m+2. Then (2) becomes 

Y2m+l = g(X2m+1) + 
h 

[K(X2m+l, XO, YO) + 4K(X2m+1, Xi, Y1) + 

*.. + K(X2m+l, X2my Y2m)] 

(3) + 5h K(X2m+l X2m, Y2m) + 2h K(X2m+l 
X2m+1, 

Y2m+l) 

yhK KK(X2m++ KX2m+2, Y2m+2) X 

Y2m+2 = q(X2m+2) + 
h 

[K(X2m+21 X0, YO) + 4K(X2m+2, Xl, Y1) + 

(4) * + 4K(X2m+2, X2m+l, Y2m+1) 

+ K(X2m+21 X2m+21 Y2m+2)]. 

Equations (3) and (4) constitute a valid method for the numerical solution of Eq. 
(1). However, it is not completely general since it requires the use of the kernel 
outside the region 0 ? t < x ? a. If the kernel does not exist outside this region or 
if it is ill-behaved near the edges, numerical difficulties may arise. This objection 
can be overcome by the following modification. We write 
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I2m+ 1 h 
1xom+1 K(X2m+l, t, y (t))dt - K(X2m+l, X2m, Y2m) 

+ 2h K(X2m+1l X2m+1/2, Y2m+1/2) + 
h 

K(X2m+1l X2m+1, Y2m+1) . 

Now Y2m+1/2 is not known, but may be estimated by quadratic interpolation 

Y2m+1/2 - 3 Y2m + 3 Y2m+ - y2m+2 

The resulting equations then are 

Y2m+1 = 9 (X2m+1) 

+ h [K(X2m+l, XO, Yo) + 4K(X2m+1, Xi, Y1) + ... + K(X2m+1, X2m, Y2m)] 

h 2h3 
(5) + 6 K(X2m+1, X2m, Y2m) + 3 K(X2m+1, X2m+l/2, 8 Y2m 

+ 34 Y2m+ - 8 Y2m+2 ) 

+ h K(X2m+1l X2m+l Y2m+1) , 

(6) Y2m+2 = g(X2m+2) + 
h 

[K(X2m+2, XO, YO) + 4K(X2m+2, X1, Y1) 

+ ... + K (X2m+2, X2m?+2 Y2m+2)]. 

3. Theoretical Results. 
Definition 1. Let Yo(h), Y1(h) ... denote the approximation obtained by a given 

method using step-size h. Then a method is said to be convergent if and only if 

I Yj(h) -y(xi) --> 0, for i = 0, 1, 2, ** *, N 
ash -> 0, N -> oo, such that Nh = a. 

Definition 2. A method is said to be of order q if q is the largest number for which 
there exists a finite constant C such that 

JYi(h) - y(x ) ? Ch q, i = 0, 1, * * I N. 

for all h > 0. 
Our aim is to show that method (5), (6) converges and to establish its order of 

convergence. We need the following lemma. 
LEMMA. If 

n-1 

jnj _ A .|jj +B, A >0, B>0, 
i=O 

then |(nj < B(1 + A)n. 
The proof follows immediately by induction. As a corollary we have that, if 

A = hK and x = nh, then 
Kx 

(7) Jn4 _ Be 
The main result then follows immediately. 

THEOREM. The approximation method given by Eqs. (5) and (6) is convergent and 
its order of convergence is four. 
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Proof. Let Ei = y(xi) - Yi. Then, using Eqs. (1), (5), (6) and the Lipschitz 
condition, we can find a constant C such that 

2m 

IE2m+11 < hC Z Hfil + hCjE2m+il + hCjE2m+21 + JR2m+li, 
i= 

2m 

| 2m+21 ? hC Z |Ejil + hC|jE2m+ I + hCj| 2m+21 + JR2m+2| 
i=O0 

where the R's represent the quadrature errors involved in integrating K(x, t, y(t)) 
using the given quadrature rule. Setting 11 Eml1 = maxs-1,2 E2+ill and R = maxi|Ri| 
we have, from (7), 

I Emil ?< (1 - 2hC)'-R exp [Cxn/(1 - 2hC)]. 

For sufficiently smooth K and y, R = O(h4), thus 

Ji(mi = 0(h 4) 

and the theorem is proven. 

4. Numerical Examples. 
Example 1. 

y(x)=1 + x-cosx-f cos (x-t)y(t)dt. 

Solution. y(x) = x. 
The absolute values of Ei for various step-sizes are given in Table 1. 

TABLE 1 
x h=.2 h=.1 h=.05 
.2 5.80 X 10-8 3.21 X 10-8 1.94 X 10-9 
.4 1.98 X 10-1 1.16 X 10-7 7.17 X 10-9 
.6 4.11 X 10-1 2.40 X 10-v 1.50 X 10-8 
.8 6.40 X 10-1 3.98 X 10-v 2.45 X 10-8 

1.0 9.89 X 10-1 5.61 X 10-v 3.52 X 10-8 
1.2 1.19 X 10-s 7.39 X 10-7 4.63 X 10-8 
1.4 1.61 X 10-s 9.16 X 10-7 5.75 X 10-8 
1.6 1.74 X 10-s 1.09 X 10-1 6.85 X 10-8 
1.8 2.20 X 10-s 1.25 X 10-1 7.84 X 10-8 
2.0 2.21 X 10-s 1.39 X 10-1 8.77 X 10-8 

Example 2 (From [1]). 

y(x) = 3 + 2x - [2(x - t) + 3]y(t)dt. 

Solution. y(x) = 4e-2x - e-x. 

The errors are shown in Table 2. 

5. Concluding Remarks. The method which we have established here con- 
stitutes a convenient algorithm for solving nonlinear Volterra equations of the 
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second kind which is computationally efficient and of high accuracy. While only 
one method was explicitly given, it is clear that the approach can be generalized 
for arbitrary order. A general statement of the convergence theorem can be found 
in [31. Also, the method can easily be extended to a system of simultaneous Volterra 
equations. 

TABLE 2 
x h=.2 h=.1 h=.05 
.2 3.26 X 10-s 7.08 X 10-5 4.38 X 10-1 
.4 1.54 X 10-3 9.26 X 10-s 5.73 X 10-6 
.6 4.52 X 10-4 9.04 X 10-s 5.60 X 10-1 
.8 1.30 X 10-4 7.82 X 10-s 4.83 X 10-6 

1.0 1.94 X 10-4 6.29 X 10-s 3.89 X 10-1 
1.2 8.05 X 10-4 4.82 X 10-s 2.98 X 10-1 
1.4 2.26 X 10-4 3.55 X 10-s 2.20 X 10-6 
1.6 4.24 X 10-4 2.53 X 10-5 1.56 X 10-1 
1.8 1.38 X 10-4 1.74 X 10-5 1.08 X 10-1 
2.0 1.94 X 10-4 1.15 X 10-5 7.12 X 10-7 

6. Acknowledgments. The writer wishes to thank Professor Ben Noble for his 
guidance and encouragement in this work. The numerical computations were done 
on the computing facilities of the University of Wisconsin Computing Center with 
funds provided by the Graduate Research Committee of the University of Wisconsin 
and the Wisconsin Alumni Research Foundation. 

University of Wisconsin Computing Center 
Madison, Wisconsin 53706 

1. J. T. DAY, "A starting method for solving nonlinear Volterra integral equations," Math. 
Comp., v. 21, 1967, pp. 179-188. MR 36 #6168. 

2. L. Fox & E. T. GOODWIN, "The numerical solution of non-singular linear integral equa- 
tions," Philos. Trans. Roy. Soc. London Ser. A., v. 245, 1953, pp. 501-534. MR 14, 908. 

3. P. LINZ, The Numerical Solution of Volterra Integral Equations by Finite Difference Methods, 
MRC Technical Summary Report #825, Mathematics Research Center, University of Wisconsin, 
Madison, Wis., 1967. 

4. D. F. MAYERS, Numerical Solution of Ordinary and Partial Differential Equations, Perga- 
mon Press, Oxford and Addison-Wesley, Reading, Mass., 1962, Chapters 13, 14. MR 26 # 4488. 

5. B. NOBLE, "The numerical solution of nonlinear integral equations and related topics," in 
Nonlinear Integral Equations, edited by P. M. Anselone, University of Wisconsin Press, Madison, 
Wis., 1963. MR 28 #.4321. 

6. P. POUZET, Etude en Vue de leur Traitment Numerique d'lquations Integrales et Int4gro- 
Diffirentielles du Type de Volterra pour des Problemes de Conditions Initiales, Thesis, University of 

7. P. POUZET, "Methode d'integration numerique des equations integrates et integro-diff6ren- 
tielles du type de Volterra de seconde espece. Formules de Runge-Kutta," Symposium on the 
Numerical Treatment of Ordinary Differential Equations, Integral and Integro-differential Equations, 
(Rome, 1960), Birkhiuser Verlag, Basel, 1960, pp. 362-368. MR 23 #B601. 

8. F. G. TRICOMI, Integral Equations, Pure and Appl. Math., vol. V, Interscience, New York, 
1957. MR 20 #1177. 

9. A. YOUNG, "The application of approximate product-integration to the numerical solution 
of integral equations," Proc. Roy. Soc. London Ser. A, v. 224, 1954, pp. 561-573. MR 16, 179. 


	Cit r104_c113: 
	Cit r111_c120: 


