
Some Limiting Cases of the G-Transformation* 

By H. L. Gray and W. R. Schucany 

Abstract. In this paper some new nonlinear transformations are introduced. They arise 
from considering the limit of the G-transformation as a particular parameter approaches 
its limiting value. The primary purpose of these transformations is to increase the rate of 
convergence of an improper integral. However, by introduction of an iteration method 
it is shown that they may also be used to produce approximating functions for the tail of 
an improper integral. Several examples are included. 

I. Introduction. In [6], [8], [11] H. L. Gray and T. A. Atchison have introduced 
some transformations which are of some value in evaluating improper integrals. In 
general, these transformations are a function of an unknown parameter k. Moreover, 
in [11] it was demonstrated that for some cases these transformations are increas- 
ingly effective as k approaches a limiting value. This latter observation has, in fact, 
been used by Gray and Schucany [10] and Gray, McWilliams and Thompson [12] to 
produce approximating functions for Mill's ratio, and the Chi-square integral. In 
both of these latter papers only a limiting case of the so-called G-transformation was 
used. In this paper the limiting transformations of both the G and B transformations 
of [11] are considered in somewhat more detail than previously studied. Illustrative 
examples are included. For clarity we now give the following definitions. 

Definition 1. Let f be a real valued function of a real variable x such that f is 
continuous for a < x < oo and F(t) = fS f(x)dx converges as t -- oo. Further, let 

(1.1) R1(t; k) f(t + k) 
f (t) 

and 

(1.2) R2(t; k) = - f(kt) 
f (t) 

if f(t) = 0. If f(to) = 0 and limteto R1 (t; k) and limtto R2 (t; k) exist, we define 
R1 (to; k) and R2 (to; k) to be those limits. Finally, if R1 (t; k) and R2 (t; k) are de- 
fined and different from 1, then we define the G and B transformations by 

(1.3) G[F; t; k] F(t + k) -R, (t; k)F(t) 1- R(t; k) 

and 

(1.4) B[F; t; k] = F(kt) - R2(t; k)F(t) 1 - R2(t; k) 
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in (1.4). 
As mentioned above, in [11] it was shown that in some cases (1.3) and (1.4) give 

increasingly better approximations for F(oo) as k -* 0 and k -* 1 respectively. To 
exploit this idea we shall examine these limiting processes in the following theorems. 

II. A New Class of Transformations. 
THEOREM 1. If f is differentiable on (a, oo) and F is the function described in 

Definition 1, then when the limk 1 B[F; t, k] exists we have 

(2.1) lim B[F; t, k] = F(t) - tf (t) + f(t) when tf '(t) +f(t) f 0 . 

[In the above and in that which follows the prime will always denote differentia- 
tion with respect to the argument t.] 

Proof. 

(2.2) lim B[F; t, k] = lim F(kt) - R2(t; k)F(t) 
k-d+ k-.+l 1 - R2 (t; k) 

(2.3) = lim f(t)F(kt) kf(kt)F(t) 
k-+1 f (t) -kf (kt) 

(2.4 ) = lim F (t) [kf (kt) -f (t) -f (t) [F (kt) - F (t)] (2.4) 
lim~~~-+ kf (kt) - f(t) 

k- fFt f(t) (F (kt) 
- F(t)) /(k - 1) 1 

(2.5) = lim {F~t) (kf(kt) - f(t))/(k - 1) 

Next, let k = 1 + Ak and the above limit becomes 

(2.6) F(t) - lim f(t)(F(t + tAk) - F(t))/Ak 
Ak-~o (f (t + tAk) - f (t)) /Ak + f (t + tAk) 

Hence, letting At = t Ak we have 

(2.7) lim BEE; t, k] = F(t) - lim tf(t) (F(t + At) - F(t))/At 
k-+1 [A eto t(f (t + At) -f (t))/At + f (t + At) 

(2.8) = F (t) - t f(t) 
tf'(t) + f t) 

THEOREM 2. If f and F are the functions described in Theorem 1, then 

(2.9) lim G[F; t, k] = E(t) - f2 (t) when f '(t) $= O . 
k-+O f't) 

In the above we are of course assuming the existence of 

limG[F;t, k]. 
k-+O 

Proof. The proof is somewhat similar to that of Theorem 1 and hence will not 
be given. 
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Clearly Theorems 1 and 2 lead us to two distinct limiting transformations. 
However, due to the similarities between these two transformations, it is possible 
to combine both of them under one definition as follows: 

Definition 2. For the functions f and F previously discussed we define the C, 
transformation by 

C =[ t F (t) - t f2(t) 

(2.10) tf (t) + pf(t) 

= F(t) _t~f, (t) 0< P< 1 

Obviously when p = 1 and p = 0, (2.10) becomes (2.1) and (2.9) respectively. 
The full significance of the parameter p in (2.10) has not been established. However, 
(2.10) has the immediate advantage of unifying (2.1) and (2.9) and hence eliminat- 
ing the necessity of studying them separately. 

For clarity we include one additional definition. 
Definition 3. If A(t) and B(t) are two sequences of real numbers such that 

lime 00 A(t) = A $ i oo and limt t B(t) = B $ i oo, then we say A(t) con- 
verges uniformly better than B(t) on (a, b) if and only if 

(2.11) A -A(t)j < JB-B(t)j 

for every t E (a, b). 
Further, if 

A - A _t 
(2.12) lim A(t) o 

t-+ B - B (t) 

then we say A (t) converges more rapidly than B(t). 
THEOREM 3. If A(t) converges more rapidly than B(t), then there exists an ao such 

that A (t) converges uniformly better than B(t) on (ao, oo). 

Proof. The result is obvious. 
THEOREM 4. If limt 0 I (A - A (t))/(B - B(t)) I exists and is not equal to one, 

then a necessary and sufficient condition that there exist an ao such that A (t) converges 
uniformly better than B(t) on (ao, oo) is that 

(2.13) lim A A (t) <1 
t-.foB - B(t) 

Proof. The proof is quite simple and hence will not be given. 
THEOREM 5. If 

(2.14) him F(o() - Cv[F(t)] # 1 

but does exist, then a necessary and sufficient condition that there exists an ao such that 

C, [F(t)] converges uniformly better than F(t) to F( oo) is 

(2.15) 0 < lim tf2(t) < 2 
t-0oo [tf'(t) + pf(t)]E(t) 
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or 

(2.16) 0 < lim tpf(t) f(t) < 2 

where E(t) = F(t) - F(oo). 
Proof. By the previous theorem a necessary and sufficient condition that 

Cp[F(t)] convergence uniformly better than F(t) to F( X) on some interval (ao, oo) 
is that 

(2.17) -1 < lir F(oo) - {F(t) - tf2(t)/(tf'(t) + pf(t))} < 
t--+00 F(oo) -F(t)<1 

The latter is true, however, if and only if (2.15) holds and the theorem follows. It 
should be pointed out that (2.15) is useful although at first glance it appears to 
require F( oo) to establish whether or not it is satisfied. This, of course, may not be 
the case as will be demonstrated in a later example. 

THEOREM 6. A necessary and sufficient condition that Cp[F(t)] converge more 
rapidly than F(t) to F(o ) is that 

(2.18) lim tf2(t) 
t-em [tf'(t) + pf(t)]E(t) 

where E(t) = F(t) - F(oo). 
Proof. We note that 

(2.19) F(oo) - Cp[F(t)] - 1 tf2(t) 
F(oo) - F(t) [tf'(t) + pf(t)]E(t) 

and the result follows. 
THEOREM 7. If limt tO f(t) and limt f(t)/f'(t) exist (finite) and the latter is not 

zero, then Cp[F(t)] converges more rapidly than F(t) to F( oo). 

Proof. 

(2.20) lim tf2(t) = lim f(t)/f (t) f(t) 
t-+o [tf'(t) + pf(t)]E(t) t- Ox 1 + (p/t)f(t)/f'(t) E(t) 

Now since F( oo) exists and limtew f(t) exists, then limea f(t) = 0. Thus since 
limit wf(t)/f'(t) exists, we have 

(2.21) lim f(t)/f'(t) - lim f(t) _lim (t) 
t-eOO 1 + (p/t)f(t)/f'(t) t-00 f'(t) t-OO f (t) 

by L'Hospital's rule. Now since this limit is not zero, the result follows immediately 
from (2.20). 

THEOREM 8. If f(t) has a countable number of zeros, limetMOO tf(t) exists and the 
lime t. f(t)/[tf(t)]' exists and is different from zero, then Cp[F(t)] converges uniformly 
better to F( c*c) than F(t) on some interval (ao, c*) for every p. Moreover, if p = 1, then 
Cp[F(t)] converges more rapidly to F( sc) than F(t). 
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Proof. 

lim tf2(t) = lim f(t) tf(t) 
(2.22) t--oo [tf'(t) + pf(t)]E(t) t- 0 tf'(t) + pf(t) E(t) 

= lim [tf(t)]' f(t) tf(t) 
t X~0 [t f(t)] I+ (p -l1) f(t) [t f(t)]' E (t) 

(2.23) = lim [tf( t)]'/f(t) f(t) tf(t) 
t--,O [tf (t)]I'If (t) + (p-1 [tf (t) I E (t) 

Now the limit of each of the factors in (2.23) exist by our assumption and tf(t) 0 
as t -* oo since limit 0O tf(t) and limit >,. F(t) exist. Also, by L'Hospital's rule 

f Wt) ____ 

(2.24) lim f(t) - 1 

Therefore 

(2.25) lim tf2(t) u 
t-+oo [tf'(t) + pf(t)]E(t) U + P-1 

where 

(2.26) U = f(t 
t-+ f (t) 

Hence, if p = 1, Cp[F(t)] converges more rapidly than F(t) to F( oc) by Theorem 6. 
Now to show the remaining part of the theorem we note that p - 1 < 0 and hence 
if u < 0, (2.25) satisfies Theorem 5 and the result is established. Since limt0 
f(t)/[tf(t)]' exists, u 0 0. Now suppose u > 0. Then there exists a T such that 
[tf(t)]'/f(t) > 0 when t > T. 

Simplifying (2.26) we have 

(2.27) f'(t)/f(t) >-l/t, t > 1 . 

Now if f(t) 0 O for t > T we have for t1 > t2 > T 

(2.28) fn If (t) > In t2 

or 

(2.29) t1I f(t1)Jl > t2 ff(t2)1 > 0 

However, since f(t) has only a countable number of zeros, we can select t1 > t2> T 
so that f(t) 0 0, t E [t2, t1] and (2.29) still holds. But the latter implies limt 0O 
tf(t) 0 0 which cannot be since F(t) converges as t oo and limt 0, tf(t) exists. 
Hence u < 0 and 

(2.30) 0 < U/(U + p-1) <1, 
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and the theorem follows. Example 1 below shows that if p 5 1, Cp[F(t)] may not 
converge more rapidly to F( oo) than F(t) even though the conditions of Theorem 8 
are met. However, we do have the following generalization of the second part of 
Theorem 8. 

THEOREM 9. If limtO [tPf(t)] exists and limto f(t)/[tPf(t)]' exists and is different 
from zero, then Cp[F(t)] converges more rapidly than F(t) to F( oo). 

Proof. The proof follows much the same line as the case p = 1 in Theorem 7. 
A natural question which arises in regard to transformations such as Cp[F(t)] is 

the question of exactness. That is, for what functions is Cp[F(t)] F( oo) for some p 
and all t > to > a. In regard to this we have the following theorem. 

THEOREM 10. A necessary and sufficient condition that there exists a to such that 

(2.31) Cp[F(t)] F(oo), if t > to 

is that 

(2-32) f(t) =cit-pe-Ct'-p p 7'? 

and 

(2.33) f(t) = C3tUc4 p = 1, 

when t > to. The quantities cl, c2, C3 and C4 are arbitrary constants satisfying the con- 
ditions c2 > 0 and c4 > 1. 

Proof. Suppose there exists a to such that (2.31) holds. Then 

(2.34) F(t) - F(oo ) = tf2(t)/(tf'(t) + pf(t)), t > to. 

Now letting y = F(t) - F( oo) we can write (2.34) in the form 

(2.35) y = t(Y')2/(ty" + py'), t > to . 

Solving this equation yields (2.32) and (2.33) as necessary conditions for the ap- 
propriate value of p. Substitution in (2.31) easily shows the sufficiency. 

Example 1. Let 

F(t)= x-dx, a > 1. 

By Theorem 10 Ci is exact and C1[F(t)] (al-a)/(l - a), for all t > a > 0. It 
should be noted that for this function if p 7 1 then Cp is not exact. In fact, if p F 1, 
Cp[F(t)] does not converge more rapidly than F(t), although it does converge uni- 
formly better than F(t) to F(oo). Another comment worth making is that in this 
case it can easily be shown that the error in approximating F(oo) by Cp[F(t)] is a 
monotone decreasing function of p. 

Example 2. 

(2.36) F(t) = A-% f e-2dx - erfc(a) as t -* oo 

where 0 < a < oo. 
In this case 
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(2.37) lim f(t) = 0 
t-+oo f'(t) 

so that Theorem 7 is of no value. However, it is easy to show (without knowing a 
closed form for E(t)) that 

(2.38) liml 
tf(t -- lim =1 

t-+oo [tf'(t) + pf(t)]E(t) t-+00 (2t) J e-62dx 

so that by Theorem 6 Cp[F(t)] converges more rapidly than F(t) to erfc (a). 
In particular suppose a = 1 and p = 0. Then 

(2.39) F(t) = j 2dx 

and 

2 ft 1 - et 

(2.40) Co[F(t)] = e-2dx + - 

Thus, for example, we have the following: 

F(oo) - .15729921 

t F(t) Error Co[F(t)] Error 

1.0 0.0 .15729921 .20755375 .05025454 
1.5 .11340435 .04389487 .15304778 .00425144 
2.0 .15262147 .00467775 .15778822 .00048900 

m. Iterated C, Transformations. Thus far we have only considered C, applied 
to F one time. It is interesting to consider the possibility of applying C, repeatedly 
to F. Of course, this is not directly possible since Cp[F(t)] is not in the domain of 
C,. However, by noting that 

(3.1) Cv [F (t)] I 
j {fx - dxx (- a'a fa la { [SXf, W + pf W ] af'(a) + pf (a) 

for functions with appropriate differentiability properties, we see that it would be 
possible to define what we might consider an iterated C, transformation. Thus it 
would seem logical to define Cp2 by 

(3.2) Cp2[F(t)] = Cd f {f(x)-[ fjf( ) - af2(a) f W 
Xf , W + Pf Waf '(a) + pf (a) 

This leads us to the following definition. 
Definition 4. Let A and B be operators defined by 

(3.3) AO4(t) = e'&2 (t) 

[tan(t)]' 
and 
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(3.4) BH(t) = j(t) - [A4(t)]' 

Then we define Cn by 

n-1 
(3.5) C, [F (t)] = F (t) - E ABkf (t) 

k=O 

provided ABkf(t) is defined and finite for every t E [a, oo), k = 0, *, n -1. From 
the above it is clear that Cpn[F(t)] -* F( oo) as t - oo if and only if 

n-1 
(3.6) lim E ABkf(t) = 0. 

t-+oo k=O 

Now notice that 

/t n-1 n-1 

(3.7) fBn[f(x)]dx = F(t) + A{Bk[f(a)]} -E A{Bk[f(t)]} 
a ~~~ ~ ~~k=O k=O 

Hence we could write 

rt n-1 

(3.8) Cp, [F(t)] = 
f 

Bn[f(x)]dx- nA k[f(a)] 
aBk=O 

and thus for functions such that 

(3.9) lim f BnLJ(t)]dt = 0, 
n-+oo a 

and (3.6) holds for every k, we have 

r00 00 
(3.10) F(oo) = f f(t)dt = - iA{Bk[f (a)]} . 

a ~~~k=O 

In general it may be difficult to determine just when (3.10) is valid. However, 
this does not mean it cannot be used to suggest approximating functions for F( 00) 
that may be checked for validity in other ways. This is illustrated in the examples 
which follow. 

Example 3. Consider the right tail of the Chi-square distribution function, i.e., 
Q(x2Iv) where 

(3.11) Q(x2Iv) = Q(2u12v) = ) f e x 'dx 

The two-term approximating sum with p = 0 (i.e. applying Co2) is 

-e(U-V) ( vF v - ii 12v31/2 
(3.12) Q(2uI2v) _ C(2u, 2v) 2rb (VJ - b2 + 2uJ 12v + 1l 

where b = u - v + 1. This approximation has been studied by Gray, Thompson 
and McWilliams [12]. They found it to be quite accurate over most of the range 
of values of x2 and v for which Q(x21 V) < .1. A sample of the results of this approxi- 
mation are given in the following table. The value of C(X2, v) was computed for 
v = 1, 2, 5, 10, 20, 30, 100, 250, 500, using the values of x2 which yielded Q(x21') = 

.1, .05 and .01. 
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v Q C(x2, v)-Q 
1 .1 -.00105 
1 .05 -.00028 
1 .01 -.00002 
2 .1 .00010 
2 .05 .00005 
2 .01 .00001 
5 .1 .00054 
5 .05 .00013 
5 .01 .00000 

10 .1 .00058 
10 .05 .00010 
10 .01 .00000 
30 .1 .00038 
30 .05 .00004 
30 .01 -.00001 

100 .1 .00007 
100 .05 -.00022 
100 .01 -.00004 
250 .1 -.00001 
250 .05 -.00033 
250 .01 -.00006 
500 .1 - .00018 
500 .05 - .00043 
500 .01 -.00007 

For another example of the iterated Co see [10]. 
Example 4. 

F(4, k) = f (1 -k2 sin2 t)-I "2dt 

and we define 

m k2 

[(2 - m) 1/3 [(1 - 2m) 1"/3 
1 + m) >o =[(m -2)(m + 1)] 

(1 + rn) 2 1 /3a-C 
(3.13) ~C = 0 ) <?x= 

C + a 2 (3.13) m -2 sin~ 

h = a[C + b(2m - 1)] <0, g = 2m - 1 

S = 2[ 3a ] r(x) = x + hx + g, 

and 
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1(x)=f [r(t)]112dt 
x 

then (see [7]) 

F(4, k) =S-'I(x). 

Now using p = 1, which is certainly suggested by Theorem 8 if n = 1, and taking 
only the first term in (3.10) as an approximation for I(x) we have 

(3.14) I(x) = 2xC2'12(X)/C3(X), 

where 

(3.15) C2(X) = X3 + hx + g 

(3.16) C3(X) = X- hx - 2g. 
The approximation (3.14) is undoubtedly quite rough. However, the following 
table, with k = sin a, indicates I(x) is better than one might expect. 

a 0 F(4, a) F(4, a) 
20 50 .087264 .087271 
20 100 .174534 .174651 
20 200 .349074 .351937 
40 50 .087267 .087271 
40 100 .174537 .174654 
40 100 .349100 .351952 

100 50 .087270 .087274 
100 100 .174559 .174673 
100 200 .349275 .352058 
300 50 .087294 .087297 
300 100 .174754 .174850 
300 200 .350819 .353172 
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