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Abstract. In this paper we consider a class of difference approximations to the Dirichlet 
problem for second-order elliptic operators with smooth coefficients. The main result is 
that if the order of accuracy of the approximate problem is v, and F (the right-hand side) 
andf (the boundary values) both belong to O' for X < v, then the rate of convergence is 
O(hx). 

1. Introduction. Let (R with boundary 06 be a bounded domain in euclidean 
N-space EN. We shall be concerned with the solution of the Dirichlet problem 

N l2 N 0u 
(1.1) Lu =- >E ajk(x) -XJ 

u 
+ E a1(x) y- + ao(x)u = F in (R, 

(1.2) u = f on0MI, 

where L is uniformly elliptic and ao > 0 in 6R. For the numerical solution it is com- 
mon to cover 61 by a square mesh with mesh-width h, and for "interior" mesh- 
points x approximate the Eq. (1.1) by an equation of the form 

(1.3) Lhuh(x) 3 h-2 E b#(x, h)Uh(x + 3h) = MhF(x), 

where j3 = (A1l, *, ON) has integer components and Lh and Mh are consistent with 
L and the identity operator, respectively. For mesh-points near 06 one considers 
similarly equations of the form 

(1.4) lhUh(X) = Uh(X) + E b# (x, h)Uh(X + A3h) = mh(F, f) 

which take into account both Eqs. (1.1) and (1.2). In much of the literature, it is 
assumed that Lh is of positive type, or Hi b#(x, h) > 0 and b#(x, h) < 0 for A % 0 in 
(1.3), and this is the case that is considered in this paper. Similarly, the b# in (1.4) 
are often assumed < 0; we shall assume here that 

EZ b# < y <1 

and shall say then that the pair of operators Lh and 1h is of essentially positive type. 
For many special schemes of the type described, convergence results are given 

in the literature. They are generally of the form that if the discrete problem (1.3), 
(1.4) approximates the continuous (1.1), (1.2) with order of accuracy v, then 

(1.5) Iu(x) - Uh(X)I < Ch'. 

The constant C here depends on the unknown solution u; in general one has had to 
assume that u, together with its derivatives of orders less than or equal to v + 2, is 
bounded in 6. 
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Thus in particular, if N = 2 and 

2u a2u 
Lu -Au O- X2- 2 

ail X2 

a common approximation of (1.1) is the well-known "five-point" formula 

(1.6) -Ah(5)xu(x) = h-24u(x) - ZE u(x + Ah)} = F(x). 

For this operator, and for the simplest possible boundary approximations, 
Gerschgorin [7] proved an estimate of the form (1.5) with v = 1. Later Collatz [6] 
using linear interpolation near the boundary, improved the result to get (1.5) with 
v = 2. Using instead of (1.6) the "nine-point" formula 

-Ah(9)u(x) = J 2Ou(x04 )-4 >Z u(x + fh) u(x + fh) 
6hK 2~II2= 

2 

= F(x) + 12 AhF(x), 

Bramble and Hubbard [3] showed that the operator 1h in (1.4) can be chosen in such 
a manner that (1.5) holds for v = 4. These authors [4] also constructed operators 
Lh and lh in the case of a general L (N = 2) such that (1.5) holds with v = 2. 

It was observed by Bahvalov [1] in an important paper, seemingly not well- 
known outside the Russian literature, that the regularity demands on the solution 
u of the continuous problem in some cases can be relaxed by essentially two deriva- 
tives at the boundary without losing the convergence estimate (1.5) and that for 
still less regular u one can obtain correspondingly weaker convergence estimates. 
Bahvalov used his error bounds to estimate the number of arithmetic operations 
needed to obtain u to a prescribed accuracy. Related results were also obtained in 
special cases by Wasow [13], Laasonen [8], and by Volkov, cf. [11], [12], and refer- 
ences. 

The purpose of this paper is to present a general theory which comprises all the 
special features mentioned. In doing so we shall express the estimates in terms of the 
data F and f of the problem rather than in terms of the unknown solution u; the 
main result will be of the type that if F and f both belong to 6CX for some X > v, 
then an inequality of the form (1.5) holds. It will also be shown that if F and f are 
in 6X for X < v, then error bounds of the form O(hX) can be obtained. Since the 
effort is concentrated on the dependence of the regularity of F andf, we shall assume 
that the coefficients and the boundary are infinitely differentiable. 

The proofs will be based on new estimates for the discrete Green's function for 
the operator Lh. This estimate can be thought of as a discrete analogue of the esti- 
mate 

I G(x, y)dS _ CS, x E (R 

for the continuous Green's function, where d(y) is the distance from y to aR. (In 
special cases such results were used by Volkov [12].) The transition between esti- 
mates in terms of the solution and the data F and f will be made by means of the 
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Schauder estimates for second-order elliptic differential operators; at some points it 
will be convenient to use interpolation properties of Lipschitz spaces. These latter 
types of techniques also apply to other convergence problems in difference equations 
(cf. Peetre and Thomee [10] and Bramble, Kellogg, and Thomee [5]). 

In a certain sense the results are not optimal as far as the regularity of F is con- 
cerned; it will be shown in a forthcoming paper by Bramble [2] that the operator 
Mh in (1.3) can be chosen in such a manner as to make it possible to further relax 
the regularity demands on F. 

2. Preliminaries. We start by introducing some notation. For M1 C EN, let 
e (9M) be the set of real-valued continuous functions on M1 and define 

luja = sup ju(x)j. 

In particular, if Mi is a finite point-set, e(9M) simply consists of all real-valued func- 
tions on M1 and Julm is always finite. 

For a domain ?R C ENand u &E 0(R), 0 < o < 1 we set 

HO,,(R (U) = sup Iu(x + y) - u(x)I 
x, x+yER; yO IYJ 

Let a = (al, aN, O) with aj nonnegative integers and define Dau = (alftl) 
... (O/OXN)aN. If s is a positive real number and s = S + o-, where S is an integer and 

0 < a < 1, we say that u E 68(i) if Dau E 0(R) for jal = Jj ?j < S and if 

Jul8,(R, = jul61 + E HO,61(DaU) 
lal=S 

is finite. We set 0-(FR) = q8>0 C8 (R). 

For u &E (R) we also set 

Z u)= sup lu(x + y) - 2u(x) + u(x -y) 
x, x?yiR;yO I Y 

and say again for s = S + o-, where S is a nonnegative integer and 0 < o < 1 
that u & Cz8 (R) if Dau &E e(R) for I a ?< S and if 

lU!Z,8,. = JujR + Z Zo,,(DaU) 
lal==S 

is finite. The finiteness of Hl ,.(u) or Zl,.(u) means that u satisfies a Holder condi- 
tion or a Zygmund condition, respectively. Under the regularity assumptions below 
on 0R we have (z6(R) = 68(R) for nonintegral s; for integral s we have 68(R) c 

C8(_R) 

Let (Ra = {x; x E R; d(x) > 6} where d(x) is the distance from x to the boundary 
0(R of (R. We say that u & 68(R) if u E e (Ra) for all a > 0. 

We shall always assume that R & Coo, so that each point x &E R has a neighbor- 
hood wx C 0R which is the homeomorphic map g(Qx) of an open spherical neighbor- 
hood Qx of the origin in EN-' and g j EE (?x), j = 1, *- - , N where g = (ga, .., ., 

Since R is a bounded domain we can by compactness cover 0R by a finite number of 
the sets cox so that 0R = U-i co)X. Let g(j) be the mapping corresponding to cox,. 
We say that f E E(8(R) if f(g()) E ) for j = 1, * *, J, and define 
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I flA8,&i = max f(g(j))I8, OX. 

The definition off E Cz8(06) and Iff IZSa are analogous. 
Consider now in the bounded domain aR the uniformly elliptic operator 

N d2 N 

Lu(x) E- A ajk(x) + E aj(x) + ao(x)u(x) aik(x) = akj(x) 
i~k~l OXiaXA; Z= 

so that for some constant Eo > 0, real Q=(s1, **, AN) and x EE a 

N 1/2N ) 

E7 ajk(x%{jk _ 'EOJl1 W4 = E(i 
isk-1 j=l1 

We shall assume for simplicity that all coefficients are in C&(EN) and also that 
ao(x) > 0. 

Our aim is to discuss the approximate solution of the Dirichlet problem 

(2.1) Lu= F in a 

(2.2) u= f on 36 

by finite difference methods. 
We shall study finite difference approximations of L of the form 

Lhu (x) = h-2A be(x, h)u(x + jOh) 

where ,B- (0i, * O*, AN) with integral components 0j. We assume that there are 
positive constants ho and B such that bo E ew(EN X [0, ho]) and bo = 0 for j#1 > B. 
We shall always assume that Lh is consistent with L so that for any x and any u 
sufficiently smooth 

lim Lhu (x) = Lu (x). 
h-.+O 

We shall further assume that Lh is of positive type; i.e. for h ? ho and x E (R we have 

Abo(x, h) >_ O. 
(2.3) 

bo(x, h) O A 0 O . 

Let EhN be the set of mesh-points x = (m1h, - - *, mNh) where mj are integers. 
For x E EhN, the set {y; y = x + O3h, bp(x, h) i 0 for h < ho} is referred to as the 
set of neighbors of x; its convex hull in EN will be denoted by O. We set 

Rh = 3i n EhN 

Rh = {XX (E Rh, OZC., } 

=h = Rh\Rh. 

The points in Rh are called interior mesh-points; those of aRh are boundary mesh- 
points. We denote the set of real-valued functions defined on the above sets by 
5h, Dh, and ajOh, respectively. 

In addition to the operator Lh which will be used at interior mesh-points, we 
introduce an operator 1h which will be related to the boundary values, 
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lhU(X) = Z bo(x, h)u(x + flh) x E ORh. 

We shall assume that bo(x, h) 1 and that bo(x, h) = 0 for 1j1 > B and for x + 
j#h (f Rh. No regularity will be assumed about the coefficients in lh; instead we shall 
assume that there exists -y < 1 such that 

(2.4) E jbo(x, h)j y P, x ERh, h _ ho. 

For the approximate solution of the Dirichlet problem (2.1), (2.2) we now con- 
sider a discrete problem 

(2.5) Lhuh = MhF on Rh 

(2.6) lhUh = mh5 on iRh. 

Here Mh is a bounded linear operator from 0(B(R) into Dh, 5f = (F, f) E& e() X 
e(0R) and mh is a bounded linear operator from e(QR) X e(0R) into ODh. We shall 
prove later (Lemma 5.3) that this problem has a unique solution for small h, and 
our aim is to study the convergence of this solution Uh to the solution of (2.1), (2.2). 

We say that the discrete problem approximates the continuous problem with 
order of accuracy v if for any X, ,i with 0 < X < v, 0 < ,u < v there is a constant C 
such that 

(2.7) jLhu(x) - MLu(x)I < ChXIuI2+?x,, u D IX2x( I), x & Rh, 

(2.8) IlhU - mh(Lu, ft)IORh ? Ch(Juj|, + jLuja), u & e ) 
where u denotes the restriction of u E& (&~) to 0R. By the consistency between Lh 
and L, Mh is then an approximation of the identity operator. 

We can now state our main result: 
THEOREM. Assume that the operators L, Lh, lh, Mh, and mh satisfy the above as- 

sumptions and that the discrete problem (2.5), (2.6) approximates the Dirichlet problem 
(2.1), (2.2) with order of accuracy v. Let Uh and u be the solutions of the discrete and 
continuous problems, respectively. Then for X, ,u ? 0, X, , # v, there is a constant C 
such that for F E Czx(6), f E Cze(zKR) we have 

(2.9) u - Uh IRh _ C{hm in(X;,v)IFIz),,R + hmin( v)IfI Z,;,R} 
Further, if F E ex(R) for some X > 0, and f &E (aMR), we have 

lim Ju - Uh|Rh = 0. 

The proof of this result will be given in Section 5. 

3. Positive Type Operators and Green's Functions. Throughout this section we 
shall assume that L, Lh, and (R satisfy the assumptions of Section 2. We start with a 
lemma concerning the structure of positive type operators. 

LEMMA 3.1. There are positive constants ho and 3C such that for any x E Rh and 
any X & EN with JqI = 1 there is a f & EN with integral components such that for 
h < ho 

(i) (i, q) > X 
(ii) -b((x, h) >_ 3I 

where (S )=E= tj 
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Proof. By Taylor's theorem we have for smooth u, 

LhU (x) = u(x)h-2 E be(x, h) + E 
au h-1 E: Obo(x, h) 

+ 2 O E Z43x ax 3EUjIkb#(x, h) + o(1) as h -> 

and so from the consistency we conclude that 

Z b(x, h) = h2ao(x) + o(h2) when h -> , 

(3.1) E jb#(x, h) = haj(x) + o(h) when h ->0, 

Z3j3kb#(xh) =-2aik(x) + o(1) whenh ->0. 

In particular, if 1771 = 1, we obtain after multiplication of (3.1) by 'qj'qk and summa- 
tion over j and k, and using the ellipticity of L, 

-, (,f3,)2bo(xh) = 2 Z ajk(x)njnk+ o(l) when h-0, 
(3.2) j,k 

> 2Eo + o(1) whenh -> 

for sufficiently small h, uniformly in x and q. Similarly, 

(3.3) 7j (,n)bo (x, h) = o(1) when h -0 . 

Since : and bo are uniformly bounded, to prove the statement it is clearly sufficient 
to prove 

inf 77- E# (,r (x, h) > 0 
h ho;xERh (an)>? 

But by (3.2) and (3.3) we have for some positive ho that for h < ho, x E Rh, and 

Hn = 1, 

- i (fi, r7)b#(x, h) = - Z 7) (f, n)Jb(x, h) + o(1) 
Mns)>o 2 

> -(2B)- j (77, n)2b (x, h) + o(1) > B-leo 

which thus proves the lemma. 
The above lemma tells us that given any x E Rh and any plane through x, there 

is a neighbor of x on each side of the plane with distance greater than or equal to 
3Ch from the plane and corresponding to a coefficient with Ib,(x, h) I 3C. 

We can now prove the following maximum principle: 
LEMMA 3.2. Let h < ho where ho is the constant in Lemma 3.1. Then if v & SD 

satisfies Lhv ? 0 on Rh, v > 0 on oRh, we have v > 0 on Rh. 
Proof. Assume the conclusion is false, that v has a negative minimum v(x'?)) on 

Rh. Since Lh iS of positive type we have 

v(x(?)) > i (-bo(x, h)-'b0(x, h))v(x~0) + flh) 

and since the coefficients on the right are nonnegative and have sum at most 1, we 
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conclude that for all neighbors corresponding to nonzero be, v(x(0) + Ah) ? v(x(0)). 
Using Lemma 3.1 with X = e1, we find that for one such neighbor x x1(') _ x + 
3h. Iterating this argument we find a sequence of points x(i), j = 1, 2, * , such 
that 

v(x(D)) ? v(x(0x) Xi>? jh> C + xi(?) 

But by the boundedness of R, after a finite number of steps, x () EMh, and thus 
v(x(j)) ? 0, which is a contradiction. 

We can now conclude: 
LEMMA 3.3. The discrete problem 

Lhv= F onfRh 

v =f on aRh 

has a unique solution v E Dh for any F E 5h and f E ash. 

Proof. Since for F = f = 0, Lemma 3.2 proves that both v and -v are nonposi- 
tive, we have the uniqueness. But this implies the existence by Cramer's rule. 

We now introduce the discrete Green's function Gh(x, y) defined for each fixed 
y E Rh by 

LhGh(x, y) = hN (X, y) x E Rh, 

Gh(x, y) = 6(x, y) x E aRh, 

where 8(x, x) = 1, 8(x, y) = 0 for x & y. In terms of this function we have the follow- 
ing representation: 

LEMMA 3.4. Let v C -h. Then for x E Rh we have 

(3.4) v(x) = hN Z Gh(x, y)Lhv(Y) + E Gh(x, y)v(y). 
Y ERh VE aRh 

Proof. This follows immediately from the definition of Gh and the uniqueness 
part of Lemma 3.3. 

We collect some simple properties of Gh in a lemma: 
LEMMA 3.5. The Green's function defined above satisfies 

Gh(x, y) > ?0, Xiy ERh 
(3.5) Z Gh(x, Y) < 1 x E Rh 

y E ORh 

and there are positive constants ho and C such that for h ? ho, 

(3.6) hN Gh(x, y) < C, X E Rh. 
CzRh 

Proof. The nonnegativity follows at once from the definition and Lemma 3.2, 
and (3.5) then follows by setting v 1 in (3.4) and noticing that by (2.3), Lhl ? 0. 
Because of the assumptions on L there exists a function q E e2(dQt) satisfying 
Lo > 2, and by consistency for sufficiently small h and x E Rh, we have LhqS(x) > 1. 
Setting v = 0 in (3.4) and using (3.5) we therefore obtain (3.6). 

In order to give the next lemma which is the crucial lemma for our theorem,we 
shall need some further notation. Let d(x) denote as before the distance from any 
point x E 6R to a(R. Since we have assumed 3M C C00 then if 28o > 0 is less than the 
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minimum over 9M of the radius of the osculating sphere, we also have dMs - CX for 
S < 28o and d e C(G \ cR28.). For any nonnegative integer j we define 

Ph,j = {x; x E Rh, 2 Wjh < d(x) < 2 W(j + 1)h}, 

where SC is the constant in Lemma 3.1. 
We shall then have the following (this is the first time any regularity of 3M need 

be assumed): 
LEMMA 3.6. There are positive constants C and ho such that when h < ho, ' Cjh < 

So, we have 

hN Z Gh(xy) < Cjh. 
YvEPh,j 

Proof. Let 4 3Cjh < So and Bh < So so that d E CW(&i\CRs0+Bh). Let a = 2 cjh 
and set 

pa(X)=a x&Rs 

= d(x) x E R\&RS. 

We want to apply Lemma 3.4 to the restriction of Os to Rh. We have 

LhAp (Y) = Lhd (y) + h-2 E bo(y, h)[8 - d(y + Oh)] 
(3.7) y+#hEERhRa 

> Lhd (y), y E Rh\(RS 

and since Lh8 ? 0 by (2.3) 

LhcA(y) = Lh8 + h2 Z bo(y, h)[d(y + oh) - 8] ? 0, 
(3.8) y+#hEER\(RS 

y Rhfnla. 
We need a stronger result for y E Phj. To this end let X be the exterior normal at y 
of aCRd(v) and notice that the distance from y to MC is attained in the direction of j. 
It follows from Lemma 3.1 that there is a A such that 

(Olh, -/) > ChI -bg(y, h) > se 

and since the distance from y to MsR is at most I Keh we can conclude that for some 
positive ho depending on the curvature of M(3 and on B, we have for h < ho that 
d(y + Osh) < 8 - ' K3Ch and it follows that 

(3.9) LhOS (y) > Ch1, Y & Ph .i 

Using Lemma 3.4 with v = pa, we now see from (3.7), (3.8), and (3.9) that 

hNl E Gh(XI y) _ C{Os(x) + hN E E Gh(XI y) ILhd(y)|} 
YEPh, j l<ij YEPh, I 

and using the definition of pa and that fact that d E Co(??\&230) we have for 
42 3jh < 8o, 

(3.10) hN E G(Xyh(,Y ) _ C{ + hN E Gh(XI )}Y 
y EPh, i 1<j V CPh, I 

Since by (3.6) the quantity on the right is bounded independently of j, we get by 
summation over j and multiplication by h, 
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hN E E Gh(xy ) _ CS 
Kij VePh, I 

which together with (3.10) proves the result. 

4. Some Estimates for the Continuous Problem. We start by quoting some 
definitions and results on interpolation spaces. For generalities, see [10] and refer- 
ences. 

Let Bj, j = 0, 1, be two Banach spaces with B1 C Bo so that for the correspond- 
ing norms, 

fIUfIBO < CIfUWIBi 

We set for t > 0, 

K(t, u) = inf (ju - VIIBO + tIIVflB,) 
v GB1 

and denote for 0 < 0 < 1 by (Boy B1>) the subspace of Bo defined by 

||UJJ (BO,B1)o = sup t -K(t, u) < o 
t>0 

We have B1 C (Boy B1)o C Bon and for B1 = Bon 

|IUIJ(BoBo)o = IjUjIBO 

We first state the following interpolation property: 
LEMMA 4.1. Let Bj, B1', j = 0, 1, for four Banach spaces with B1 C Bo, B1' C Bo', 

and let A be a linear operator from B0 into Bo' such that for u E B1, Au E B1', and 

IAUI Bjt' < CjIIUIIBj, j = 0, 1. 

Then for u E (Bo, B1)o = Bo we have Au E (BO', B1')o = Bo' and 

flAuB0' < C0o1 C10fUIBf l 0 < 0 < 1 . 

In our applications, the Banach spaces will be of the type C(FR), x(di), ;(a(QR), 
etc. We shall need the following facts: 

LEMMA 4.2. With the above notation we have for 0 < po < pi and with p = po + 
0(p1 - p0), 

(6o (a), e(I))@ = o z 0 i) 

(eO (Ms), e"'(aG())o = OzP(aG1) 

where equality signifies equivalence of the respective norms. 
We shall now collect some well-known inequalities for the Dirichlet problem 

(2.1), (2.2). For proofs, see e.g. Miranda [9]. We shall always assume that L and 61 
satisfy the conditions in Section 2, in particular that ao _ 0 in 61. First we have the 
maximum principle estimate: 

LEMMA 4.3. There is a constant C such that for u E C2((R) n C(&) we have 

lulls ? C{ILujcR + 19l!dR} - 

The following two lemmas contain the interior and up-to-the-boundary Schauder 
estimates. 
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LEMMA 4.4. If X is a positive noninteger, there is a constant C such that for u E 
62+X(&) n ow) 

[U[2+X,( 
? C-2XI LuIx,c + [ul(}. 

LEMMA 4.5. If X is a positive noninteger, there is a constant C such that for u E 

JU12+X,&R ? Ct Lu I A,& + 1IJf 2+X, 0R6 - 

For a general uniformly elliptic operator there would have been a term Jul (Ron 

the right in this inequality, but here this term can be estimated by Lemma 4.3. 
Lemmas 4.3 through 4.5 can be used to prove the following existence and unique- 

ness result: 
LEMMA 4.6. Let X be a positive noninteger. Then if F E Cx(JR), f E C(Q3G) the 

Dirichlet problem (2.1), (2.2) has a unique solution u (E 62+X (&) n (6). If in 
addition f E 62+X(a8(R) we have u E(2+X((R). 

Using the above interpolation lemma we shall now derive some auxiliary in- 
equalities for the Dirichlet problem 

(4.1) Lu=O in(R, 

(4.2) u = f on a(. 

LEMMA 4.7. Let X be a positive noninteger and 0 ? yU < 2 + X. Then there is a con- 
stant C such that for f E Cz;(a(R) the solution u of (4.1), (4.2) satisfies 

IU12+XGas ? CA-2x1f IZ, as 

Proof. We have by Lemmas 4.3 and 4.4 

j8j2+b ?A -< CS-2-XI f I aR 

and by Lemma 4.5, 

ui I 2+X, <_ I U u 2+XR <_ C I f 12+X, OGR 

The result therefore follows by applying Lemmas 4.1 and 4.2 to the operator which 
takes f into the solution u e C2+'(6a) of (4.1), (4.2). 

LEMMA 4.8. If ,u is positive there is a constant C such that for f E Czz (311) the 
solution u of (4.1), (4.2) belongs to Cz((-R) and satisfies 

IuIz,y, ? CIfIz,;,o1R. 

Proof. For 2 + X > , and nonintegral we have again 

1u12+XJ_? Clfl2+x,os 

and by Lemma 4.3 

jujl ? Clfj al. 

The result therefore follows by Lemmas 4.1 and 4.2. 

5. The Rate of Convergence. In this section we shall establish the unique 
solvability of the discrete Dirichlet problem (2.5), (2.6) and discuss the rate of 
convergence of its solution uh to the solution u of the continuous problem (2.1), 
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(2.2). More precisely we shall prove a sequence of lemmas leading up to the proof 
of our Theorem as stated in Section 2. Throughout this section we shall assume that 
the operators L, Lh, lh2 Mh, and mh satisfy the assumptions of Section 2. 

We first have the following two simple estimates: 
LEMMA 5.1. For any mesh-function u E jh we have 

IUJ IRh 
_ 'Y I Uh + llhUl IRh 

where -y < 1 is the constant in (2.4). 
Proof. This is an immediate consequence of the definition of the operator lh. 

LEMMA 5.2. There are positive constants ho and C such that for h < ho and u E Dh 
we have 

(5.1) IUI7Rh ? Ct {LhuIRh + lhU0 IRh} 

Proof. We have by Lemmas 3.4 and 3.5 

u (x)| I_ hN E Gh (X, y) I hU (Y)I + EGh(X, Y)|U(Y)l 
(5.2) YERh y +YRh 

_ CjLh8URh + U! aRha 

and the result therefore follows from Lemma 5.1. 
As a consequence we can now prove the existence of a solution of the discrete 

problem. 
LEMMA 5.3. With the ho in Lemma 5.2, the discrete problem (2.5), (2.6) has a unique 

solution Uh for h _ ho and arbitrary choice of F and f. 
Proof. Uniqueness is an immediate consequence of Lemma 5.2 and as in Lemma 

3.3, uniqueness implies existence. 
We can now essentially prove the convergence result in the case of homogeneous 

boundary conditions: 
LEMMA 5.4. Assume that the discrete problem (2.5), (2.6) approximates the con- 

tinuous problem (2.1), (2.2) with order of accuracy v and let X > 0 X & v. Then there 
is a constant C such that if F E CzxQ(3) and if u and uh are the solutions of (2.1), (2.2) 
and (2.5), (2.6), respectively, with f = 0, then 

(5.3) 1u - Uh!Rh < Chmin(X) FI zX,.. 

Proof. Since Mh and mh are bounded we obtain by Lemmas 4.3 and 5.2 

1U - UhIRh <? ZUIR + |UhiRh < CjFIR 

which is (5.3) in the case X = 0. For X > 0, it is clearly, by Lemmas 4.1 and 4.2, no 
restriction of the generality to assume that X is a noninteger. We then have u E 

62+X(&) by Lemma 4.6. We want to apply Lemma 5.2 to u - Uh. We have by (2.7) 
and Lemma 4.5, 

(5.4) jLh(U - 
Uh)iRh 

= jLhU - MhLuiRh 

-< Chynin(X;) IU12+X~,R _< Chmin(XY It x( 

and similarly by (2.8), 

(5.5) Jlh(U - Uh)i IRh = l -hu mh(Lu, 0)1 aRh 

?< Ch min(X,^) (ulxR + ILu(Rt) < Chmin(X) Flx, 
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Together (5.1), (5.4) and (5.5) prove the lemma. 
For the treatment of the homogeneous equation we need an a priori inequality 

which is somewhat stronger than (5.1). For this purpose we introduce the norm 

IUl lRh = h2 EI jIUIPh,j + |UlR50,h 
,W~jh?230 

where So is the positive number introduced in Section 3 and Ra,,h = 0 q Rh. We 
clearly have for some C independent of h, 

h!UIIRh _ CIuIRh 

but the new, norm gives less weight to the values of u near aRh; it can be thought of 
as a discrete analogue of 

!JuJk{ - f u 8aufRs aN + 1UfI6ao. 

With this norm, we then have 
LEMMA 5.5. There are positive constants ho and C such that for h _ ho and u E bh 

we have 

|UIjh 
? C{ |JLhUflRh + IlhU!aRh} 

Proof. We have by Lemmas 3.5 and 3.6, 

hN Z Gh(X, y)!Lhu(y)I < h X ILhUIPhjhN Z Gh(X, Y) 
yERh SCwjh<260 YEPhj 

+ ILhUIR50,hhN Z Gh6(X, y) < Ch!LhUIJRh. 
yeRh 

The result therefore follows as above from (5.2). 
We can now prove the following convergence result for the homogeneous 

equation: 
LEMMA 5.6. Assume that the discrete problem (2.5), (2.6) approximates the con- 

tinuous problem (2.1), (2.2) with order of accuracy v and leta4 > 0, 5i v. Then there is 
a constant C such that if f & ez;(aM) and if u and Uh are the solutions of (2.1), (2.2) 
and (2.5), (2.6) respectively, with F = 0, then 

(5.6) IU - UhIRh < Chmin("v)Ifvl 

Proof. As in the proof of Lemma 5.4, we first notice that by Lemmas 4.3 and 5.2, 
(5.6) holds for , = 0, and that we can then assume without loss of generality that , 
is a noninteger. By Lemma 4.8 we have u & e,(6) nf e(d). We want to apply 
Lemma 5.5 to u - Uh. We have 

f|Lh(u - Uh) IlRh = !JLhu!JRh 

(5 
< C h 

2 
Z j!LhUIph j + h 2ILhuIRh + ILhUIRSh 

v 4Bh_3C jh<2b0 

Consider the second term. By the definition of Lh and Lemma 4.3 it follows that 

h2ILhuIRh < CIAfa(R- 

Also for any positive noninteger v such that v < v + 2 < v + 2 we have from 
(2.7) and Lemma 4.8 that 
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h 2ILhu I Rh < Ch2 | f |2+r, 0d 

We may now apply Lemma 4.1 to the operator which takes f into h2Lhu E aDh 

(with maximum norm) to obtain 

h 2LhURh < Ch IffZ, ,d a, 0 < ? 2 + v . 

Clearly this implies that 

(5.8) h2tLhuRh ?< Chmin(Av)tflOR 

for all A ? 0. 
The last term can be estimated by applying (2.7) and the proof of Lemma 4.7: 

(5.9) |Lhu!RSh ? Ch |U|2+v,(6Ro/2 < Ch'Iflf0l ? Chin()! f A, O . 

Consider now the sum on the right in (5.7). For y & Ph,j with 4Bh ? WCjh we have 

9Y C (Rd(y)-Bh C O(R(Jjh-Bh)/2 C Gl5jh/4 

and thus by (2.7) and Lemma 4.7 

{Lhulph _ < Chm ) fuJ2+X~/ 4< Chmin(? )(jh) ff-2- , 

We obtain 

(5.10) h2 2 j!LhulPh, -< Chmin(xv,) X (jh)-1+-X-hIfIA,9. 
4Bh<?Cjh<260 4Bh<,Wjh<230 

Since 

(jh)-'+;-;'h -< C if u > X. 
4Bh<aCjh<230 

_ Ch-' if u < X 

we can now choose X between , and v and obtain by (5.10) 

(5.11) h j LhUjPhj ? Chmin(f )tft;, 
4Bh<3Cjh<230 

Together (5.7), (5.8), (5.9) and (5.11) prove 

(5.12) J|Lh(U - Uh)IJRh < Ch" m i n(M dK . 

Finally 

(5.13) lh(U - Uh)f IRh = flhU - mh(0,' ) IRh _ Ch" in(Piv)tUt,, 
< Ch"':,) f 

and by Lemma 5.5, (5.12) and (5.13) prove the lemma. 
We can now complete the proof of the theorem. Let first X, A _ 0, x, , V v, and 

let Uh (' and u(i), j = 1, 2, be the solutions of the discrete and continuous problems 
corresponding to F = (F, 0) and 5F = (0, f), respectively. We then obviously have 
u = u(1) + u(2) and Uh = Uh(1) + Uh(2) and by Lemmas 5.4 and 5.6 we therefore get 

(5.14) u- Uhlfh < Iu - UhI |Rh + Iu - Uh (2)i 

?< C{hrl'niiX,!F in(Pv)tftZ+ , } 

which is (2.9). 
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Assume now that F E eX(Q3) and f E e(aM). Given e > 0 we can find J E 

eX(a () such that If - fd aR< E. Let 9 = (F, f) and let ah and a be the solutions 
of the corresponding discrete and continuous problems, respectively. We then have 

(5.15) ju - UhI1h < ju - f716R + jUh -ahlIsh + 1t f-hIRh.- 

By Lemmas 4.3 and 5.2, and since Mh and mh are bounded and linear we have 

(5.16) Iu - au IR + Uh - uhIRh? < C Cf- f Ia(R _ CE e 
Since (E & e(d) X el(a&R), we have 

lim |fl - Uh|Rh = 0 
h--o 

by (5.14), and the result therefore follows from (5.15) and (5.16). 
Remark. The interpolation technique can also be used to simplify the definition 

(2.7), (2.8) of the order of accuracy. Assume e.g. that (2.7) holds with X = v and 
that in addition the operator Ma has the property that for some C, 

IMhF(x)I < CIFIxj, x E (R. 

By consistency we find 

ILAu(x)I ? Cju12,Mx 

and therefore, (2.7) holds also with X = 0. Hence, (2.7) holds for general X with 
0 ? X < v by Lemmas 4.1 and 4.2 (with 9x instead of (R). 
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