
Lucasian Criteria for the Primality of N=h 2n- 1 
By Hans Riesel 

Abstract. Let vs = v2 - 2 with vo given. If vn-2 _ 0 (mod N) is a necessary and sufficient 
criterion that N = h -2n - 1 be prime, this is called a Lucasian criterion for the primality 
of N. Many such criteria are known, but the case h = 3A has not been treated in full 
generality earlier. A theorem is proved that (by aid of computer) enables the effective 
determination of suitable numbers vo for any given N, if h < 2n. The method is used on all 
N in the domain h = 3(6)105, n < 1000. The Lucasian criteria thus constructed are ap- 
plied, and all primes N = h . 2n - 1 in the domain are tabulated. 

Introduction. Let uo > 3 be a given integer, and define u, = u_- 2 foriv = 1, 
2, 3, *... The numbers u, are said to form a Lucasian sequence with its first element 
- uo. If h is odd and if 2n > h, then necessary and sufficient criteria for the primality 
of N = h . 2n- 1 exist, and are known for many values of h and n. These criteria 
are of the following type: For a suitable value of uo, the number N is prime, if and 
only if Un-2 0_ (mod N). If h = 1, the value uo = 4 will fit for all odd values of 
n (Lehmer [2]), and uo = 3 will fit for all n 3 (mod 4), (Lucas [3]). If h = 3, the 
value uo = 5778 will fit for n- 0, 3 (mod 4) (Lehmer [2]). If h = 6a it 1 and 3 t N, 
the value uo = (2 + V/3)h + (2 - /3)h will fit for all n (Riesel [4]). 

The mentioned necessary and sufficient criteria for the primality of the numbers 
N = h-2n -1 are said to be of Lucas' type. The importance of these criteria lies 
in the fact that they are the most efficient primality criteria hitherto deduced. 

Apart from the results, mentioned above, and some other similar results, like- 
wise of limited generality, nobody seems to have undertaken a systematic study of 
the problem of finding a Lucasian criterion for a given combination of h and n. This 
is, no doubt, due to the large volume of computation needed in trying out different 
possibilities for uo. By use of electronic computers, however, this is a feasible task, 
and the objective of this paper is to show how it can be done. Finally, we have 
used the technique to find all primes N = 3A .2n - 1 for all odd A < 35 and all 
n ? 1000. 

Known Results, Needed in our Proofs. We take the following well-known 
Theorems 1-2 from the arithmetical theory of quadratic fields K(V\D) (see, e.g., 
Hardy and Wright: Theory of Numbers) for granted: 

THEOREM 1 (FERMAT'S THEOREM IN K(V\D)). If a is an integer in the quadratic 
field K(VD), if p is an odd rational prime, and if (a, p) = 1 in K(V\D), then 

ax 1 (mod p), if (DIP) = 1, 

ac+ _aUc (mod p), if (DIP) =-1 . 

(D/P) means Legendre's symbol, and D is a square free integer. 
THEOREM 2. If a natural number K exists, such that 

K 
a -1 (modp), 

then a smallest natural number k exists, such that 
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a -1 (modp), 

and 

K = k (an odd number) 

The smallest natural number e, such that 

a' +1 (modp), 

is e = 2k. 
Two Theorems, Basic for Lucasian Criteria. We now proceed to prove the follow- 

ing two theorems: 
THEOREM 3. If N is a prime, (DIN) = -1, 

a = ( bVD)2 and (r/N) -a b - 
= , 

r r 

then 

(N+1)/2 =-1 (mod N). 

a, b and r are rational integers. If D 1 (mod 4), however, a and b may both be odd 
integers times 1/2. It is no loss to omit this possibility, since a multiplication of a, b, 
and r'1/2 = (a2- b2D)"/2 by the same constant does not change the theorem. 

Proof. 

(N+1)/ = (a + bx\/D) N+l/r( N+1) /2 

(N-1 /2 a 2- 
2 

(a + b\/D) (a - b\D)/ (r~ l /2*r) _ (r/N) r 

-1 (modN), 

according to Theorem 1. 
THEOREM 4. If N = h *2n - 1, h < 2n, n > 2, h is odd, a is an integer of K(v/D) 

of the form a = (a + bV/D)2/la2- b2DI, (a, N) = 1 in K(./D), and 

a(N+1 /2 =-1 (mod N), 

then N is a prime. 
Proof. Let p be an arbitrary prime factor of N. Then obviously, 

a (+1) /2 =-1 (mod p) 

According to Theorem 2, then (N + 1)/2 = h .2n-1 = k u, where k is the smallest 
exponent > 0 with ak _ -1 (mod p), and u is an odd integer. Thus k = 2n-1 6, 
w yB~sQ iesg7 ht UPe smallest e > 0 with ae 1 (mod p) will then be e = 2k = 

2n.* > 2n. 

Now, Theorem 1 gives 
(p-i)-/2 = (a + bV\D)'P-/Ia2 

- b D I /2 

(1a2 _62 Dl) (mod p), if (Dip) = + 1 

and 
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(pl 2 a' - b'D (la2- b2Di 
(p+)/2 = ) (modp), if (D/p) =-1. 

Ia 2- b2DIj 

By squaring, we get 

aPi -1 (mod p). 

Now, since e > 2n, we find that p ? 1 _ 2n for any prime factor p of N. The smallest 
possible p would then be p = 2n - 1. Since N is no square (N 3 (mod 4), since 
n > 2), a factorization of N would yield 

N = paq > p(p + 2) > (2' - 1)(2' + 1) = 2 -2' - 1 > h*2 _ 1 = N, 

a contradiction. Thus N is prime. 
Lucasian Criteria for Primality. The Theorems 3 and 4 together form the basis 

for the both necessary and sufficient Lucasian prime-criteria for numbers of the 
form h -2n - 1, if h is odd and < 2n, and n ? 2. Suppose that we have found num- 
bers D, a, b, and r = a2- b2D I, such that all the conditions in Theorem 3 are ful- 
filled. Then, since 

h.28 h.28)2 = 28+1 h. 2 8+1 

(a.28 + 
- 

h. + a- + 2 

we find the recursion formula 

US+ = us- 2 

if we choose 

h.2s hn28 

Furthermore, 

h.2fl 2 -h 2fl-2 
Un.2 = -t + LE 

=a (ca + 1) O (mod N) 

will be a necessary and sufficient condition for the primality of N, since ca-h 2n-2 is a 
unit of K(VD). (N(a) = ca = (a2 - b2D)2/1a2- b2DI2 = 1), and so a and ach.fl-2 

are units of K(V\D). So, since uo = ah + a-h, we get the following: 
THEOREM 5 (LUCAS' CRITERIA FOR h *2n - 1). Suppose that n > 2, h is odd < 2n, 

N = h*2n - 1, r = Ia2- b2DI with square free D, a = (a + b-/D)2/r, (D/N) = -1, 
and (r/N) (a2 - b2D)/r = -1. Then a necessary and sufficient condition that N shall 
be prime is that 

Un-2_0 (mod N), 

if u1 = u;o-1 - 2 with uo =& + a!. 

Remark. It would be possible to give a weaker condition than h < 2n in the same 
way as is shown in [4]. 

Since a is a unit of K(-\D), a = e8, where s = 1, 2, 3, ***, and e is a fundamental 
unit of K(V\D). If e has a representation of the form e = (a + b/D)2/r, s must be 
odd, since an even number s in this case would give already a(N+')/4 _-1 (mod N) 
in Theorem 3, and thus un-s 0 (mod N). The simplest choice of a is thus a = (, if 
e = (a + V.D)2/r, and a = 02, if e lacks such a representation. 
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TABLE 1. 

Values of D and representations of the fundamental units e = (a + bV/D)2/r in 
K(VD) for v1 = e + e-1 < 100. In some cases E2 is used instead of E. 

v1 D a b r (a2-b2D)/r v1 D a b r (a2-b2D)/r 

3 5 1 1 4 -1,E 2 54 182 13 1 13 -1 
4 3 1 1 2 -1 55 3021 53 1 212 -1 
5 21 3 1 12 -1 56 87 9 1 6 -1 
6 2 1 1 1 -1, 62 57 3245 55 1 220 -1 
8 15 3 1 6 -1 58 210 14 1 14 -1 
9 77 7 1 28 -1 59 3477 57 1 228 -1 

10 6 2 1 2 -1 60 899 29 1 58 -1 
11 13 3 1 4 - 1, E2 61 413 21 1 28 +1 
12 35 5 1 10 -1 63 3965 61 1 244 - 1 
13 165 11 1 44 -1 64 1023 31 1 62 - 1 
15 221 13 1 52 -1 65 469 21 1 28 - 1 
16 7 3 1 2 +1 66 17 4 1 1 - 1 E2 

17 285 15 1 60 -1 67 4485 65 1 260 - 1 
19 357 17 1 68 -1 68 1155 33 1 66 - 1 
20 11 3 1 2 -1 69 4757 67 1 268 - 1 
21 437 19 1 76 -1 70 34 6 1 2 + 1 
22 30 5 1 5 -1 71 5037 69 1 276 - 1 
24 143 11 1 22 -1 72 1295 35 1 70 - 1 
25 69 9 1 12 + 1 73 213 15 1 12 + 1 
26 42 6 1 6 - 1 74 38 6 1 2 - 1 
27 29 5 1 4 -1, 62 75 5621 73 1 292 - 1 
28 195 13 1 26 - 1 76 1443 37 1 74 - 1 
29 93 9 1 12 - 1 77 237 15 1 12 - 1 
30 14 4 1 2 + 1 78 95 10 1 5 + 1 
31 957 29 1 116 - 1 80 1599 39 1 78 - 1 
32 255 15 1 30 - 1 81 6557 79 1 316 - 1 
33 1085 31 1 124 - 1 82 105 10 1 5 - 1 
35 1221 33 1 132 - 1 83 85 9 1 4 - 1, C2 

36 323 17 1 34 - 1 84 1763 41 1 82 - 1 
37 1365 35 1 140 - 1 85 7221 83 1 332 - 1 
38 10 3 1 1 - 1,1 2 86 462 21 1 21 - 1 
39 1517 37 1 148 - 1 87 7565 85 1 340 - 1 
40 399 19 1 38 - 1 88 215 15 1 10 +1 
41 1677 39 1 156 -1 89 7917 87 1 348 - 1 
42 110 10 1 10 -1 90 506 22 1 22 -1 
43 205 15 1 20 +1 91 8277 89 1 356 - 1 
44 483 21 1 42 - 1 92 235 15 1 10 -1 
4A 2021 4. 1. L7.2 - 1 Q3. 86i4. 9.!. ! (A1-1I 
46 33 6 1 3 + 1 94 138 12 1 6 + 1 
48 23 5 1 2 +1 95 9021 93 1 372 - 1 
49 2397 47 1 188 -1 96 47 7 1 2 +1 
50 39 6 1 3 - 1 97 1045 33 1 44 + 1 
51 53 7 1 4 - 1,Y 2 99 9797 97 1 388 - 1 
53 2805 51 1 204 - 1 100 51 7 1 2 - 1 

We thus find that, given h and n, the "only" thing to do is to try different values 
of D and check if the fundamental unit e (or sometimes 02) of K(-/D) fits into the 
conditions of Theorem 5. Having found D and a, we can calculate uo (or, if N is 
large, preferably uo (mod N)) by using the well-known recursion for v, = a" + a-": 
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vo = 2, v = 
CZ 

+ a1, v, = (a + a1)v,1 - 
v,-2. The Choice of D and vi. As usual in problems with conditions on (D/N), it turns 

out that a certain value of D will fit for values of n in certain arithmetic series, 
provided h is fixed. It is possible to state all the results in this form, but it is a rather 
complicated and impractical way of describing the situation. Instead one can try 
to find a D for each combination of h and n in a certain region. 

In which order are the different D's to be tested? Since nothing in particular is 
known about the D's in the general case, the author chose to try the values of D in 
increasing order of magnitude for the numbers v1 = a + a-'. This gives the smallest 
possible values of uo. However, it was then first necessary to find a connection be- 
tween D and vi. This is simple. Since vl = a + a-', we find2 - Vla + 1 = 0, and 
D = the square free part of (v12- 4). For the different values of D we then find the 
representations of E = (a + b\/D)2/r, if any, in [1]. The result is given in Table 1 
for all vi ? 100. The values of vl = x- 2 (resembling a2 + a2) and v1 = X- 3x 
(resembling a' + a-3) and so on, are omitted from Table 1. 

The following values of D are lacking representations of E of the form 
= (a + bV/D)2/r: D = 5, 2, 13, 29, 10, 53, 17, and 85 (if v1 < 100). This fact is, in 

Table 1, indicated by "J" in the column for (a2- b2D)/r. These cases are particu- 
larly interesting, since r is then 1 or 4, and (r/N) = + 1 for all values of N. They 
are also the only cases (in the table) where (r/N) is always = + 1 (r is a perfect 
square). Furthermore, (a2- b2D)/r = -1 in these cases, and so the condition 

a2 - b2D 
(rIN)- r 

in Theorem 5 is fulfilled for all N. Thus each of these particular values of D gives a 
Lucasian criterion for N, if only the one condition, (DIN) = -1, is fulfilled. It 
thus makes it a little less complicated in these cases to write down, in form of dif- 
ferent arithmetic series, those combinations of h and n for which the corresponding 
value of D can be used to construct a Lucasian criterion for N. For D = 5, e.g., 
we find 

(D/N) = (h.25 ) = (h2 i) = -1 

if and only if 

h*2 -1 :12 (mod 5) 
or 

h*2n_ 3, 4 (mod 5). 
The following combinations of h and n satisfy one of these congruences: 

h 1 (mod 5) and n 2, 3 (mod 4) 
h 2 (mod 5) and n 1, 2 (mod 4) 
h 3 (mod 5) and n 0, 3 (mod 4) 
h 4 (mod 5) and n 0, 1 (mod 4). 

To avoid unnecessary testing we may remark that D cannot be any divisor of 
2h, because (DIN) = + 1 in these cases. A preliminary search for small prime factors 
of N is worthwhile, since such a discovery obviates the necessity of testing N for 
primality. 
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The Computations. According to the preceding scheme, the author has run a 
program to find a possible D for every N = h -2n 1 in the range h = 3(6)105 and 
n < 1000. (As has already been pointed out in the Introduction, v1 = 4 will fit for 
all other odd values of h, unless 31N.) We succeeded in finding a D or a small factor 
for every N in this range. The largest value of v1 needed was v1 = 57 (for N = 

63.234 - 1). 

TABLE 2. 
All primes 3A *2n - 1 for n < 1000. 

3A n 

3 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 
324, 391, 458, 470, 827 

9 1, 3, 7, 13, 15, 21, 43, 63, 99, 109, 159, 211, 309, 343, 415, 469, 781, 871, 
939 

15 1, 2, 4, 5, 10, 14, 17, 31, 41, 73, 80, 82, 116, 125, 145, 157, 172, 202, 
224, 266, 289, 293, 463 

21 1, 2, 3, 7, 10, 13, 18, 27, 37, 51, 74, 157, 271, 458, 530, 891 
27 1, 2, 4, 5, 8, 10, 14, 28, 37, 38, 70, 121, 122, 160, 170, 253, 329, 362, 

454, 485, 500, 574, 892, 962 
33 2, 3, 6, 8, 10, 22, 35, 42, 43, 46, 56, 91, 102, 106, 142, 190, 208, 266, 

330, 360, 382, 462, 503, 815 
39 3, 24, 105, 153, 188, 605, 795, 813, 839 
45 1, 2, 3, 4, 5, 6, 8, 9, 14, 15, 16, 22, 28, 29, 36, 37, 54, 59, 85, 93, 117, 

119, 161, 189, 193, 256, 308, 322, 327, 411, 466, 577, 591, 902, 928, 
946 

51 1, 9, 10, 19, 22, 57, 69, 97, 141, 169, 171, 195, 238, 735, 885 
57 1, 2, 4, 5, 8, 10, 20, 22, 25, 26, 32, 44, 62, 77, 158, 317, 500, 713 
63 2, 3, 8, 11, 14, 16, 28, 32, 39, 66, 68, 91, 98, 116, 126, 164, 191, 298, 

323, 443, 714, 758, 759 
69 1, 4, 5, 7, 9, 11, 13, 17, 19, 23, 29, 37, 49, 61, 79, 99, 121, 133, 141, 164, 

173, 181, 185, 193, 233, 299, 313, 351, 377, 540, 569, 909 
75 1, 3, 5, 6, 18, 19, 20, 22, 28, 29, 39, 43, 49, 75, 85, 92, 111, 126, 136, 

159, 162, 237, 349, 381, 767, 969 
81 3, 5, 11, 17, 21, 27, 81, 101, 107, 327, 383, 387, 941 
87 1, 2, 8, 9, 10, 12, 22, 29, 32, 50, 57, 69, 81, 122, 138, 200, 296, 514, 656, 

682, 778, 881 
93 3, 4, 7, 10, 15, 18, 19, 24, 27, 39, 60, 84, 111, 171, 192, 222, 639, 954 
99 1, 4, 5, 7, 8, 11, 19, 25, 28, 35, 65, 79, 212, 271, 361, 461 

105 2, 3, 5, 6, 8, 9, 25, 32, 65, 113, 119, 155, 177, 299, 335, 426, 462, 617, 896, 

For each N without a small prime factor, the prime character was established 
by a second program, which checks Un-2-0 (mod N). For h $ 3A, h _ 151, and 
n < 1000, this work was recently done by Williams and Zarnke [5]. For h = 3(6)105, 
and n < 1000, the author did the corresponding work, using the previously found 
values of vi. The results are given in Table 2. Comparing our results with those of 
Robinson [6], we incidentally found some large prime twins,* namely 

* Editorial note: The two largest pairs here, 9.2211 + 1 and 45-2189 + 1 were both found by 
Emma Lehmer in 1964. While they have not been previously published, they are known to a 
number of investigators. 
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9*243 i1, 9.263 ?t 1 9-2" i1, 

45.2189 i 1 752 43 i+1, and 99.2656 1 

The computing time was approximately 10-8 n3 seconds to test h -2n - 1 on an 
IBM/360 model 75 computer. 

In analogy to the Cullen numbers (primes of the form n 2n + 1), we may note 
that n *2n -1 is prime for n = 2, 3, 6, 30, 75, and 81 for n < 110. 
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