Convergence Estimates for Essentially
Positive Type Discrete Dirichlet Problems

By J. H. Bramble, B. E. Hubbard and Vidar Thomée

Abstract. In this paper we consider a class of difference approximations to the Dirichlet
problem for second-order elliptic operators with smooth coefficients. The main result is
that if the order of accuracy of the approximate problem is », and F (the right-hand side)
and)‘f (the boundary values) both belong to C* for A < », then the rate of convergence is
O(nM).

1. Introduction. ILet ® with boundary d® be a bounded domain in euclidean
N-space EV. We shall be concerned with the solution of the Dirichlet problem

N 2 N
_ du . ou _ .
1.1) Lu= ME=1 a(z) P + ];1 a;(z) P, 4+ a@)u=F in®,

(1.2) u=7F  ond®,

mon to cover ® by a square mesh with mesh-width A, and for “interior’” mesh-
points x approximate the Eq. (1.1) by an equation of the form

(1.3) Liun(z) = 17° ; bs(z, h)ur(z + Bh) = MiF(z),

where L is uniformly elliptic and @ = 0 in ®. For the numerical solution it is com-

where 8 = (81, - - -, Bx) has integer components and L; and M} are consistent with
L and the identity operator, respectively. For mesh-points near d® one considers
similarly equations of the form

(1.4) hun(z) = un(z) + ﬂ;}bﬂ(x, hur(z + Bh) = mu(F, f)

which take into account both Egs. (1.1) and (1.2). In much of the literature, it is
assumed that L, is of positive type, or > sbs(x, k) = 0 and bs(z, h) < 0for 8 = 0 in
(1.3), and this is the case that is considered in this paper. Similarly, the bg in (1.4)
are often assumed =< 0; we shall assume here that

;lbﬁ|§7<l

and shall say then that the pair of operators L, and [, is of essentially positive type.

For many special schemes of the type described, convergence results are given
in the literature. They are generally of the form that if the discrete problem (1.3),
(1.4) approximates the continuous (1.1), (1.2) with order of accuracy », then

(1.5) lu(@) — un(z)| < CH.

The constant C here depends on the unknown solution u; in general one has had to
assume that u, together with its derivatives of orders less than or equal to » + 2, is
bounded in ®.
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Thus in particular, if N = 2 and

2 2
Lu= —Au= — ﬂ:— 6_ué
oz o,

a common approximation of (1.1) is the well-known ‘“five-point”’ formula

(1.6) —0Pue) = h_2{4u(x) — IZI: u(r + Bh)} = F(z).

Bl=1
For this operator, and for the simplest possible boundary approximations,
Gerschgorin [7] proved an estimate of the form (1.5) with » = 1. Later Collatz [6]
using linear interpolation near the boundary, improved the result to get (1.5) with
v = 2. Using instead of (1.6) the ‘“nine-point”’ formula

—0Pu(x) = 6%2 {20u(x) —4 IBZ|=:1 u@+ k) — 2 ule+ Bh)}

]ﬂll=|ﬂz|=1
— F@) + - a9
= 19 M P @),

Bramble and Hubbard [3] showed that the operator [; in (1.4) can be chosen in such
a manner that (1.5) holds for » = 4. These authors [4] also constructed operators
L and [, in the case of a general L (N = 2) such that (1.5) holds with » = 2.

It was observed by Bahvalov [1] in an important paper, seemingly not well-
known outside the Russian literature, that the regularity demands on the solution
u of the continuous problem in some cases can be relaxed by essentially two deriva-
tives at the boundary without losing the convergence estimate (1.5) and that for
still less regular w one can obtain correspondingly weaker convergence estimates.
Bahvalov used his error bounds to estimate the number of arithmetic operations
needed to obtain u to a presecribed accuracy. Related results were also obtained in
special cases by Wasow [13], Laasonen [8], and by Volkov, ef. [11], [12], and refer-
ences.

The purpose of this paper is to present a general theory which comprises all the
special features mentioned. In doing so we shall express the estimates in terms of the
data F and f of the problem rather than in terms of the unknown solution u; the
main result will be of the type that if F and f both belong to @* for some X > »,
then an inequality of the form (1.5) holds. It will also be shown that if F' and f are
in @* for A < », then error bounds of the form O(h*) can be obtained. Since the
effort is concentrated on the dependence of the regularity of F and f, we shall assume
that the coefficients and the boundary are infinitely differentiable.

The proofs will be based on new estimates for the discrete Green’s function for
the operator L;. This estimate can be thought of as a discrete analogue of the esti-
mate

/ Gz, y)ds = C9, T ER

d(y)=b
for the continuous Green’s function, where d(y) is the distance from y to d®. (In
special cases such results were used by Volkov [12].) The transition between esti-
mates in terms of the solution and the data F and f will be made by means of the
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Schauder estimates for second-order elliptic differential operators; at some points it
will be convenient to use interpolation properties of Lipschitz spaces. These latter
types of techniques also apply to other convergence problems in difference equations
(cf. Peetre and Thomée [10] and Bramble, Kellogg, and Thomée [5]).

In a certain sense the results are not optimal as far as the regularity of F is con-
cerned; it will be shown in a forthcoming paper by Bramble [2] that the operator
M} in (1.3) can be chosen in such a manner as to make it possible to further relax
the regularity demands on F.

2. Preliminaries. We start by introducing some notation. For 9 C E¥, let
€ (9M) be the set of real-valued continuous functions on 91 and define

= § x)| .
[ulgr éymn

In particular, if 91 is a finite point-set, €(917) simply consists of all real-valued fune-
tions on M and |ulyy is always finite.
For a domain ® C E¥N and u € €(®), 0 < o0 < 1 we set

lu@+y) — u@)]|

H,q(u) = sup ~
z,2+y ER;y #0 |y]
Let « = (a1, - -+, an) with «; nonnegative integers and define D*u = (9/dx)®

-+ - (8/0xy)en. If sis a positive real number and s = S + o, where S is an integer and
0 < o £ 1, we say that u € @(®) if D*u € e(®) for |a| = X.; a; £ S and if

Julog = lula + {DS H,&(D%)

is finite. We set C*(®) = (N0 C* (R).
For u € e(®) we also set

Zoa(w) =  sup lu(@ 4+ y) — 2u@) + ulz — y)]
z,2+y CRiy #0 |y]a

and say again for s = S 4 o, where S is a nonnegative integer and 0 < ¢ < 1,
that 4 € €z* (®) if D*u € C(®) for |a| < S and if

[ulz,00 = |ula + |.Es Zya (D)

is finite. The finiteness of H a(u) or Z; a(u) means that u satisfies a Holder condi-
tion or a Zygmund condition, respectively. Under the regularity assumptions below
on d® we have Cz*(®) = €*(®) for nonintegral s; for integral s we have c*(®) C
cz(®).

Let ®; = {z;2 € ®;d(x) > 8} where d(z) is the distance from x to the boundary
IR of ®. We say that u € e*(®) if u € €*(®;) for all § > 0.

We shall always assume that d® & €%, so that each point z & d® has a neighbor-
hood w, C d® which is the homeomorphic map ¢(Q.) of an open spherical neighbor-
hood @, of the origin in E¥1and g; € €*(Q,),j =1, - - -, N where g = (g1, - - -, gn)-
Since ® is a bounded domain we can by compactness cover d® by a finite number of
the sets w.; so that & = \Uj=1 wa;. Let g¢? be the mapping corresponding to ..
We say that f € €:(0®) if f(g?) € e*(@;;) forj = 1, - - -, J, and define



698 J. H. BRAMBLE, B. E. HUBBARD AND VIDAR THOMEE

| fle,00 = max lf(g(j))l.,n,j .

The definition of f € €z*(dR) and [f] z,.,sa are analogous.
Consider now in the bounded domain ® the uniformly elliptic operator

Lu(z) = — Z ap(x) ——— a é)x Za,(x) —l— ao(z)u(z) ain(z) = ari(z)

so that for some constant ¢ > 0, real ¢ = (51, ceEiv)andz € @
N . N . 1/2
1‘2‘:‘1 ain(2)§iE Z eold] &l = (Zl: & )

We shall assume for simplicity that all coefficients are in €*(EY) and also that
ao(z) = 0.
Our aim is to discuss the approximate solution of the Dirichlet problem

2.1) Lu=F in ®
(2.2) w=f on a®

by finite difference methods.
We shall study finite difference approximations of L of the form

Lywu(z) = h~° ; bs(zx, h)ulz + Bh)

where 8 = (B, - - -, Bx) with integral components 3;, We assume that there are
positive constants ho and B such that bs € €*(EY X [0, hq]) and bg = 0 for |8 > B.
We shall always assume that L, is consistent with L so that for any x and any u
sufficiently smooth

lim Lyu(z) = Lu(z) .

h—0
We shall further assume that Ly is of positive type;i.e. for b < hoand z € ® we have
E bﬂ(x; h) =0 )
(2.3) ?

ba(z,h) =0 B#0.

Let E¥ be the set of mesh-points = (mih, - - -, myh) where m; are integers.
For z € E¥, the set {y; y = x + Bh, bs(z, h) £ 0for h =< ho} is referred to as the
set of neighbors of z; its convex hull in E¥ will be denoted by 9,. We set

=RNE"
Ry = {x;x ER}.,S’Z,CG_{}
aR;. = Rh\Rh .

The points in R, are called interior mesh-points; those of dR; are boundary mesh-
points. We denote the set of real-valued functions defined on the above sets by
Dy, Dp, and Dy, respectively.

In addition to the operator L, which will be used at interior mesh-points, we
introduce an operator I, which will be related to the boundary values,
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hu(r) = ; bs(x, h)u(x + Bh) x € IRy .

We shall assume that bo(z, &) = 1 and that bg(x, ) = 0 for |8| > B and for z +
Bh & R;. No regularity will be assumed about the coefficients in ;; instead we shall
assume that there exists y < 1 such that

(2.4) ﬁ;w,g(x, B v, xE Rk = ho.

For the approximate solution of the Dirichlet problem (2.1), (2.2) we now con-
sider a discrete problem

(2.5) Lyu, = MF onR,
(2.6) l;,u;. = m;ﬁ on 6Rh.

Here M, is a bounded linear operator from C(®) into &, § = (F, f) € €(®) X
@(d®R) and m; is a bounded linear operator from €(®) X C(d®) into dD;. We shall
prove later (Lemma 5.3) that this problem has a unique solution for small 4, and
our aim is to study the convergence of this solution w; to the solution of (2.1), (2.2).

We say that the discrete problem approximates the continuous problem with
order of accuracy » if for any A\, p with 0 = X = »,0 = u = » there is a constant C
such that

2.7 |Lyu(z) — MiLu(z)| < Ch)‘lu|2+)‘,§nz, u € e, z € R,
2.8) | — mu(Lu, @)|or, = Ch*(Julua + |Lulg), u € eH(®)

where % denotes the restriction of u € CG(®) to d®. By the consistency between L
and L, M} is then an approximation of the identity operator.

We can now state our main result:

THEOREM. Assume that the operators L, Ly, ln, My, and my satisfy the above as-
sumptions and that the discrete problem (2.5), (2.6) approximates the Dirichlet problem
(2.1), (2.2) with order of accuracy v. Let u, and u be the solutions of the discrete and
continuous problems, respectively. Then for N, u = 0, N\, u # v, there is a constant C
such that for F € CzM®), f € Cz*(0R) we have

(2.9) lu — unl gy £ CLE™ 7| F 200 + B 7| f] 2,000} -
Further, if F € @M®) for some X > 0, and f € C(dR), we have

lim [u - uthh =0.
h—0
The proof of this result will be given in Section 5.

3. Positive Type Operators and Green’s Functions. Throughout this section we
shall assume that L, L, and ® satisfy the assumptions of Section 2. We start with a
lemma concerning the structure of positive type operators.

LemMA 3.1. There are positive constants ho and X such that for any x € R, and
any 7 € EN with |9| = 1 there is a B € EN with integral components such that for
h = ho

@ B, 1) = X,

(ll) —bﬁ(il), h) = X,
where (8, 1) = 2.Y-1 Bm;.
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Proof. By Taylor’s theorem we have for smooth «,

Liu(z) = u(@)h™ E bs(x, h) + Z h_l Z Bibs(x, h)

+5 Z - Fae, 2 BiBbs(@ 1) + 0(1) ash—0
and so from the consistency we conclude that
};, bs(z, h) = h'as(x) + o(h") whenkh—0,
(3.1) ; Bibs(z, h) = ha;j(x) + o(h) whenh —0,
2,3: BiBibs(x, h) = —2a;(x) + 0o(1) whenh —0.

In particular, if |5| = 1, we obtain after multiplication of (3.1) by 7,7x and summa-
tion over j and k, and using the ellipticity of L,

—Zﬁ: B,1)"bs(x, h) = 2 Z;ajk(x)nm +0(1) whenh—0,
7y
= 26+ 0o(1) whenh—0

for sufficiently small h, uniformly in z and ». Similarly,

(3.3) ; 8, mbs(x, h) = o(1) whenh—0.

(3.2)

Since 8 and bg are uniformly bounded, to prove the statement it is clearly sufficient
to prove

inf [— 2 (ﬂ,n)ba(x,h)]>0
h<ho; zERp, (B\m>0

But by (3.2) and (3.3) we have for some positive ho that for A < ho, z & R4, and
| =

—(B%;O (ﬂy n)bﬁ(x7 h) = - % 2‘3: ](ﬂ; ﬂ)]bﬂ(x: h) + 0(1)
=z —-@2B)" XB: (8, m)bs(x, k) + 0(1) = B'e

which thus proves the lemma.

The above lemma tells us that given any x € R, and any plane through z, there
is a neighbor of z on each side of the plane with distance greater than or equal to
h from the plane and corresponding to a coefficient with |bs(z, h)| = XK.

We can now prove the following maximum prineciple:

LemMA 3.2. Let b < ho where hy is the constant in Lemma 3.1. Then if v € Dy
satisfies Lyw = 0 on Ry, v = 0 on R, we have v = 0 on R

Proof. Assume the conclusion is false, that » has a negative minimum »(z®) on
R;. Since Ly, is of positive type we have

(@) = 25: (—bo(x, k) ""bs(x, ))v(x” + BR)

and since the coefficients on the right are nonnegative and have sum at most 1, we
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conclude that for all neighbors corresponding to nonzero bg, v(z® + gh) < v(z®).
Using Lemma 3.1 with 9 = e;, we find that for one such neighbor z®, ;@ = z,©® +
Xh. Iterating this argument we find a sequence of points z(?,j = 1, 2, - - -, such
that

2)(x(f)) < ?)(.’L'(o)) xl(i) %]hﬁc + 131(0) .

But by the boundedness of ®, after a finite number of steps, ¢ & dR;, and thus
v(z") = 0, which is a contradiction.

We can now conclude:

LemmA 3.3. The discrete problem

Lh1)=F onRh
v=f ondR,

has a unique solution v & Dy, for any F € Dy, and f € 0Dy

Proof. Since for F = f = 0, Lemma 3.2 proves that both » and —» are nonposi-
tive, we have the uniqueness. But this implies the existence by Cramer’s rule.

We now introduce the discrete Green’s function Gi(x, y) defined for each fixed
y € Ry by

LiGi(z,y) = hY8(,y) € Ra,
Gh(x; y) = 5(:1,‘, y) T € 0R, )

where é(z, ) = 1, 8(z, y) = 0for x £ y. In terms of this function we have the follow-
ing representation:
Lemma 3.4. Let v € Dy. Then for x € R), we have

(3.4) v@) = 1" X G, Lo@) + 2 Gilw, yh(@) -
yCRp, PASE: 4 )

Proof. This follows immediately from the definition of G5 and the uniqueness
part of Lemma 3.3.

We collect some simple properties of G in a lemma:

LemMA 3.5. The Green’s function defined above satisfies

Gh(x; y) =0, x»yER.h

(35) Z Gh(xy y) é 1 y x e Rh
yE IRy,

and there are positive constants ho and C such that for h = hy,
(3.6) W2 Gz, y) =C, zER.
yERy,

Progf. The nonnegativity follows at once from the definition and Lemma 3.2,
and (3.5) then follows by setting v = 1 in (3.4) and noticing that by (2.3), L;1 = 0.
Because of the assumptions on L there exists a function ¢ € C*(®) satisfying
L¢ = 2, and by consistency for sufficiently small b and x & Rj, we have Lyp(z) = 1.
Setting v = ¢ in (3.4) and using (3.5) we therefore obtain (3.6).

In order to give the next lemma which is the crucial lemma for our theorem,we
shall need some further notation. Let d(x) denote as before the distance from any
point z & ® to dR. Since we have assumed IR & €= then if 26, > 0 is less than the
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minimum over d®R of the radius of the osculating sphere, we also have d®; & €= for
8 < 28and d € €=(® \ Rys,). For any nonnegative integer j we define

Py;={z;2 ERy, $%5h < d(x) £ 1 xG + 1h},

where X is the constant in Lemma, 3.1.

We shall then have the following (this is the first time any regularity of d® need
be assumed):

LeEMMA 3.6. There are positive constants C and ho such that when b < ho, 2 Kjh <
8o, we have

R 20 Gule,y) < Cjh.
yEPh, i

Proof. Let 3 Xjh < 8o and Bh < §o so that d € €*(®\®s4m). Let 6 = § Kjh

and set

$s(x) =8 z € R;
=dx) zER\Rs.
We want to apply Lemma 3.4 to the restriction of ¢; to E;. We have
Ligs(y) = Lid@) + b 2 bs(y, h)[6 — d(y + 6h)]
3.7 y+8LERLNR
z Lid@y), y€E R\®s
and since Lyd = 0 by (2.3)

py O =L Rk bW REG ek a2 0,

YyERN Q.
We need a stronger result for y & Pj,;. To this end let 7 be the exterior normal at y
of R4,y and notice that the distance from y to d®R is attained in the direction of 7.
It follows from Lemma 3.1 that there is a 8 such that

Bh,m) =2 Kh,  —bs(y,h) 2 %

and since the distance from y to d®; is at most % %k we can conclude that for some
positive ho depending on the curvature of ® and on B, we have for A =< ho that
d(y + Bh) £ 6 — } Xh and it follows that

(3.9) Ligs(y) = Ch™", y € Py;.
Using Lemma 3.4 with » = ¢;, we now see from (3.7), (3.8), and (3.9) that

B 20 Gils, y>§0{¢s<x)+h”2 E,G"(x’ y)thd@)l}

yEPp,; I<j yEPp,
and using the definition of ¢, and that fact that d € @<(®\®Rs,) we have for
1 Kjh < 8o,
(3.10) B 2 Gz, y) £ 0{5 +1V Y 2 G, y)}.
yEP,; 1<j yEPh,1

Since by (3.6) the quantity on the right is bounded independently of j, we get by
summation over j and multiplication by 4,
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Y 2 Gia,y) < Co

I<j yEPh,1

which together with (3.10) proves the result.

4, Some Estimates for the Continuous Problem. We start by quoting some
definitions and results on interpolation spaces. For generalities, see [10] and refer-
ences.

Let Bj,j = 0, 1, be two Banach spaces with B; C B, so that for the correspond-
ing norms,

lulls, = Cllulls, .

We set for ¢ > 0,
K@ w) = inf (u—ollz + tlollz)
v&B)
and denote for 0 < 6 < 1 by (Bo, B1)s the subspace of B, defined by
[ull o506 = sup t 'K (t, u) < e .
>0
We have B; C (B, B1)e € By, and for B; = B,,

lullzo.50r6 = Ilull5, -
We first state the following interpolation property:

Lemma 4.1. Let B;, B/, j = 0, 1, for four Banach spaces with B1 & Bo, By € B/,
and let A be a linear operator from Bg into By’ such that for w € By, Au € By/, and

lAullz;” < Cjllullz;, J7=0,1.

Then for u & (B, B1)s = Bs we have Au & (By, B1')s = By’ and
|Au]l sy = Co''CYlullzy, 0<6<T1.

In our applications, the Banach spaces will be of the type C(®), CM®s), C*(dR),
etc. We shall need the following facts:
LemMA 4.2. With the above notation we have for 0 < po = p1 and with p = po +

0(p1 - p0)7

(" (®), e"(®))s = " (®)
(€”(8®), €™ (aR))e = Cz"(IR)

where equality signifies equivalence of the respective norms.

We shall now collect some well-known inequalities for the Dirichlet problem
(2.1), (2.2). For proofs, see e.g. Miranda [9]. We shall always assume that L and ®}
satisfy the conditions in Section 2, in particular that aq = 0 in ®. First we have the
maximum principle estimate:

LeMMA 4.3. There is a constant C such that for u € CX®) () C(®R) we have

lulg = C{|Lula + |@]oa} -

The following two lemmas contain the interior and up-to-the-boundary Schauder
estimates.
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LeEMMA 4.4. If )\ is a positive noninteger, there is a constant C such that for u &

eHA®) M C(®)
lulzings < €67 Lulng + lula) -

LeEmMA 4.5. If )\ is a positive noninteger, there is a constant C such that for u &
eHN®),

[uleine £ C{|Lu|ag + |@]24n, 00} -

For a general uniformly elliptic operator there would have been a term |u|a on
the right in this inequality, but here this term can be estimated by Lemma 4.3.

Lemmas 4.3 through 4.5 can be used to prove the following existence and unique-
ness result:

LEMMA 4.6. Let \ be a positive noninteger. Then if F € CN®R), f € C(IR) the
Dirichlet problem (2.1), (2.2) has a unique solution u € C*MN®) [\ C(®). If in
addition f € C*MIR) we have u € C*MNR).

Using the above interpolation lemma we shall now derive some auxiliary in-
equalities for the Dirichlet problem
“4.1) Lu=0 in®,

4.2) u=f ondR.

LeEmMA 4.7. Let X be a positive noninteger and 0 = p = 2 4 N. Then there is a con-

stant C such that for f & Cz*(0®) the solution u of (4.1), (4.2) satisfies

[u2ings < C8* 7N S 2,m, 0w -

Proof. We have by Lemmas 4.3 and 4.4

[ul2ns < €677 f| o

and by Lemma 4.5,

[ulernms = |uleag = C|flon,om -
The result therefore follows by applying Lemmas 4.1 and 4.2 to the operator which
takes f into the solution u € C*M®;) of (4.1), (4.2).
LemMa 4.8. If u s positive there is a constant C such that for f & Cz* (dR) the
solution u of (4.1), (4.2) belongs to Cz*(®) and satisfies
[ulzue = C|f|z,n0m -

Proof. For 2 4+ A > u and nonintegral we have again
lulzirg = C|flan, o0
and by Lemma 4.3

lula = C|flow -

The result therefore follows by Lemmas 4.1 and 4.2,

5. The Rate of Convergence. In this section we shall establish the unique
solvability of the discrete Dirichlet problem (2.5), (2.6) and discuss the rate of
convergence of its solution u; to the solution u of the continuous problem (2.1),
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(2.2). More precisely we shall prove a sequence of lemmas leading up to the proof
of our Theorem as stated in Section 2. Throughout this section we shall assume that
the operators L, Ly, Iy, M}, and my, satisfy the assumptions of Section 2.

We first have the following two simple estimates:

LeEMMA 5.1. For any mesh-function u & D, we have

[ul oy = vlulms + |lwulors

where v < 1 1s the constant in (2.4).
Proof. This is an immediate consequence of the definition of the operator I,.
LemMMA 5.2. There are posttive constants ho and C such that for h < hoand u & Dy
we have

(.1) lulmn = CULnulrn + |lie] ora} -
Proof. We have by Lemmas 3.4 and 3.5

@] = 7 2 G DILw@] + 2 G )l

= Cthuth + IuIBRh’

and the result therefore follows from Lemma 5.1.

As a consequence we can now prove the existence of a solution of the discrete
problem.

LemMa 5.3. With the ho in Lemma 5.2, the discrete problem (2.5), (2.6) has a unique
solution uy for h < ho and arbitrary choice of F and f.

Proof. Uniqueness is an immediate consequence of Lemma 5.2 and as in Lemma
3.3, uniqueness implies existence.

We can now essentially prove the convergence result in the case of homogeneous
boundary conditions:

LeEmMA 5.4. Assume that the discrete problem (2.5), (2.6) approximates the con-
tinuous problem (2.1), (2.2) with order of accuracy v and let N = 0, N 5= v. Then there
is a constant C such that if F € CzM®R) and if u and w are the solutions of (2.1), (2.2)
and (2.5), (2.6), respectively, with f = 0, then

(53) |u - uthh < Chmin()"y)lF[Z,)\,(R .

(5.2)

Proof. Since M}, and my, are bounded we obtain by Lemmas 4.3 and 5.2

lu = wnlmy = Jula + |ualmy = CIFla

which is (5.3) in the case A = 0. For A > 0, it is clearly, by Lemmas 4.1 and 4.2, no
restriction of the generality to assume that A is a noninteger. We then have u &
C2*M®) by Lemma 4.6. We want to apply Lemma 5.2 to u — u;. We have by (2.7)
and Lemma 4.5,

oy Vel e = L — Ml
é Chmin()"y)lul2+)\,(ﬁ é Chmin()"V)lF])\,(R

and similarly by (2.8),

|l;,(u - Uh)laRh = [l — my(Lu, 0)|3(Rh

(55) min(A,») min(\,»)
< R (Julaa + [ Luls) £ CR™|Flaa
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Together (5.1), (5.4) and (5.5) prove the lemma.
For the treatment of the homogeneous equation we need an a priori inequality
which is somewhat stronger than (5.1). For this purpose we introduce the norm

lullzy = B 22 jlulpy,; + lulzs,u
Kjn<289

where &y is the positive number introduced in Section 3 and Rs » = ®s, () B We
clearly have for some C independent of A,

llullzn = Clulzs

but the new norm gives less weight to the values of « near dRy; it can be thought of
as a discrete analogue of

3o
[ulla = /0 8|uld®s 38 + |ulas, -

With this norm, we then have
LeMMA 5.5. There are positive constants ho and C such that for h < ho and u € Dy
we have

lulzy = CUI|ILaullry + |lie] oms} -
Proof. We have by Lemmas 3.5 and 3.6,

Y2 G, @) b 2 |Luule BN 2 Gilz,y)

yERp Kjh<280 yEPh,j

+ |Lhu|Rso,th E Gi(z,y) = C||Lyul|zy -
vERn
The result therefore follows as above from (5.2).

We can now prove the following convergence result for the homogeneous
equation:

LEMMA 5.6. Assume that the discrete problem (2.5), (2.6) approximates the con-
tinuous problem (2.1), (2.2) with order of accuracy v and let u = 0, p # v. Then there is
a constant C such that if f € Cz*(0R) and if u and ux are the solutions of (2.1), (2.2)
and (2.5), (2.6) respectively, with F = 0, then

(5.6) lu — Uthh = Chmin("'y)lﬂz,y,am .

Proof. As in the proof of Lemma 5.4, we first notice that by Lemmas 4.3 and 5.2,
(5.6) holds for ¢ = 0, and that we can then assume without loss of generality that u
is a noninteger. By Lemma 4.8 we have u € €¢*(®) () €*(®). We want to apply
Lemma 5.5 to v — u;. We have

1 Ln(u — un)iizn = || Lowlzn
= O{h2
Consider the second term. By the definition of L; and Lemma 4.3 it follows that

K| Lyule, < C|floa -

Also for any positive noninteger 7 such that » < 5 4+ 2 < » 4+ 2 we have from
(2.7) and Lemma 4.8 that

5.7 ) .
]thulPh,j + h thu'th + th”|Rao,h .

v,4Bh=K jh<25¢
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B\ Luly, < Ch*| floys, 00 -

We may now apply Lemma 4.1 to the operator which takes f into A2L,u & D
(with maximum norm) to obtain

K| Lyl gy < Ch*|f| 2,u00 O0=n
Clearly this implies that
(5.8) B\ Lyulry £ CR™™ 7| f],,0m

forall u = 0.
The last term can be estimated by applying (2.7) and the proof of Lemma 4.7:

(5.9) |Litl 3o S CR|ul 2 0002 < CF’| flag < CR™™| fl, 06 .
Consider now the sum on the right in (5.7). For y &€ P,,; with 4Bh < Xjh we have

IIA

247.

Ny C Rawy—sr S Rexsnsny 2 S Raejnga
and thus by (2.7) and Lemma 4.7

ILhulph,j = Chmin()"y)lul2+>\,m3cih/4 = Chmin(x'y)(jh)p_z_)‘lfln,am .

We obtain
(.10) B 2 jlLwle,; < CRPT 20 GRY TR fluea

4Bh=X jh<28g 4BRSXKjh<28¢
Since
e \—1dpu—\ .
GR TR C >,
4Bh=X jh=258¢
< Ch* ™ ifu <

we can now choose A between u and » and obtain by (5.10)

(5.11) B2 jlLaule,; < CEM| fl e
4Bh< XK jh<250

Together (5.7), (5.8), (5.9) and (5.11) prove

(5.12) IZa(w — u) |z < CH™ 7| fluo0 .

Finally

Ii(u — wi)|om, = [l — ma(0, @)|am, < CA™ " |ulua
é Chmin(u,v) |f|p,6(R

and by Lemma 5.5, (5.12) and (5.13) prove the lemma.

We can now complete the proof of the theorem. Let first \, u = 0, A\, p # », and
let ux? and 4, 7 = 1, 2, be the solutions of the discrete and continuous problems
corresponding to § = (F, 0) and § = (0, f), respectively. We then obviously have
u=u® 4+ u®and up = ur® 4+ w,® and by Lemmas 5.4 and 5.6 we therefore get

(5.13)

® = w Pz, + [4® — w®|

CLA™ ™ P|F| 5y .0 4 B £ 2 4 0w}

lu — uhlfih

(5.14)

A IIA

which is (2.9).
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Assume now that F € eM®) and f € €(d®). Given ¢ > 0 we can find f €
CMA®) such that |[f — flag < e. Let § = (F, f) and let @, and @ be the solutions
of the corresponding discrete and continuous problems, respectively. We then have

(5.15) lu — un|zn < |u — @la + |un — Glrn + |8 — @z -

By Lemmas 4.3 and 5.2, and since M} and m;, are bounded and linear we have

(5.16) lu — d|a + |un — @lzn < C|f — floa < Ce.
Since § € €*®) X CMd®R), we have

]jm |1’l - 12},]7;:;, = 0
h—0

by (5.14), and the result therefore follows from (5.15) and (5.16).

Remark. The interpolation technique can also be used to simplify the definition
(2.7), (2.8) of the order of accuracy. Assume e.g. that (2.7) holds with A = » and
that in addition the operator M} has the property that for some C,

|MyF ()] = C|Flw,, zER&.
By consistency we find

|Liu(@)| = Clulsa,

and therefore, (2.7) holds also with A = 0. Hence, (2.7) holds for general X\ with
0 = X\ = v by Lemmas 4.1 and 4.2 (with 91, instead of ®).
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