
On Computation of the 
Bivariate Normal Distribution 

By D. E. Amos* 

Abstract. A quadrature and two series representations are given as limiting cases of a 
bivariate t-distribution. The quadrature is taken over the complementary error function 
and the series are sums of Bessel functions and incomplete beta functions, respectively. 
Comparisons with some known results are made in terms of accuracy and computer time. 

The literature and tabulation of the bivariate normal distribution 

N(h7 k) = 2 1 _ 21 f exp [-Q(x1 x2)/2]dxldx2 
27r (l- p) -00 -CC 

() Xi2 -2pxlX2 + X2 

Q (Xn, X2) = 1 

is extensive (see [7] and [11] for bibliographies). Quadratures developed by Sheppard 
[10] and Owen [9] stand out with respect to computational simplicity. The authors 
of [11] cite Sheppard's formula, 

N(-h, -k) = L(h, k) 

(2) = 
1 

f exp [- (h2 + k2 - 2hk cos w)/(2 sin2 w)]dw, 
2 hr >O -l p , 

h > O. k > O. -1 < p < 1 

tabulate L(h, k) for h > 0 k > 0 and give function relations for various signs on 
h and k. Owen's result is 

N(h, k) = + I[erf (h/V/2) + erf (k/V/2)] -T(h, ah) - T(k, ak) 

(3) ohk > 0 orhk = 0 and h + k ?0 

I1/2 otherwise 

where 

T(h, a) = 1 A exp [-h (1 + x2)/2] dX < a _1 

and 

-p + k/h a -p + h/k 
p2) 12 (1 - p2)1/2 

The relations 
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T(h, -a) = -T(h, a), T(-h, a) = T(h, a) 

T(h, a) = '[1 + erf (h/V/2)] + '[1 + erf (ah/V/2)], a > 1 

- 4[1 + erf (h/lV2)][1 + erf (ah/lV2)] - T(ah, 1/a) 
reduce the quadrature to a subset of [0, 1]. The terms in brackets divided by 2 are 
cumulative normal probability integrals with arguments h, k, or ah. 

In the text to follow, we develop a quadrature in terms of the coerror function 
and present two series representations for (1). We start by noting a bivariate t 

(4) P (t1, t2) = 1 ft t dix 

2i (1 _ 
p2)1/2 -00 -00 [1 + Q(xi, X2)/lk]+k/2 

and a quadrature [2] for this distribution, 

P (t1, t2) = I]/ 
27r(k + 1)[1 + Q(t1, t2)/k] 

(5) X 1 F F(1, ; 2 i _ c s2 (O q))dO 

_r((k + 1)/2) J02 a(O)cCos (0-c) dO 

-rF(k/2)[1 + Q(t1, t2)/k]k/2 [1 -c2 cos2 (0 - (k+l) 2 

where 

6 (0) = 0, cos (0-c) ? 0 2 _ Q(t1, t2)/k 
() 1, cos (O -) < O I + Q (tl, t2)lk' 

, 1 = tan 
1, 71 >=O 

01,2 
~ 1- 7rTtnP=7 + tan-' _2 'Y 1 < O 1 Y2 

and 

t, + t2 t2-t= 2 2 

(2(1 + p))1/2 (2(1 _ 
p))1/2, Q(t1,t2) = 2 +'Y2 

with - r/2 < tan-1z ? ir/2 and q = 0 if both -y1 and Y2 are zero. As k -> cc, the 
bivariate t-distribution (4) goes to the cumulative bivariate normal (1). As a result, 
(5) goes to a corresponding formula for (1). The main tool in taking the limit is the 
analytic continuation formula for the (Gauss) hypergeometric function, 

F(1 2; 
I - 
1 x) (k + l)F(1, k; 2; x) 

- \2Vi r((k + 3)/2) X(1 - X)-(k+l)/2, 0 < 
x < 1 

r (k/2) 
and the relations 

'(1, 1, x) = - ex/x\ y(- x)/2 

(1, nX) = -2,y( x) - 2-e-x//Vx 

r (z + a)/r (z + f3) z' for z -o 
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where 4 is a confluent hypergeometric function. The result is 

(02 -Oi)e-Q 2 
__ / 

N(t1, t2) 2 ) _ re 

(6) X f exp [ (Q/2) cos2 w] cos wlerfc Icos Wl )dw 

J02-4 
-4 27r he ?exp [-(Q/2) sin2 W]a(co) cos wdw 

where 

2 co 7tt fo, Cos W ? 0 
erfc (x) = dt = 1- erf (x) and c - {cs <0. 

A change of variables, t = (Q/2) sin w reduces the second integral in (6) (when it 
applies) to sums or differences of error functions. Some approximations (Eq. 7.1.26 
of [1, p. 299], see also [3] and [8]) not only produce erf (x) but also give eX2 erfc (x) as 
a polynomial. This fact makes (6) competitive with (2) in a quadrature routine. 

When high precision is required for erf (x) and eX2 erfc (x), the Chebyshev ex- 
pansions of [3] and [8] can be used for approximations up to 20 figures. The backward 
recursive techniques of [6] in the form 

erf(x y I 21X2) (x) 1( I- y (1/2, X2) O <x?V-\2 erf (x) = erfc erfc (x) = 7(i01erfc (x) 2 < x < cc 

also produce significant digits where in erfc (x), n = -1, 0, 1, - is the iterated 
coerror function and, contrary to usual notation, the gamma function is normalized 
so that oy(1/2, c) = 1. The table below gives a comparison of computer times for 
these procedures on a table of erf (x) for x = 0(.1)5: 

Method [1] [3] [6] 
Time (ms) 25 179, 59 321 

The NBS (Hastings) approximation 7.1.26 of [1] cites an absolute error bound of 
1.5 X 10-7. The series of [3] were truncated for six digits, and a relative error re- 
quirement of 1 X 10-6 was set for the method of [6] with starting indices incremented 
by 20. The Chebyshev polynomials required in [3] were computed according to 

Tn(x) = cos (n cost 1x) n > O . 

and 

To(x) = 1, Ti(x) = x, Tn+1(x) = 2xTn(x) - Tn-1(x) , n ? 1 

respectively. In backward recursion, a parameter study of starting indices as a 
function of x (for a given relative error) can reduce the time of computation by at 
least a factor of two by eliminating the need for repetitive evaluation in an error 
check. The break at x = V/2 combines the efficiency (convergence) of the algorithm 
in each domain with the retention of significant digits. 

Two other limiting cases of [2] are worth noting. As k -s o, formulae (10) and 
(11) of [2] go to 



658 D. E. AMOS 

(7) N(ti, t2) = 
1n 

bnSn(Oll 2) ( 
2 

n + 1; Q) 
2V7r n~o 2n.F((n + 1)72) 2 2 ' 2/ 

and 

(8) N(t=t) eQ /2 E +1)7 cQn/2 
02 

(O - )dO, 

respectively, where 

an = 1, n 0 Sn(01, 02) = 02 - 01, n = 0 
2 . n(02-01) l(O1 +02 - 2ck)~ 

an = n n >0, Sn(01, 02) = 2 sin 2 Cos 0 2 0 

The relationship 

4 (a + 1, 2a + 1; x) = 2a+1 /2 (a + ) I- {ex/2 (x/2)-a+1 /2a_l /2 ( )} 

= 2a-1/2F(a + -)ex/2(x/2)-a+1/2[Ia+ /2(2) + Ia1/2(2)] 

makes evaluation of the t1 functions in (7) practical since the backward recursion 
method described in [6] generates a sequence of Bessel functions { Ie+n(z) } almost as 
easily as a single one. The integral in (8) is the sum or difference of incomplete beta 
functions and an algorithm is described in [6] for these functions also. 

The table below gives a comparison of average time per evaluation for a CDC 
3600 computer based on 1064 cases. These cases comprise 56 points in the first 
quadrant of the ti, t2 plane with .5 ? t12 + t22 ? 4 and p = -.9(.1).9. 

Formula (2) (3) (6) (7) (8) 
Average Time per Evaluation (ms) 18.7 9.6 15.7 110 142 

A Romberg integration routine was used for (2), (3), and (6) with erf (x) and 
ex2 erfc (x) computed from NBS equation 7.1.26. A correction term 

[erf (tl/V/2) + erf (t2/V/2)]/2 

for (2) is necessary to get first quadrant values of N(t1, t2) from L(t1, t2). In order to 
avoid slow convergence associated with a discontinuous derivative, two quadratures 
were summed for the first integral of (6) when cos w changed sign in the interval of 
integration. An absolute error check of 1 X 10-s was used for all formulae, with the 
truncated series incremented by 20 terms and the integration step halved. This pro- 
duced at least six decimal place agreement between all formulae with seven decimal 
place agreement most common. Although 60 terms of (7) and 140 terms of (8) were 
required in extreme cases, 40 terms of each produced agreement to 8 decimal places 
in the majority of cases with 9 place agreement quite common. Backward recursive 
techniques were used for e-xIn(x) and Ix(n + 1/2, 1/2) in (7) and (8) respectively. 
Forms of these methods are given in [4] and [5]. 
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