
A Steepest Ascent Method for 
the Chebyshev Problem 

By Marcel Meicler* 

Abstract. In this paper we present an efficient ascent method for calculating the minimax 
solution of an overdetermined system of linear equations Ax = b. The algorithm makes 
best use of all the information available at each cycle in order to force a very steep path to 
the solution. 

1. Introduction. The following notation will be used: xT is the transpose of the 
vector x. (x, y) = XT y is the inner product of x and y. A+ will denote the pseudoin- 
verse of the matrix A; i.e., A+ satisfies the four Penrose equations [9], AA+A = A, 
A+AA+ = A+, (AA+)T = AA+, and (A+A)T = A+A. 

2. The Least-Squares and Chebyshev Residual for the n + 1 X n Case. We now 
consider the system of linear equations Ax = b where A (n + 1 X n) is the co- 
efficient matrix whose rows are assumed to satisfy the Haar condition and 
b(n + 1 X 1) is the data vector. 

LEMMA 1. The pseudoinverse of the matrix 

A{DA 

where D has maximal column rank is given by 

A = (D+ - Jw: J), 

with 

J = aD+wT 

w = vD+ 

a = 17(1 + WWT) 

Proof. See [1], [4] or [5]. 
LEMMA 2. The least-squares residual is given by 

d = (AA+ - I)b. 

Proof. See [7]. 
THEOREM 1. If 

(D\ _ bD~ A = (D) and b- 

ihen 
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d = a(b, - wbD)( _1) 

where 

a = 1/(1 + WWT) 

Proof. The theorem is obtained by direct substitution into Lemma 2. 
THEOREM 2. With the same notation as in Theorem 1, the amplitude e of the Cheby- 

shev residual t is given by 

(2) l~~~~~~~b, - wbDJ (2) 1 + EiY&j Jwil 

Proof. It is known that e dTd/dTr, where o- is the sign vector of d [7]. Thus, if 
we let /3 a(b -wbD), 

A[WWT+1] _ I3V( 1 ) | - wbDI| 

fl[wo' + 1 ] a \wo-+1 1 + = I 1w4 

where od' is o- restricted to its first n components. 
COROLLARY 1. The Chebyshev residual t itself is given by t = E S-. 
Proof. See [7]. 

3. Discussion. The expression (2) of the Chebyshev amplitude is similar to 
those obtained by Moursund in [8] and Bartels and Golub in [2]. As pointed out by 
the referees, further investigations might result in interesting relationships between 
these expressions. 

4. The General Case. Let Ax = b be an inconsistent system of m linear equa- 
tions in n unknowns (m > n), such that the rows of A satisfy the Haar condition. 
Let Ai be an arbitrary matrix consisting of n + 1 rows of A. If a row partition of 
Ai is given by 

Ai DA AJ=(VD) 

with v a row vector, then D is nonsingular and an expression for the Chebyshev 
amplitude is given by (2). 

We will now present several lemmas which will enable us to describe an exchange 
algorithm. 

If a row of the matrix Ai is replaced by a vector p, the following two cases are 
expected. 

Case 1. The last row of Ai is changed. To obtain the new w, we must compute 
= pD-1. 
Case 2. If any other row of Ai is changed, the next two lemmas will provide a 

method for computing w-. 
LEMMA 3. Let D be a nonsingular matrix and C1, C2, *.*, Cn the columns of its 

inverse. Let D7 be the matrix obtained by replacing the jth row of D by vector p. If 
X = (p Tj Cj) = 0, then D is nonsingular and the columns of its inverse are given by 
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Ci = Ci - 
(p , C,)Cj) i j . 

Proof. (See [3, p. 49].) 
LEMMA 4. If the jth row of Ai is replaced by vector p, then w is obtained by 

wj = X-'wi 
and 

Wi = Wi - (p, Ci)wj, j . 

Proof. Since w = vj-I and D-' is given by Lemma 3. 
LEMMA 5. wbD- = wbD + f[bp - pCbD]. 
Proof. Let -y i = (p T, Ci), i #? j where 3 = w- 

Wbi= E W-bDi +W-jbp 

= E wjbDj - 3 -yjbDi + bp- 

Also 

[bp -pCbD1] = A{bp - yibD i- wjbD 

and 

wbD = Z wjbDi + wjbDj1 
i9j 

Thus 

WbD = wbD + 3[bp - pCbD]. 

LEMMA 6. O wil = I03 + Ei; |wj - 0wjj. 
Proof. Since w byj is independent of bj, we obtain the lemma by equating the like 

coefficients of the b's. 

LEMMA 7. The minimax solution for any subsystem A J is given by x = 

D-1(bD + Eo-), where a- is the sign vector of w. 
Proof. Let t be the minimax residual. By Corollary 1 t = Eo-. Since the system 

A x = bi + t is consistent, we can solve 

Dx = bD + IEc- 

LEMMA 8. The residual kp corresponding to any row vector p of A is given by 

kp = px - bp = pD-1bD - bp + EpD- - . 

Proof. Use Lemma 7. 
LEMMA 9. If I kpI > E, then there exists an index j E J such that the exchange of 

p and A j will ensure a greater minimax amplitude E'. 

Proof. (See [6, Theorem 5, p. 77].) 
LEMMA 10. Let N, and Np represent b, - wbD and bp - pCbD, respectively. Then 

= IN,-NpI 
1+IwEiO 



816 MARCEL MEICLER 

Proof. 

Ibv-WbDI Ibv-wbD-NpI_ _N- -NV 
e 1+ E IF -I 1+ EIwil - 1+ E wT 

5. Algorithm. We are now ready to describe the algorithm. We choose any 
n rows of A to form a basis matrix D and express all other rows of A in terms of that 
basis. Since any vector p, not in D, together with the n elements of the basis will 
generate an E, we obtain with the use of (2), (m - n) different values of E. The 
largest one of these will be the current value, E', of the minimax amplitude. Lemmas 
7 and 8 enable us to compute the residual vector k. Lemma 9 guarantees at least one 
possible exchange for the largest residual (in absolute value) and with the aid of 
Lemma 10 we can predict the value of any interchange. We will follow the maximum 
value. The outgoing row will be part of the basis since v, the last row of Ai, is a 
member of the set which generates E'. The process is terminated when the maximum 
residual (in absolute value) equals the amplitude. 

6. Example.** 

2 11 6.9 

3 iJ 7.2 

A= 1 21, b= 7. 

1 ii3 
1 -ii - 

We have the following sequence: 

2 1 6.9 1 0 0 
3 1 7.2 3/2 -1/2 -3.15 
1 2 7 1/2 3/2 3.55 
1 1 3 1/2 1/2 - .45 
1 -1 1 1/2 -3/2 -2.45 

E k 
1 0 0 * * 

0 1 0 * * El E2 

5 -3 -5.9 .655 1.3 .775 .98 
2 -1 -3.6 .9 .9 

-4 3 7.0 .875 - .7 

Thus the pivot is (3, 2). 

E k 
1 0 0 * * 

5/3 -1/3 -1.966 .655 .66 
0 1 0 * * 

1/3 1/3 -1.634 .98 .98 El/ E2' 

1 -1 1.1 .366 -1.1 1 .775 

* * This example is a slight modification of the one found in [3, p. 44]. 
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The pivot is (5, 1). 

E k 
1 1 -1.1 .366 - .9 

5/3 4/3 -3.8 .95 .8 
0 1 0 * * 

1/3 2/3 -2 1 1 
1 0 0 * * 

Thus J = {3, 4, 5}, E = 1, x = (2, 2). 
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