
Quadrature Methods 
Based on Complex Function Values* 

By J. N. Lyness 

Abstract. A method of numerical quadrature over a finite interval is described. This 
method is applicable if the integrand is an analytic function, regular within the circle 
in the complex plane having the integration interval as diameter. The method is iterative 
in nature and relies on function values at equally spaced points on this circle. It is flexible 
enough to take into account certain simple nonanalytic singularities in the integrand lying 
on the interval of integration or its extension. 

Numerical examples are given which illustrate various advantages and disadvantages 
of this method when compared with standard quadrature procedures. 

1. Introduction. In many scientific and engineering problems, the mathematical 
equations which have to be solved are so difficult or involved that no simple analyt- 
ical solution is known. In these cases, a familiar approximation consists of replacing 
some function f(x) by the first several terms of its Taylor expansion about some 
convenient point xo. This type of approximation, carried out analytically, may lead 
to an approximation to the solution of the problem, which if not exact, hopefully 
retains the physical features of interest. Occasionally the error incurred by making 
such an approximation can be bounded or estimated approximately. 

In the procedures of computational mathematics, this approach to a problem is 
not common. A truncated Taylor series may, naturally, be used in order to con- 
struct the numerical procedure. But the procedure itself is expressed in terms of 
other quantities, such as function values at neighboring points. It is very uncommon 
to make explicit use of a Taylor expansion. There are usually several sound reasons 
for avoiding this, but in the absence of any other reason there is the well-known 
phenomenon that the numerical calculation of derivatives in terms of neighboring 
function values is a process subject to large and unpredictable error due to the 
amplification of round-off error. 

However, if the function in question is an analytic function and there exists a 
Taylor series 

(1.1) f(xo + z) = ao + a1z + a2z2 + *, z-xol < R, 

whose circle of convergence includes the region of interest for the particular problem, 
this specific difficulty may be circumvented. This is accomplished by taking ad- 
vantage of Cauchy's expression for the derivative 

f 
(S) 

(X) 
_1 f (Z) 

(1.2) a. = 2 dz 
(1.2) s ~~~~~~S! 27rif (z _ X0) 8+1 

and evaluating a contour integral numerically. In this way the conventional pro- 
cedure for numerical differentiation, which is based on high-order differences, is 
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replaced by one based on techniques of numerical quadrature. There is, of course, 
round-off error involved, but this is predictable and may be controlled by means of 
choosing a suitable contour C. However, the process does require function values 
in the complex plane and is obviously restricted to analytic functions. 

The idea of basing a numerical quadrature rule for a real-valued function on 
function values f(zi) where zi is complex is not new. In 1950 Birkhoff and Young 
[3] published a 'five point formula' 

(1.3) f f(z)dz- 1c {24f(0) + 4(f(1) + f(-1)) - (f(i) + f(-i))} 

which is exact when f(x) is a polynomial of degree 5 or less. Later on McNamee [9] 
considered methods of calculating certain types of infinite integrals by carrying out 
numerical contour integration of related functions on different contours. 

In this paper we discuss numerical procedures for various quadrature problems. 
These are based on the prior calculation of Taylor coefficients using complex func- 
tion values (described in Section 2) and consequent term by term integration of the 
Taylor series. In Section 3 we deal specifically with the definite integral 

(1.4) f f(x)dx = 2r E ra, 
-r s=O; s even S + 

An iterative quadrature scheme is presented and is compared with standard 
quadrature methods including the Gauss-Legendre formulas, Romberg integration 
and the Adaptive Simpson Technique. In subsequent sections we discuss more 
briefly the application to indefinite quadrature; for example 

fBi 

(1.5) f f(x)dx = F (B ) -F (-r) 

where the value of the integral is required for several values of B e. We also deal with 
quadratures whose integrand has a singularity of the type (x - xO)n lnfx - xol or 
Ix - xola either within the interval of integration or close to it on the real axis. In 
this type of application the method shows up extremely well. Finally in Section 6 
we mention briefly a method of interval subdivision which has to be applied if the 
integrand has singularities in the complex plane close to the interval of integration. 

We should perhaps emphasize that, although complex function values are used, 
we are interested particularly in the quadrature of a function f(x) which is real on 
the real line. The use of complex variables is merely a tool which ultimately produces 
a real result. However, the methods given here can be applied to complex integrands 
directly. 

2. The Taylor Coefficients. In this section we deal exclusively with a method, 
based on function evaluation, for the construction of a set of approximations 
a,(-) to the Taylor coefficients a, of an analytic function f(z). This has a Taylor 
series expansion about the origin 

(2.1) f(z) = ao + aiz + a2z2 + Iz! < R, 

the radius of convergence being Rf (or being infinite). In this process we calculate 
approximations to r8a, which we term 'normalized Taylor coefficients.' Here 
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(2.2) 0 < r < RG < RG, 

R being an intermediate radius of which we occasionally make use. It is convenient 
to refer to the circle whose center is the origin and whose radius is r, R, or Rc, by 
Cry CR, or CRC respectively. This section is conveniently divided into three parts. In 
the first part we derive the relevant formula, in the second we describe a convenient 
iteration process and in the third we discuss the convergence, the stopping criterion 
for the iteration process and the effect and control of round-off error. 

2(i). Formulas for the Taylor Coefficients. The results of this subsection are well 
known. Useful discussion of various aspects of these results occur, for example in 
Krylov [13, p. 74] and in Davis and Rabinowitz [12, pp. 53-58]. The very brief 
derivation is given here in order to establish the notation and to include appropriate 
background material for subsequent results. 

If we apply Cauchy's theorem for the derivative, we find 

(2.3) r8 a,= r ) 2= f f dz Jo g8(t)dt, s = 1, 2, 

where we have written 

(2.4) gs (t) = e-2ritstf(re2rit) 

This function is a complex-valued analytic function of real variable t and is periodic 
having period 1. A Fourier expansion may be obtained by substituting (2.1) into 
(2.4) to give 

00 

(2.5) g (t) E e2lr ik t (rk+sak+,) 
k=O 

Consequently gs(t) has Fourier coefficients which correspond to the normalized 
Taylor coefficients of f(s) (z). 

Since g,(t) has a period equal to the interval of integration, a convenient quad- 
rature rule to use for the evaluation of the integral in (2.3) is the trapezoidal rule 
R[m l1g, defined by 

(2.6) Rrlg 
{ 0J=9i)+ 2 (g(0) +g M) 

The resulting approximation to rsas is denoted by rsas(rn), defined by 

(2.7) r as(m) = R[m l]9, 

This approximation requires m function values for its evaluation. 
It is well known that an m-interval trapezoidal rule integrates exactly any 

trigonometric polynomial of degree m - 1 or less. In particular 

(2.8) f[rn l] (ea 2ikx) = 0 k/mj # integer or zero, 

(2.9) R[m l](e2 ikx) = 1 k/ml = integer or zero . 

Applying this result separately to each term in (2.5) we find 

(2.10) rsaj(m) = R[mfl]9 = r8a, + rs+M as+m + r +2mas+2m + ... m > s, 
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and this series is convergent since the Taylor series (2.1) has a radius of convergence 
which exceeds r. 

Equation (2.10) gives us the polynomial degree of the approximation rsa8(m) to 
the exact value rsa8. If f(z) is a polynomial of degree s + m - 1, the Taylor co- 
efficients a, (i > s + m) are identically zero and (2.10) reduces to the exact equality 

(2.11) rsa (m) = rsa. 

Consequently we may state 
THEOREM 2.12. The set of approximations 

(2-12) r'a, - r'a, m Z ee2 is/mf(re2 3/m) s = 0,1, 2, * m - 1 

are exact if f(z) is a polynomial of degree m - 1 or less. 
We note that this set of m quantities are simple combinations of m function 

values f(z,) where zi are equally spaced on the circle Cr: jZj = r and m constants 
e-2rii/m (j = 1, ... , m) equally spaced on the unit circle. Consequently the calcula- 
tion of this set of approximation requires m calls to a complex exponential routine 
(perhaps replaced by a data statement). Once this is accomplished, these m numbers 
act both as abscissas for m calls to the function routine, and in a different order as 
weights. The coding is mainly a matter of bookkeeping-to see that the correct 
coefficient is attached to the appropriate function value in the calculation of a 
particular Taylor coefficient. 

2(ii). An Iteration Procedure. The formulas (2.12) given above were derived by 
applying the endpoint trapezoidal rule R [m 1g given by (2.6) to the contour integral 
expression (2.3) for the sth derivative. One may obtain a large number of similar 
formulas simply by applying different quadrature rules to the same integral. One 
such rule is convenient from the point of view of describing an iterative procedure. 
This is the midpoint trapezoidal rule 

(2.13) R[m] g= E ( 2) 

The theory given in subsection 2(i) applies to this approximation almost unaltered. 
The only modifications required are phase factors + 1 or -1 multiplying individual 
terms in some of the expansions. The result is a theorem corresponding to Theorem 
2.12, namely 

THEOREM 2.14. The set of approximations 

2 r8a ~ rsbs(m) = 1 E2 e27i(2j-1)s/2mf(re2 i(2j-1)/2m) 
(2.14) M j=j 

are exact if f(z) is a polynomial of degree m - 1 or less. 
This set of approximations is based on a different set of function values. In fact, 

by inspection it is apparent that the set required to calculate rsb,(m), together with 
the set required to calculate rea,(m) form together the set required to calculate 
rxa,(2m). This circumstance may be exploited to construct an iteration procedure. 

We note from (2.12) and (2.14) that 
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(2.15) rsa(M) r9sa(m) S = 0, 1, * * 2 m-1, 

(2.16) rsb(m) =-rsbs(m) , S = 0,1, * , m -1 

and that in general 

(2.17) R[2m,1J 2 {R[m~lg + R[m'O1g} 

These relations may be used to establish 

(2.18) rsa,(2m) = W{r~a(m) +rsb(m)} S=0,1, 2 m-1, 

(2.19) r = 2j {rsas(m) - rsb(m)}, s = 0,1, .*. m M 1, 
and these formulas may be used as the basis of the iteration procedure described 
here. This starts with the very poor approximation 

(2.20) ao(1)= f(r) 
and the first stage consists simply of the calculations 

(2.21) M= f(-r)I 

(2.22) a (2) = (ao(1) + bNO~) = 2 (f(r) + f(-r)) 

ra (2) 1 
1o(lb) ) 

1 = (f(r)- f(-r)) 

leaving us with the values of ao(2) and ral(2). The general stage starts with a set of 
normalized Taylor coefficients rsa8(m) (s = 0, 1, * * , m - 1) where m is a power of 
two. Using (2.14), which requires m function evaluations, we calculate the set 
rsb8(m) (s = 0,1, I m- 1). Then using (2.18) and (2.19) we calculate the set 
rsa8(2m) (s = 0,1, ..*, 2m-1). This completes this stage. It is worth noting that 
once the set rsb,(m) has been calculated the function evaluations required for this 
calculation are not required again. Also once the set rea (2m) has been calculated, the 
previous sets reaWm) and rsb,(m) are not required again. 

This iteration procedure has the property that each stage requires twice as many 
function evaluations as the previous stage. The effort in computer time required in 
one stage is slightly greater than the effort required in all the previous stages added 
together. Consequently if we fail to terminate the process when sufficient accuracy 
has been achieved, but carry out a single unnecessary iteration, the effort required 
for the whole calculation is doubled. (Incidentally the effect on the accuracy of the 
result is that the number of correct significant figures is also approximately doubled.) 
It is important to have available a criterion for gauging the accuracy at any stage, 
so that the iteration may be terminated appropriately. 

In the applications described in Section 3, only the even Taylor coefficients are 
required, and in other applications only the odd Taylor coefficients are required. 
Unless m = 1, the relations (2.18) and (2.19) indicate that a particular approxima- 
tion a8 (2m) s odd (even) depends only on previous approximations a8 (m), b,(m) s odd 
(even). Thus a nontrivial amount of calculation may be avoided by simply omitting 
the calculation of any odd (even) approximation a8 (m) s odd (even), except at the 
first stage. However, the same number of function evaluations are required to 
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obtain a particular accuracy, whether or not some of the Taylor coefficients are not 
needed. 

2(iii). Convergence of Iteration Process. The convergence of this process may be 
demonstrated by means of Cauchy's inequality for the nth derivative. This in- 
equality may be written in the form 

(2.23) 1rja 12 < I(R)p2, 

where R is the radius of CR and satisfies 

(2.24) r < R < RI 

and 

(2.25) p = r1R < 1 

and 

(2.26) I () If |R f(z) e2 d L f(e2it) ldt 

Equation (2.10) gives the exact error 
00 

(2.27) rsa. (M) - ra8 = Er +kmas+km 
k=1 

A bound on the magnitude of the error is obtained by replacing each term on the 
right of this expression by the bound given by (2.23). This gives 

(2.28) Ir8a (m) - r8a, I < ( p(R))m 2p 

(A slightly closer bound in which (1- p2-)-1/2 replaces (1 - pm)-' may be derived 
by other methods.) Since p < 1, it follows immediately that 

(2.29) LimI ra(m) - r8a, = 0. 

We turn now to the question of deciding when to terminate the iteration. This is 
a practical question and depends to some extent on the use to which the Taylor 
coefficients, once calculated, are to be put. 

It is pertinent to point out here that one of the quantities being calculated, 
namely ao, may be independently determined by a single function evaluation f(O). 
Thus 

(2.30) lao(m) - f(0)I < (I(R))1 12pm 
- 

E (m) 

1 - PtM 

moreover the corresponding bounds on the other normalized Taylor coefficients are 
stronger than this 

(2.31) ir~a,(m) - r8ao0 < Eo(M)p8 

A plausible, but nonrigorous, procedure is to terminate the calculation when 
lao(m) - f() < etl, some given tolerance level. 

It is dangerous to use this criterion without modification since it may happen by 
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chance that ao(m) is exceptionally close to f(O) for some value of m. To guard against 
this hazard, as a practical procedure, the following precaution has been used. 

After each stage in the iteration, we may note the value 

(2.32) b, = If (O) - ao(2n)I 

and we may extrapolate to form estimates of b., based on values of bi, i < n, assum- 
ing a functional relationship 

(2.33) bn= KA 

For example 

(2.34) bn(1 2) = bn1/b2 
is the value of bn we should expect if (2.33) were satisfied by all b,. Similarly 

(2.35) bn(1'3) = (bn_ /bn-3)1/3 

In a code written by the author, the convergence criterion was based on 

(2.36) Eest 
= max (bn, min (bn-1, bn 3 ))Q 

and convergence was allowed if Ef() < Etol. In this way some additional indication 
that the general error was in fact less than Etol was required. This choice is quite 
heuristic and the user might apply much more stringent criteria. 

This convergence criterion cannot be used if f(z) is an odd function of z. In this 
case 

(2.37) f(z) = -f(-z) 

and ao(i) is zero for all even m. Here a possible procedure is to recast the problem 
so that the function f(z)/z is being treated, or to base the convergence upon the 
values Irai(m) - rf'(O)I. In either case the value of f'(O) has to be calculated 
analytically. In the principal application (Section 3) this problem does not arise. 

Finally the effect of round-off error should be estimated at each stage. A rela- 
tively coarse estimate is 

(2.38) E) = KfEm max If(zi), 

where em is the machine accuracy parameter. Kf is a factor greater than 1 provided 
by the user. This factor takes into account a 'safety margin' and possible inac- 
curacies in the function subroutine. As more and more function evaluations take 
place, EKY) is updated. If at any stage 

(in) 

(2.39) Etol < Er-o 

the user cannot expect to attain the required accuracy Etol because of round-off 
error. Also, if at any stage 

(2.40) Eest < Ero 

this estimate is not reliable and has to be replaced by 

(2.41) iest = max (Eest, Er)- 
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Further calculation is then of very doubtful value. An encouraging aspect of this 
round-off error calculation is that in general e(0) becomes close to its maximum for a 
small value of m. A calculation which could, in the absence of round-off error, re- 
quire 64 function evaluations, might be abandoned at a relatively early stage, per- 
haps after only the first four or eight function evaluations, because of round-off 
error. This early recognition of the presence of round-off error is a most encouraging 
feature of this type of procedure. 

3. Iterative Quadrature Scheme. In this section we discuss an application of the 
calculation of Taylor coefficients to the evaluation of 

(3.1) If = f f(x)dx = 2r rEv + 
8=;8even S +1 

where f(z) is an analytic function having a Taylor expansion 

(3.2) f(z) = ao + aiz + a2z2 + *. I * lz < Re 

whose radius of convergence Re exceeds r. As described in the previous section, we 
may at a cost of m function evaluations calculate approximations rsa8(m) to the 
normalized Taylor coefficients r8a8 using Eq. (2.12). These approximations may be 
used in turn to calculate an approximation 

m-1 i 8 (im) 
(3.3) Q(m)f = 2r E r a 

s=O; 8 even S+ 1 

to the exact integral If given by (3.1). If we use the iteration process of the previous 
section, the set of Taylor coefficient approximations ra%(M), s = 0,1, , m - 1 is 
calculated for m = 1, 2, 4, 8, - -. This procedure can be employed to calculate 
successive approximations Q(m)f, m = 1, 2, 4, 8, * to the exact integral If. The 
discretization error If - Q(m)f may be written 

fm-i r8 r 8 (m) A 
(3.4) If - Q(m)f = 2rj E A + 1 + E as 

8=0; 8 even + 1 s=m; s even8 + 

If f(z) is a polynomial of degree m - 1 or less, it follows that a8 = 0 (s > m) and, 
from Theorem 2.12, r8a8- r9a8(m) = 0 (s < m). Thus each term on the right-hand 
side of (3.4) is separately zero. Consequently 

THEOREM 3.5. The approximation 

m-1 rs a8(m) (3.5) If , Q(m)f = 2r E r as 
s=O; 8 even + 1 

is exact if f(z) is a polynomial of degree m - 1 or less. 
We now proceed to determine an error bound corresponding to (2.28). Using 

(2.10) we may express (3.4) in the form 

(3.6) If- Q(m)f = 2r A r au{ + 1 -s (mod + 1} 

where s (mod m) is as usual the smallest nonnegative integer of the set s, s - m, 
s - 2m, . . .. If we use the generally rather generous inequality 
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(3-7) 1- 
_ 1 

<_ s+ 1 s(modm)+ 1<l 

and Cauchy's inequality (2.23), we find 

(3.8) jIf- Q(m)fl <2r(I(R)I)12 m 
1-p2 

where as before 

(3.9) p =r1R < 1; R < Re 
and I(R) is given by (2.26). This establishes the convergence of the process, i.e. 

THEOREM 3.10. 

(3.10) Lim Q(m)f = If 
m- oo 

We mention here a trivial modification of the rule Q(m)f, by use of which the 
polynomial degree of approximation may be increased by 2 at the cost of one addi- 
tional function evaluation. One of the Taylor coefficients rsa8 has the exact value 

(3.11) r0ao = f(O) 
In the case s = 0, Eq. (2.10) has the form 

(3.12) rOa0(M) = f(0) + rnam + r 2a2m + . 

Consequently if we evaluate f(O) in addition to the m values of f(z) on the circle 
Cr: Izj = r, we may use this information to obtain an approximation to rmam, i.e., 

(3.13) r am a. rao(m) - f(AO) 
This approximation is of polynomial degree 2m - 1. Thus a modified rule Q(m)f 
which requires m + 1 function evaluations and is of polynomial degree m + 1 is 

f mn-2 j 
aC.m) r0 ao M) -f(0) 

(3.14) (m)f = 2r"f(0) + r + + r - 

j=2;j3even +l M m+ 

Moreover 

k3.15) -Q(f)f i Q(m)f= 2rm 
k3-15) ~ ~ ~ ~~ +1(f (O) - 

ao(m)). 
The five-point formula of Birkhoff and Young mentioned in the introduction 

(1.3) is in this notation Q (4)f. Other modifications of the same type are possible in 
cases in which even order derivatives at z = 0 are known. 

While this additional function evaluation f(O) may be used to increase marginally 
the degree of the approximation, it may also be used to good effect as a convergence 
criterion. If the accuracy required is Etol and if 

(3.16) f (0) - ao(m) I < Eto/2r 

the situation is that two different estimates of If, based on different quadrature 
rules Q(m)f and Q(m)f of different degree agree to within the required tolerance. 
Practical convergence criteria of this type are not uncommon in quadrature routines. 
However, as mentioned in subsection 2(iii) there is the chance that for a particular 
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value of m, the expression If(O) - ao(m) I may be very small or zero although in 
general practical convergence has not been attained. Consequently the practical 
convergence criterion should be modified along the lines suggested in subsection 
2(iii). 

The use of this criterion is made more plausible by the similarity of the error 
bounds 

(3.17) I if 
_ Q(m) Im < 2r(I(R))' m 

12p 

(3.18) 2rl f(0) - ao (M)< 
2r (I (R) )'l2p 
(1 -p2m) 

1/ 

We now give a comparison of the quadrature rule Q(m)f introduced here with 
the conventional n-point Gauss-Legendre rule Gn of degree 2n - 1. Only the rough- 
est approximation theory is sufficient to show that the Gauss-Legendre rules are 
much more accurate. It is convenient to compare Q(m)f with Gmi2f. We find 

(3.19) Q(m)f -if A 2fm(0) m rrm+l + O(rm+3) 
M! M + 

and 

(3.20) Gm/2f - If - (2m 
+ 

1)(m!)3 (?)rm+J + O(rm+l). 

The ratio of the coefficients of f(m) (0) may be estimated using Stirling's approxima- 
tion. This ratio is 2m. Thus the Gauss-Legendre formula requiring only m/2 points 
gives a result whose error is 2-m times the error obtained using the m-point formula 
Q(m)f given here. We should note that Q(m)f requires function evaluations at con- 
jugate points. Thus if f(x) is real Q(m)f requires essentially only m/2 - 1 complex 
evaluations and two real evaluations, whereas Gm/2f requires m/2 real evaluations. 

The conclusion that the rule given here, taken in isolation, is considerably in- 
ferior to the Gauss-Legendre rule is quite inescapable. This comparison is valid in 
the case in which the user is permitted a fixed amount of work (or time on a com- 
puter) and is asked to obtain as close an approximation as possible to the exact 
integral. Under these circumstances, the appropriate Gauss-Legendre formula is 
clearly more suitable. 

However, the usual problem is different. The user is permitted a fixed error et.l 

in his result and is asked to obtain an approximation to this accuracy. Under these 
circumstances an iterative process such as that described here has certain ad- 
vantages not enjoyed by the Gauss-Legendre formulas. The method suggested by 
Stroud [11] for using these formulas is to calculate successively G4f, G6f, G8f ... and 
to accept Gmf if JGmf - Gm_2fJ < et,,. This procedure is very wasteful on two 
separate counts. The first is that since G4f G6f, - - have no points in common, the 
majority of the work is not used in the final approximation at all. This feature is not 
common in quadrature routines. The second count is that in practice Gm-2f is an 
adequate approximation which is rejected simply because Gm4 is so inadequate that 

IGm_2f - G,_4 > Eto,. This feature is very common in quadrature routines. A very 
general aspect of the results of testing various routines is simply this. One may ask 
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for an accuracy etol. The routine gives a result claiming an accuracy Eest. Checking 
the exact result reveals that the actual accuracy attained is Eact. These various ac- 
curacies stand in ratios such as 

Etol. Eest- Eact = 1000 :100 : 1 

Of course it is gratifying to obtain an answer considerably more accurate than re- 
quired. But it is slightly mortifying to realize that this accuracy has been paid for 
by using perhaps twice the number of function evaluations necessary. 

The iterative method based on successive evaluations of Q (r)f, m = 1, 2, 4, 8 
using the convergence criterion (2.36) modified by (2.41) has neither of these un- 
desirable features. All the function evaluations are used in the final result. And one 
does not have to evaluate Q (2m)f simply to establish that Q (m)f is sufficiently ac- 
curate. In the author's view, it is because of this it is competitive with (but not 
necessarily better than) the Gauss-Legendre scheme described by Stroud. 

We close this section with an example, taken from Stroud [11]. By means of this 
example 

rr 
(3.21) x cos 3xdx= -2/9 . 

Stroud compares the Romberg integration method [2] with the method suggested 
by himself using the formulas G4, G6, G8, . In Table 1 we present some of the 
results of a wider comparison, using other quadrature schemes as well. 

TABLE 1 

Routine 

Etol R H ASM CQ** GS 

10- N 65 65 163 15C + 3R 28 
Eest 1.2 X 10-6 3.2 X 10-6 4.1 X 10 8 7.8 X 10-7 
(act 9.0 X 10 10 2.4 X 10-8 4.2 X 10 8 6.1 X 10-9 5 X 10-10 

10-7 N 129 129 451 15C + 3R 40 
Eest 8.1 X 10-10 4.8 X 10-8 4.1 X 10-8 3.1 X 10-10 
eact 9.0 X 10- 11 2.7 X 10-10 2.9 X 10 9 6.1 X 10-9 1.9 X 10-10 

10-9 N 129 129 1351 31C + 5R 40 
Eest 8.1 X 10-10 5.9 X 10-10 9.1 X 10O10* 3.1 X 10-10 
Eact 9.0 X 10-11 9.8 X 10-11 1.9 X 10-10 1.0 X 10-10 1.9 X 10-10 

The machine used has a machine accuracy parameter Em = 0.75 X 10-"; Kf = 4.0. 
* This is actually an estimate, given by the routine of the round-off level. Intermediate output 

indicated that, without this precaution fest = 3.2 X 10-1o, an estimate contaminated by round-off 
error. 

** The notation NiC + N2R stands for N1 function evaluations with complex argument and 
N2 function evaluations with real argument. 

The results obtained using several standard quadrature routines are listed. 
R . Romberg Integration [2], [1]. 
H . Romberg Integration as adapted by Havie [6]. 
ASM . Adaptive Simpson [7] using Modification [8]. 
GS . The Gauss Legendre Rules following a method suggested by Stroud [11]. 
CQ . Complex Quadrature Scheme described in this paper. 
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An interesting feature of this example is the effect of round-off error. The 
machine accuracy parameter here is 

(3.22) Em = 0.75 X 1011 

By inspection one sees that (taking Kf = 4) the effective round-off level for routines 
using only real function evaluations is 

(3.23) Er.o = 47em X max I f(x)I = 2.0 X 101 

In fact, none of these quadrature routines contained any round-off error failure 
warning and if a lower value of Etol is required sometimes a very large amount of 
work (to the physical limits of the routine) is carried out. The complex quadrature 
routine becomes aware of trouble of this nature at an early stage. Since the maxi- 
mum of If(z) I within any region of the complex plane occurs on the boundary, the 
relevant level is higher. In fact 

(3.24) Er.o = 4rEm X max f (z) = 1.0 X lo. 
Iz-lr/2 1==r/2 

In the case in which Etl = 10-1, the routine found, after one complex and three real 
function evaluations, 

(3.25) E r2o= 4rEm X max (r + 2eiji2) =0.9X10 

Consequently, at this relatively early stage, this contour was abandoned. The 
integration interval was divided into two equal sections and each section was 
successfully treated separately. In this way the total number of function evaluations 
used was 31C + 5R, and only one of these evaluations was not used in the final 
result. 

The early recognition of the presence and magnitude of round-off error is a de- 
sirable feature of this method. 

In a series of other examples, the author has found that in general the number 
of complex function evaluations required to obtain a particular accuracy is less than 
the number of real function evaluations required by the Gauss-Legendre scheme 
used here, but greater than half this number. Almost invariably the number of 
function evaluations required by the other routines is much larger. 

To sum up, the disadvantages of the suggested method include the restriction 
to analytic functions with no close singularities and the necessity of using complex 
function evaluations. Moreover the results are marginally inferior to a Gauss- 
Legendre scheme, but significantly superior to other standard schemes. An addi- 
tional by-product is a set of Taylor coefficients which represent the function within 
a circle having the interval of integration as diameter. 

4. Quadrature with Variable Limits. The method described in the previous 
section may be adapted without difficulty to the case in which several integrals 
having the same integrand but different limits are required. That is to say we require 
approximations to 

(B 

(4.1) I[A, B] f (x) =Jf (x) dx = F (B) - F(A) 
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for a set of values of B and A. So long as we may choose a circle of radius r in which 
f(z) is analytic and which contains all the required values of A and B, i.e., 

(4.2) -r<A <B<r 

it follows that 
00 8 + 

(4.3) F~x)= rxa80 
( X 

This may be approximated by 
rn-i 8 (in) /~ 8 

(44.) F[ml (x) = x ra8 ) 

and, following the same reasoning as in the previous section, we have 

(4.5) IF(x) - Ffml(x)l < x(I(R))1"2 m 
1- x1R ? 

where as before 

(4.6) p=r/R < I 

and I(R) is given by (2.26). 
Such a method might be used to tabulate I[-r, B%] at equal intervals 

Bi = -r+ir/n, i = 1,2, *,2n. 

A more interesting application where the method appears to advantage is in a 
problem involving interpolation with a function defined as an integral. For example, 
if one wishes to solve for y the equation 

f f(x)dx = bg(y) 

where there is a solution satisfying 0 < y < r, the accuracy to which the integral is 
required depends on both the accuracy to which the solution y is required and the 
behavior of f(x) in the neighbourhood of x = y. In this case one would naturally use 
the Lagrange scheme or the Newton-Raphson scheme to look for the zero of an 
approximate function 

aE[m](y) = F'm](y) - F[im](r) - bg(y) 

using initially a relatively small value of m. Approximations to O [Im] '(y) and [Im] (y) 
if required may be based on the same set of Taylor coefficients. Since a reliable error 
estimate for the difference F[m](y) - F(y) is available it is quite a simple matter 
to construct a scheme by which if necessary the value of m is raised to its proper level 
only towards the end of the calculation when the required accuracy in F [ml (y) is, 
more completely known. 

5. Quadratures with Weighting Functions xnln IxI and Ixl a. A very convenient 
application of the above theory is the calculation of integrals of the form 

(B 

(5.1) ~I[A, B] (w (x) f (x) ) = J (x) f (x)dx = F (B) - F(A ) 
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Here f(x) is as usual an analytic function whose radius of convergence Rf exceeds 
r and 

(5.2) -r < A < B < r. 

The function w(x) on the other hand need not be analytic, but the indefinite 
integrals 

(5.3) f w(y)ydy = V8(x) 

should have a simple form. We consider here only the examples 

(5.4) w(x) = 1$x 

(5.5) w(x) = x In jxj 

N aturally if the singularity at x = 0 lies within the interval of integration, we have 
to restrict a or n so that the integral exists, i.e. 

(5.6) a > -1, (AB < O), 

(5.7) n > O (AB < 0). 

In general, it is convenient to express F(x) in the form 

(5.8) F (x) = d(X) E: Cs(r8a8)(?) 

where 

W(X) = it'l C8 =11(s + a + 1, s -a - 1 

(5-9) d(Z) =xBxla , s 5z -af- 

d(x)Cs =xl In jx!, s =--1, 

W(X) =~j !Iln IXl ; C8 = In jxj 
_ 1z 

(5.10) 
8 + n + 1 (s + n + 1)2 s n 

d(x) = xjxV2l s nx}-n,-s1 -- 

d (x) C8 =X 1X|n 2 {n XI } 2, s = -n -1 

The distinction between d(x) and C. is arbitrary here. The above choice is con- 
venient for coding the problem except in the particular case s = - a -1 or s = 

-n - 1 which has to be dealt with specially in an automatic code. 
An approximation to (5.8), based on m function values on the circle Izj =r and 

the calculation of approximations rsa8(m), s = 0, 1, **, m - 1 to the Taylor co- 
efficients described in Section 2, is 

m_1 \ 
(5.11)ing recisely theF'met(x) = dS(x) __ we fn th dfenc 

Following precisely the method of Section 3, we find the difference 
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(5.12) F(x) - F'm-(x) = d(x) EmrsasCs() -rCs(mod m)( )( ) 

and the magnitude is bounded by 

(5.13) 1F(x) - F[m](x)I < d(x)e(I(R))iI2pm/(l - p) 

where I(R) and p have their usual meanings and e is a convenient constant satisfying 

(5.14) e > sup - CS(mod m)(7) } 

In the cases in which the singularity is integrable, convenient values of e are 

(5.15) e=1/(a + 1), a > -1, 

(5.16) e= ln xI? 1 - n > 0. n +1 (n +1)2'1 

Cases in which these methods appear to advantage include the problem of 
quadrature close to an unintegrable singularity. It is convenient to discuss this by 
means of an example. We consider the numerical evaluation of 

f1/2 1 
(5.17) . 2 dx = F(112)-F(A) , A > 0. Asin 7XX 

Here the exact result is known to be 

(5.18) F(x) = 1/r tan rx 

and the function 1/sin27rx has a pole of order 2 at the origin. We are interested in 
obtaining results for various values of A some of which are relatively small, the 
smallest being Amin. We require a preset accuracy Etol. 

We write the integral in the form 

(5.19) I[A, 1/2](f()X-2) = f() dx 2 

where 
2 oo 
2 (5.20) f(z)= 2 = Zaszs, lz!< 1 

sin 7rZ s=O 

is analytic within the circle _zI = 2. In order to use the convergence criterion, we 
have to calculate f(0) analytically 

z2 
f(0) = lim .2 - 

z-o0 sin 7rz 7r 
2 

The exact formula is 

(5.21) F(A) = - -i -ao + (air) A n Al + E r (__) } 

and the approximation based on m function values is 
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[in] ~1 {( ))A rn-is Cm) (5.22) F (A) = - A -ao + (ral ) -In JAI + E A r \r/JS 

where r = 2. The accuracy to which the Taylor coefficients are required to give an 
accuracy of Etl/2 for F [m] (A) is estimated as Etl/2A. Thus if Amin is very close to 
zero, excessive accuracy may be required for these coefficients. In Table 2 we present 
a selection of the results of an automatic code written to evaluate this integral. The 
accuracy in l[Ammi, 1/2] w(x)f(x) as estimated by the routine and the actual accuracy 
attained are given, together with the parameter m. The number m is not in this case 
the actual number of function evaluations. In general if f(x) is real, only m/2 - 1 
complex function evaluations and three real function evaluations are required. In 
this particular example (which is exceptional) the fact that f(z) is even in z may be 
exploited to reduce this number further to m/4 complex and two real. Based on the 
same set of function evaluations approximations to I[A, f]w(x)f(x) for values of 
A between Amin and ' were also obtained; these results, not given here, all gave more 
accurate results and correspondingly closer estimates of their accuracy. 

This example is interesting because it was used by Eisner [4] to illustrate a 
method for integrating near a pole. Subsequently it became the subject of cor- 
respondence, Squire [10] suggesting that a classical method is perhaps more suitable, 
and Eisner [5] remaining unconvinced. Some of the results obtained by Eisner and 
by Squire are included in the table. A comparison between either of these schemes 
and the approach suggested here indicates the sort of advantages which accrue as a 
result of accepting the initial inconvenience of allowing complex function values. 

In the method presented here the user asks for a particular accuracy Etl and the 
routine provides a result with an accuracy estimate Eest. If subsequently a more 
accurate result is required the calculation may be taken up at the point at which it 
was discontinued. However, if higher accuracy is not attainable because of round- 
off error, this is indicated. In fact the routine indicates its estimate of the round-off 
error limit in any case. 

Standard methods could be quite easily modified to do the same thing, but only 
at a significant cost in terms of function evaluations. 

A more interesting difference concerns the actual function values used. It ap- 
pears that if an integration near a singularity is to be effected and function values 
are restricted to the real line, then some at least of these function values are required 
close to the singularity. Thus Eisner's method relies on function evaluations of 
1/sin27rx at x = Amin, 2Amin .*. and Squire's approach requires function evaluations 
of 

(sin2 7rx 7r 2X2) 

at values of x some of which are close to Amin. Since Amin is small, care has to be 
taken to avoid errors of a numerical nature in any of these critical function evalua- 
tions. On the other hand, the method given here requires function evaluations of 
z2/sin27rz on the circle IzI = 2 where there are no difficulties of that type. It does 
require also the value f(0) in order to apply the convergence criterion. (Eisner's 
method does not require this and Squire's method requires both f(0) and f'(0).) The 
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large value of the integral comes about, not as a consequence of large function 
values, but because of the overall scaling factor 1/Amin in (5.22). 

The table indicates that using m = 64, in this exceptional case 16 complex 
function evaluations and 2 real function evaluations, a machine accuracy result is 
obtained however close to the singularity one might wish to integrate. 

We close this section with the remark that Gaussian methods, specially de- 
signed for the particular singularity in question, might well be superior to the 
method described here, the comparison possibly being of the same nature as in the 
quadrature described in Section 3. However, to the author's knowledge Gaussian 
methods for functions with singularities outside the range of integration are not at 
present readily available. 

TABLE 2 

Amin B Etol Eest eact m N I Eact.rel 

1/30 0.5 10-2 2.3 X 10-3 1.3 X 10-3 16 3.0 4.3 X 10-i 
1-5 1.0 X 10-7 4.1 X 10-8 32 1.3 X 10-8 
10-8 6.0 X 10-10* 2.3 X 10-10 64 7.6 X 10- 

Squire [10] 7.3 X 10-5 30 
Eisner [4] 2 X 10-5 30 

1/240 0.5 10-2 7.6 X 10-7 3.4 X 10-7 32 24.3 1.4 X 10-8 
10-5 7.6 X 10-7 3.4 X 10-7 32 1.4 X 10-8 
10-8 4.5 X 10-9* 1.3 X 10-s 64 5.7 X 10-1 

Squire [10] 9.8 X 10-6 240 

10- 0.5 108 1.9 X 106* 2.3 X 107 64 1.01 X 104 2.3 X 1011 
10-8 0.5 10-8 1.9 X 10-3* 4.9 X 10-4 64 1.01 X 107 4.8 X 10-11 

* This result is an estimate based on round-off level; em = 0.75 X 10-1"; Kf = 10. 
The meanings of columns 1-6 are explained in the text. 
N is number of function values. 
I is the true I[Amin, B] cosec2 7rX. 

fact.rel is the actual relative error of the result. 
All the results here (other than those due to Eisner and Squire) are obtained on the basis of the 
same 16C + 2R function values z2/sin2 7rZ. 

6. Subdivision of Interval. One of the important aspects of the method just 
described is that it can be used with confidence only if the function f(z) has no singu- 
larities within the circle CrIzI = r. If there are singularities outside this circle, but 
close to it, the method works but inefficiently. If there are singularities within the 
circle an alarming feature of this method is that in general it converges, but to an 
incorrect answer. A saving grace is that in this case ao(m) also in general converges 
to some value other than f(0) and so there would be some warning about such a 
failure. 

While in general it is an easy matter to locate the singularities of an analytic 
function, circumstances may arise in which one knows the function is analytic, but 
does not know the locations of the singularities. An example might be that f(z) is the 
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lowest eigenvalue of an equation which is analytic and has z as a parameter. In 
such cases the user is warned to proceed with extreme caution. 

If the locations of the singularities are known, and some do lie within the circle 
jzj = r, the method described here can be used only if the interval of integration is 
first subdivided, each subinterval having the property that the circle of which it is a 
diameter contains no singularities. At first sight this might appear to be a major 
defect of this method, since such a subdivision is not required by standard quadra- 
ture schemes. However, it is a matter of experience that while under these circum- 
stances such schemes may be used directly, it is as a rule more efficient to subdivide 
the interval first in any case. Thus the defect is only minor in the sense that what is 
expedient in general is mandatory here. 

The results of an investigation into the appropriate subdivision method are 
given here. This investigation is semiheuristic in nature but supported by empirical 
results. 

The singularities of f(z) lie at al, a2, *, k. The interval [-r, r] is divided into 
n intervals by 

-r = do < dl < . < dn-l < d,- r 

having centers 

ci = (di+ di-,)/2, i = 1, 2, n 

and lengths 2ri, given by ri = (di - di-)/2. If the singularity closest to ci is a dis- 
tance bi from ci, i.e., 

bi= min ci- ail 
j=1 ,k 

it has been found that the total number of function evaluations required is strongly 
dependent on the set of ratios bi/ri, i = 1, *.., n. The effect of the restriction that 
the number of function values on any circle has to be a power of two has the effect 
of introducing a fluctuation which is difficult to predict; the general situation is that 
the optimum choice is bi/ri = e = 2.71, but choices involving 2 < bi/ri < 4 are at 
most marginally inferior. 

Such a subdivision may usually be constructed by inspection. 

7. Conclusions. In this paper a very simple approach to various quadrature 
problems has been investigated. This approach is merely to express the problem in 
terms of a Taylor series and to carry out term by term integration as appropriate. 
The severe limitation is that the integrand (apart from a weighting function) has to 
be analytic and complex arithmetic is involved. The emphasis of this paper is not 
on the methods (which involve little more than freshman calculus) but on the 
estimation and control of the accuracy and the recognition and control of round-off 
error. 

It appears to be the case that in problems which have been extensively analyzed, 
such as quadrature between fixed limits (Section 3), the most sophisticated methods 
available are better than the one presented here, though not by a very wide margin. 
However, this method is superior to some other standard routines. 

On the other hand in problems which at this time have not received any thorough 
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treatment from numerical analysts, such as the problem described in Section 5, the 
method presented here is clearly a considerable improvement on the few standard 
techniques available. 

The author feels that there may be many other problems in which an approach 
of this type might be rewarding, but of course only problems which principally in- 
volve analytic functions are susceptible to this sort of treatment. 

Argonne National Laboratory 
Applied Mathematics Division 
Argonne, Illinois 60439 

1. F. L. BAUER, "Algorithm 60; Romberg Integration," Comm. Assoc. Comput. Mach., v. 4, 
1961, p. 255; ibid., v. 5, 1962, p. 168. 

2. F. L. BAUER, H. RUTISHAUSER & E. STIEFEL, "New aspects in numerical quadrature," 
Proc. Sympos. Apple. Math., Vol. 15, Amer. Math. Soc., Providence, R. I., 1963, pp. 199-218. MR 
30 #4384. 

3. G. BIRKHOFF & D. M. YOUNG, "Numerical quadrature of analytic and harmonic func- 
tions," J. Mathematical Phys., v. 29, 1950, pp. 217-221. 

4. E. EISNER, "Numerical integration of a function that has a pole," Comm. Assoc. Comput. 
Mach., v. 10, 1967, pp. 239-243. 

5. E. EISNER, "On numerical integration of a function that has a pole," Comm. Assoc. 
Comput. Mach., v. 10, 1967, p. 610. 

6. T. HAVIE, "On a modification of Romberg's algorithm," Nordisk Tidskr. Informations- 
Behandling, v. 6, 1966, pp. 24-30. MR 33 #3460. 

7. W. M. McKEEMAN, "Algorithm 145; adaptive numerical integration by Simpson's rule," 
Comm. Assoc. Comput. Mach., v. 5, 1962, p. 604. 

8. W. M. McKEEMAN, "Certification of algorithm 145; adaptive numerical integration by 
Simpson's rule," Comm. Assoc. Comput. Mach., v. 6, 1963, pp. 167-168. 

9. J. McNAMEE, "Error-bounds for the evaluation of integrals by the Euler-Maclaurin 
formula and by Gauss-type formulae," Math. Comp., v. 18, 1964, pp. 368-381. MR 32 #3264. 

10. W. SQUIRE, "On numerical integration of a function that has a pole," Comm. Assoc. 
Comput. Mach., v. 10, 1967, p. 610. 

11. A. H. STROUD, "Error estimates for Romberg quadrature," J. Soc. Indust. Apple. Math. 
Ser. B Numer. Anal., v. 2, 1965, pp. 480-488. MR 34 #957. 

12. P. J. DAVIS & P. RABINOWITZ, Numerical Integration, Blaisdell, Waltham, Mass., 1967. 
MR 35 #2482. 

13. V. I. KRYLOV, Approximate Calculation of Integrals, Fizmatgiz, Moscow, 1959; 2nd ed., 
1966; English transl., Macmillan, New York, 1962; 1966. MR 22 #2002; MR 26 #2008. 


	Cit r122_c132: 


