
Asymptotic Behavior of Solutions to the 
Finite-Difference Wave Equation 

By Carl E. Pearson 

Abstract. A stable finite-difference scheme for the wave equation may possess features 
not shared by the underlying partial differential equation. These discrepancies are ex- 
plored; in particular, an asymptotic estimate for the magnitude of precursor effects is 
obtained. 

1. Introduction. A natural finite-difference approximation for the wave equation 

Utt = c uXX 

(c = constant) is given by 

(2) ujn+1 - 2U<n + u1 = a2(USA - 2u + u>1) 

where Ujn in Eq. (2) corresponds to u(jax, net) in Eq. (1), and where a = cet/ax. Here 
6t and Ax are the time and space intervals, respectively. We consider the case 
- o < x < oo, t > 0. It was shown by Courant, Friedrichs, and Lewy in a well- 
known paper [1] that if u 0 and ujl are prescribed for all j, then the computational 
process represented by Eq. (2) will yield values for ujn which converge to the exact 
solution of Eq. (1) as Ax -* 0 (for corresponding initial conditions), provided that 
the stability condition a < 1 is maintained. They point out that if a > 1, then the 
procedure (2) cannot possibly be convergent, because the domain of dependence 
of a point (x, t) via Eq. (2) does not include all points of its domain of dependence 
via Eq. (1), and consequently a change in initial values near the endpoints of the 
domain of dependence will affect the solution of Eq. (1) but not that of Eq. (2). 
Since the proof of reference (1) is nonconstructive, it does not shed light on two 
aspects of the stable case a < 1. The first of these is that the speed with which 
signals propagate under Eq. (2) is c/a, which in fact -> o as a -> 0; on the other 
hand, the signal speed associated with Eq. (1) is c. A second and related apparent 
paradox arises from the converse argument to that used by the above authors; 
since for a < 1 the domain of dependence for Eq. (2) includes points not in the 
domain of dependence for Eq. (1), it should be possible to alter the initial conditions 
so as to affect the solution of Eq. (2) but not that of Eq. (1). Of course, the fact that 
convergence does ensue as Ax -> , for any choice of a < 1, demonstrates indirectly 
that these two apparent discrepancies must become unimportant in some sense as 
Ax -> 0; nevertheless, it is of interest to demonstrate this result directly, and also to 
obtain explicit formulas for the errors. 

We first obtain an exact solution of Eq. (2), corresponding to the initial condi- 
tions uO? = A, uo1 = A + BUt with u?0 = ujl = 0 for all j 5 0. Any more general 
initial conditions can be constructed by means of a superposition of conditions of 
this form. We then consider the case a << 1, which accentuates the apparent paradox, 
and use the saddle point method to obtain explicit asymptotic expressions for ujn 
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valid for large values of j. In particular, a formula for the precursor signal is ob- 
tained, and it is confirmed that the speed with which a significant portion of energy 
is transmitted is indeed c. Our results are somewhat similar to those obtained for 
first-order equations by Kreiss and Lundquist [4] and by Apelkrans [5] who show 
that for dissipative difference schemes an error in initial data has an effect away 
from a characteristic which is of exponentially decaying order.* 

2. Solution of Eq. (2). To solve Eq. (2) subject to the initial conditions 

UO? A, UOl = A + Bbt (3) u0=, uo=+Y 

uj0 =0uj = 0 for j # 0 
we define the generating function 

n-1 oo 

(4) p~(z ) = 2 uz'= 8X} z 
-n+1 -0o 

where z is a complex variable. The initial conditions (3) correspond to 

(5) (PO~~(z) = A y p1 (z) = A + B&t . 

Multiplying Eq. (2) by zi and summing over all j, we obtain a difference equation 

for n (Z), 

sn1 _ 2[1 + (2'/2) (z + 1/z - 2) ]Pn + sn- = 0 

whose solution, subject to the initial conditions (5), is 

(6) ~n(Z) (A + B6t) -Ap- n +Ap+- (A + B6t) n 

P+ -P- p+ - p 

where 

=1 + 2 ? (2 4 + f4)1/2 

(7)~~~~~~~~ 2e 2 4t(1( 2) 

n = n~t 

Holding Ax and t (and therefore d) fixed, we now consider the case of large n; 
i.e., we permit a to become very small. An expansion in terms of (1/n) yields 

n (Z) 22 [e21/2#{21/2 _ 1 + 

(8) + 

+ Bt [e21/2#{1 + 1 32 - 
21/2 3 + 

2(2) 1/2,B 4 n2 12 n2 

_-21/2#( 113 2 12 NI3 
-e ~ l4+ 2+ J 

* It may be remarked that for a << 1, our initial conditions correspond to a discontinuity in 
the data; this affects conventional error estimates. 
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The value of ujn can now be obtained by contour integration 

U!& = e 
(Z)dz I 27ri IsZj+1 

where C is any closed contour enclosing the origin. Up to terms of order (1/n), this 
gives 

U~n_ = 2ildz A 
(e21/213 

+ e-21/23) + Bt (e21 /2 - 
e-21/2- 2wti J2z +1[ 21(2 

AO (e2l1/23 e-21/2] 

(We remark in passing that the first two terms correspond to the solution of 

2 ujlat2 = (c/lx)2[uj+1 - 2uj + uj11] 

for a function uj(t), satisfying the initial conditions 

uo(0) = A, uo'(0) = B, uj(0) = uj'(0) = 0 forj j O. 

With z = ei0, Eq. (9) becomes 

1f2JA (2ct .0\ Bvx sin (2ct sin 0 
u = _ IA cos sin 2+ 

sin 2 

(10) + Act sin 2 sin A sin t-ccostjOdO +~ 2 \ax si-jco2d 

___ BaX ct3 A (2ct\ 
AJ2 c() + 2c f J2j(w)dw + -- J2a- 

where various integral identities for Jp, the Bessel function of the first kind of order 
p, have been used. 

Write x = j~x, and denote ct/x by t. Equation (10) becomes 

BaX 2j~ A I (11) U !n = AJ2j(2ji) + 2c J J2j(w)dw + 2n t 2 j (2jt) 

3. Asymptotic Behavior. Our purpose is to evaluate Eq. (11) asymptotically as J 
becomes large, holding t fixed. Note that, for the corresponding solution of Eq. (1), 
the conditions t < 1 and t > 1 represent the nonsignal and the signal zone, re- 
spectively. Except for the integral term in Eq. (11), the desired asymptotic ex- 
pressions are readily available in the literature [2]. In Appendix I, the saddle point 
method is used to obtain an asymptotic expression for the integral term. Putting 
these results together, Eq. (11) becomes: 

(a) for t < 1, t = sech X 

(12) u ( tanhx) 1/2 A (1 + sn ) + Bc 1 
(4,j ta~nh )122n I 2c sinh Xi 
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(b) for > 1, sec X 

n 
A _ 

U . Cos (2j A tan X - XI 7r/4) 
(-xj tan X) 

sin X 
(13) - 2 sin (2j {tan X - X} -7r/4) 

+B [1 _ cos (2j {tan X- X} + 7r/4) 
2c (1rj tan X)112 sin X 

Equation (13) is easily seen to be compatible with the solution of Eq. (1) for the 
choice of initial conditions 

u (x, O) = A, u e (x, O) = B, for x in (-x/2, 3x/2) 

u (x, O) = O, u e (x, O) =O, for all other x . 

However, the point of present interest is that the precursor signal has the form given 
asymptotically by Eq. (12); since X > tanh X, it is indeed seen to be exponentially 
small. 

eix 

FIGURE 1 

Steepest Descent Path 
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Appendix I. The asymptotic expressions for 

fJ ,(x)dx 

for t fixed, v -> oo, do not seem to be readily available in the literature, and so we 
give them here. They are easily obtained by the saddle point method [3]. 

For t < 1, we write 

(I-2) J(x)= 11 dt e/2(t-l/t) 

where C is a contour starting at t = - oo, circling the origin once counterclockwise, 
and returning to - o. Integration yields 

(-3) I ) 2i (t-1) {[/2(t/t)n t] } 

Take C to lie outside the points t = dt 1; the second term then vanishes. To evaluate 
the first term asymptotically, for large v, choose the saddle point at to = eX (where 
sech X = t), and deform C to pass through this point. The result is found to be 

(I-4) 1 exp {-v(X - tanh X)} 
(2wrv tanh X) 1 2 sinh;\ 

Secondly, let t > 1, and set cos X = 1/h. Again we use the contour C of Eq. 
(I-3), but now C must pass through the two saddle points at to = exp (-tix). The 
steepest descent paths are as shown in Fig. (I); C coincides with them, except for the 
dotted line which transfers from one to the other. Because of the residue at t = 1, 
the second term no longer vanishes; evaluating the first asymptotically, and putting 
the two terms together, we obtain 

(I-5) I(iv) 1- (2 1 /2 cos {v(tan X - X) + 7r/4} \wvtan j sin X 
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