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Abstract. In this paper, a generalized rational Chebyshev approximation problem is 
considered. 

The problem is this: To minimize the maximum absolute value of the "criterion 
function" of the error. By imposing a rather natural restriction on the criterion function, 
the problem is solved completely; the existence, the uniqueness and the characterization 
of the best approximation are clarified and interesting relationships between the best 
approximations corresponding to different criterion functions are found. 

The theory is applied to the starting rational approximation for Newton iteration 
for Xl/8 

1. Introduction. A generalized rational Chebyshev approximation problem is 
determined by a septuple 

[p, q; I, f(x), w(x); J, g(y)], 
where p and q are nonnegative integers, I is a bounded closed interval, f is a con- 
tinuous function on I, w is a continuous and positive function on I, J is an interval 
containing 0, and g is a continuous and strictly increasing function on J satisfying 
g(O) = 0. w is called a weight function and g a criterion function. No restrictions are 
imposed on the interval J, the domain of g. 

For any continous function F on I, the error e(F, x) is defined by 

(1) e(F, x) = (F(x) -f (x))/w(x) 

and E(F) by 

(2) E(F) = max [lg(e(F, x))f; x E I]. 

A function is called admissible if it is a rational function of the form R(x) = 

P(x)/Q(x), where P(x) and Q(x) are mutually prime polynomials of degrees not 
exceeding p and q respectively, and E(R) is finite. Evidently, R is admissible only 
if it is pole-free on I, and e(R, x) E J. The set of admissible functions is denoted by 
R. 

The problem considered in this paper is the determination of an admissible 
function minimizing E(R), i.e., an R* E R such that 

(3) E(R*) = min [E(R); R (E R] . 

Such an R* is called a best (rational Chebyshev) approximation to f with respect to the 
criterion g, or a solution of the problem [p, q; I, f, w; J, g]. 
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The standard Chebyshev approximation problem is the special case, J = (- o, 0o), 
g(y) = y of this general problem. 

Here a comment concerning the criterion function is appropriate. At first glance 
the condition imposed on g appears too restrictive to include a wide class of problems 
of practical interest in the present scope. However, every problem [p, q; I, f, w; J, g] 
for which Ig(y) is continuous, attains the minimum M at a point y* E J and is 
strictly monotone for y ? y* and y ? y*, can be reduced to an equivalent one 
[p, q; I, f*, w; J*, g*] within the present scope by means of a simple transformation. 

Such a transformation is given by 

(4.1) f*(x) = f (x) + y*w (x), 

(4.2) J* = J-y*, 

(4.3) g*(y) = sgn (y)(Ig(y + y*)1 M), 
because g* satisfies the condition of the criterion function and 

(5) E*(F) = E(F)-M. 
Recently, Dunham [2] and Moursund [3] treated analogous problems. In our 

notation, Dunham's definition of E(F) is 

(6) E(F) = max [I (g(F(x)) - f(x))/w(x)l; x E I], 

and Moursund's is 

(7) E(F) = max[fW(x, F(x) - f(x))f;x EI], 

where W(x, y) is his generalized weight function. Thus our problem is different from 
Dunham's and is included in Moursund's in its general form, although actually 
Moursund treated only polynomial approximations and imposed a stronger condi- 
tion lim I z I W(x, y) I = oo on W(x, y). 

The theory developed below gives a lucid insight into the nature of the approxi- 
mation problem and leads to interesting relations between best approximations. 

2. Existence of Best Approximation. As is well known, every standard problem 
always has a best approximation. The same is not the case, however, for a general 
problem. The following theorem gives a necessary and sufficient condition for the 
existence of a best approximation. 

THEOREM 1. A best approximation exists if there are an S E R and a finite closed 
interval K C J such that 

(8) [e(R, x); x E I] C K 

for every R E R satisfying E(R) ? E(S). 
Proof. Necessity: Suppose a best approximation R* exists, then 

S = R*, K = [mine(R*, x), max e(R*, x)] 

satisfy the condition of the theorem, because R* is unique. 
Remark. Uniqueness will be proved in Theorem 4 below. 
$uffciency. It is readily seen that, for every R satisfying the condition of the 
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theorem, the set [R(x); x E I] is uniformly bounded. The existence will now be 
shown by a straightforward extension of the arguments of the classical proof [1]. 
This completes the proof. 

By virtue of Theorem 1, we can derive Theorem 2 which can be used to see 
whether every problem with a fixed pair [J, g] has a solution or not. 

THEOREM 2. Every problem [p, q; I, f, w; J, g] has a solution if it belongs to one of 
the following cases. 

Case 1. J = (-0o, 0o). 
Case 2. J = [c, oo), c _ 0. 
Case 3. J = (-%o, d], d > 0. 
Case 4. J = (c, 0o), c < 0, G(c) > G(oo). 
Case 5. J = (-0o, d), d> 0, G(d) > G(- o). 

Remark. G(v) = lim, y , g(y)|. 
Proof. It suffices to show that every problem has a solution for each of the above 

cases and there is a problem having no solution for every other case. 
First, we shall list a choice of S and K satisfying the condition of Theorem 1 for 

each of the five cases. For shortness we shall use the abbreviations: 

E = E(S) , L = [gq(-E), g1(E)], 

F' = minf(x), F" = maxf(x), W' =minw(x). 
XG.I xEI XEl 

Case 1. Subcase 1.1. G(- o0) = G(oo). S = 0, K = L. 
Subcase 1.2. G(- 00) > G( o). S = F" + W'c', K = L. (G(c') = G( oo)). 

Subcase 1.3. G(- 0o) < G(oo). S = F' + W'd", K = L. (G(d") = G(- o0)). 
Case 2. S = F" + W'c, K = [c, g-'(E)]. 
Case 3. S = F' + W'd, K = [g-'(-)e, d]. 
Case 4. S = F' + W'c/2, K L. 
Case 5. S - F' + W'd/2, K = L. 
Next, we shall show a problem having no solution for every other case. 
Case 6. J = (c, 0o), c < 0, G(c) < G(oo). 
Consider the problem [0, 0; [-1, 1], f, 1; J, g] with 

f(x) = cx, -1 < x ? O, 

= -d"x, 0 ? X < 1, 

where d" > 0 is such that G(c) = G(d"). This problem has no solution, since, for 
any admissible function R which is a positive constant, there is a better approxima- 
tion R/2. 

Case 7. J = (-oo0 d), d > 0, G(d) < G(- oo). 
Consider the problem [0, 0; [-1, 1], f, 1; J, g] with 

f(x) =cx, -1 < x <?O. 

=-d'x, 0 < x 1, 

where c' < 0 is such that G(d) G(c'). This problem has no solution, since, for any 
admissible function R which is a negative constant, there is a better approximation 
R/2. 
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Case 8. J = (c, d), [c, d), (c, d] or [c, d]. 
Consider the problem [0, 0; [- 1, 1], f, 1; J, g] with 

f(x) = (d -c +? )x. 

This problem has no solution, since there is no admissible function for this 
problem. 

3. Characterization and Uniqueness of Best Approximation. An ordered point 
set of length n is a point set [x1, X2, . * * x S] such that xi < x2 < < x,. For any 
admissible function R = P/Q, its degree D(R) is defined by 

D(R) = p + q-min [p-p*, q-q*], for R O. 

=-p forR O, 

where p* and q* are the exact degrees of P and Q respectively. 
THEOREM 3. If there is an R* = P*Q* C- R such that e(R*, x) alternates in sign 

on an ordered point set [X1, X2. .. * *t] C I of length n = D(R*) + 2, then, for any 
R E R, we have 

(10) E(R) _ min[Ig(e(R*, x )) i-I 12, **, n]. 

Proof. Suppose the inequality (10) fails for an R = P/Q E R, then g(e(R, x)) - 
g(e(R*, x)) and consequently 

e(R, x) - e(R*, x) - (PQ* - P*Q)/wQQ* 

alternate in sign on the ordered point set. Since wQQ* is of a constant sign, the 
polynomial PQ* - P*Q has at least n - I zeros on I. From the definition of D(R*), 
however, its degree is at most D(R*) = n - 2. This is a contradiction, proving the 
theorem. 

Now the concept of the alternant will be introduced. An ordered point set is 
called an alternant of an R E R, if e(R, x) assumes its minimum and maximum on I 
alternately on the set and one of the following conditions holds. 

(11.1) E(R) = -g(e') = g(e"), 

(11.2) E (R) g (e") > -g (e'), e' c 

(11.3) E(R) = -g (e') > g(e"), e" = d 

where e' = minxds e(R, x), e" = max.cr e (R, x) and c and d are the lower and upper 
closed ends of J respectively. 

THEOREM 4. An admissible function R* is a best approximation iff it has an 
alternant of length D(R*) + 2. If a best approximation exists, it is unique. 

Proof. Sufficiency for the case (11.1) follows immediately from Theorem 3. 
Sufficiency for other cases, uniqueness and necessity can be proved by a simple 
modification of Achieser's proof of the classical theorem [1]. 

4. Relationship Between Best Approximations. In this rather lengthy section, 
the relationship between best approximations will be investigated. 
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LEMMA 1. For any two criterion functions g and h defined on the same interval J, 
there is a continuous and strictly increasing function T such that g(y) = T(h(y)) for 
any y C J. 

Proof. Consider the function T(u) = g(h-'(u)) on the interval with g.l.b. 
infzc h(y) and l.u.b. SupyCJ h(y) which is closed, open or semi-open as the case 
may be. This is the desired function. Since g and h-' are both continuous and 
strictly increasing, T is also. 

Two criterion functions g and h are called equivalent, if any problems [p, q; I, f, 
w; J, g] and [p, q; I, f, w; J, h] have an identical solution or both have no solution. 

THEOREM 5. Criterion functions g and h are equivalent iff 

(12) T(u) = -T(-u) 

for any u E (-M, M) or [-M, M] as the case may be, where 

M = min [-inf h(y), sup h(y)]. 

Proof. Sufficiency is almost evident, since it is readily seen that a solution cor- 
responding to h is also a solution corresponding to g and vice versa. In order to 
prove the neccessity, we consider the problems such that 

p=O, q=O, I=[-1,1], w= 1. 

For any u satisfying the condition of the theorem, we put 

f(x)=h-'(-u)x, -1I < X O 

-h-'(u)x , O < x <1. 

Clearly R* = 0 is the solution for h. By assumption, it is also the solution for g. It 
follows from (11.1) that 

- g(h1 (-u)) = g(h '(u)), 

i.e., -T(-u) = T(u). 

COROLLARY. If 0 is a closed end of J, then all the criterion functions defined on J 
are equivalent. 

Now we shall examine the relationship between solutions corresponding to non- 
equivalent criterion functions. Although we can say hardly anything in general, 
strikingly simple relationships exist in the following two important cases. The one 
is the polynomial (q = 0) or rational (p > q) approximation problem with respect 
to absolute error (w = 1), and the other is the rational approximation problem for a 
positive function f with respect to relative error (w = f). 

THEOREM 6. If p > q and w = 1, then the difference of solutions of any two problems 
differing only in criterion functions, when both solutions exist, is a constant. 

Proof. There is no loss in generality in letting one problem be a standard problem. 
Therefore, let S be a solution of a standard problem, g be an arbitrary criterion 
function and J be its definition interval. 

Consider the auxiliary function 

(13) H(z) = g(z-e) + g(z +e), 
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where 

e = max e (S x) = -min e (S, x). 
xE-i xE-i 

Case 1. H(z) is not defined at all. This occurs when J is finite and 

(14) d-c < 2e, 

where c and d are the g.l.b. and l.u.b. of J respectively. The equality in (14) may 
hold only if J is not closed. In this case there is no admissible function and a fortiori 
no solution for g. In order to see this, assume, on the contrary, that an R is ad- 
missible for g, then we have 

(15) c < e' e" < d, 

where 

e' = min e(R, x), e"= max e(R, x). 
xCI xEi 

Define R* = R - (e' + e")/2, then R* is admissible for the standard problem 
because p > q. Furthermore 

max I e (R*, x)j = (e" - e')/2 < e 

by virtue of (14), (15) and the fact that equalities in (14) and (15) never hold 
simultaneously. But this is a contradiction because S is the best approximation. 

When H(z) is defined, it is defined on an interval K with g.l.b. c + e and l.u.b. 
d - e. Since H(z) is continuous and strictly increasing, it has at most one zero on K. 

Case 2. H(z) has a zero z* on K. Define R = S + z*. Since p > q and 

e(R, x) = e(S, x) + z* - [z* - e, z* + e] C J, 

R is admissible for g. Moreover, we have 

E(R) = -g(e') = g(e") 

because e' = z* - e, e" = z* + e, H(z*) = g(e') + g(e") = 0. Therefore, from 
(11.1), R is a solution for g. 

Case 3. H(z) is positive on K. In this case c should be finite. 
Subcase 3.1. c is the closed end of J. Define R = S + c + e. Since p > q and 

e(R, x) = e(S, x) + c + e E [c, c + 2e] C J, 

R is admissible for g. Moreover, we have 

E(R) = g (e") > -g (e') 

because e' = c, e" = c + 2e, 

H(c + e) = g(c) + g(c + 2e) > 0. 

Therefore, from (11.2), R is a solution for g. 
Subcase 3.2. c is the open end of J. In this case no solution exists for g. In order 

to see this, assume that an R is a solution for g, then we have 

(16) c < e', g(e') + g(e") < 0 
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from (11.1) and (11.3). Since 

H(c + e + 0) = g(c + 0) + g(c + 2e) > 0, 

it follows from (16) that (e" - e')/2 < e. From this, a contradiction can be reached 
by the same argument as was used in Case 1. 

Case 4. H(z) is negative on K. This case can be treated quite similarly to Case 3. 
The l.u.b. d of J should be finite. If d is the closed end, then R = S + d - e is a 
solution for g. If, on the other hand, d is the open end, then there is no solution for g. 
This completes the proof. 

LEMMA 2. If w =f > 0 on I, then every solution is positive on I. 
Proof. Assume, on the contrary, that there is a solution R* such that 

mincI R*(x) < 0. Then, since 

min e (R*, x) - min [R* (x)/f (x)-1] < -1 
X GI XHI 

we have E((R*) > -g(- 1). Now consider RI F' = minxc, f(x). Then, since 

0 > e(R, x) = F'/f(x) -1 > -1, 

R is admissible and satisfies E(R) < - g(-1). This means a contradiction E((R) < 
E (R*) . 

THEOREM 7. If w =f > 0 on I, then the ratio of solutions of any two problems 
differing only in criterion functions, when both solutions exist, is a positive constant. 

Proof. The proof is similar to that of Theorem 6, and we shall use the same 
symbols and abbreviations. 

Defining S, g and J as before, we consider the function 

(17) H(z) = g((1 - e)z -1) + g((1 + e)z -1). 

We first note that 

(18) 1-e > 0 

from Lemma 2. 
Case 1. H(z) is not defined at all. This occurs when J is finite and 

(19) (1 + c)/(1 + d) (1 -e)/(l + e), 

where the equality may hold only if J is not closed. In this case, there is no admis- 
sible function and a fortiori no solution for g. In order to see this, assume that an 
R is admissible for g, then we have c < e', e" < d or 

(20) (1 + e')/(I + e") > (1 + c)/(I + d) . 

Since the equalities in (19) and (20) never hold at the same time, we obtain 

(21) A = (1 + e')/(l + e") > (1-e)/(1 + e) = B > O. 

Now define R* = 2R/(2 + e' + e"), then we have 

max le(R*, x)l = (e" - e')/(2 + e' + e") 
xE-i 

= (1 - A)/(1 + A) < (1 - B)/(1 + B) = e 

from (21). But this is a contradiction. 
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When H(z) is defined, it is defined on an interval K with 

g.l.b. = max [(1 + c)/(1 + e), (1 + c)/(l - e) 

and 

l.u.b. = (1 + d)/(l + e). 

Since H(z) is continuous and strictly increasing, it has at most one zero on K. 
Case 2. H(z) has a zero z* on K. Define R = z*S. Since 

0 < 1/(1 + e) < z* < 1/( - e) 

we have e(R, x) = (1 + e(S, x))z* - 1 fE [(1 - e)z* - 1, (1 + e)z* - 1] C J. 
Hence R is admissible for g. Furthermore, we have 

e = (1 - e)z* -1, e" = (1 + e)z* -1 

H(z*) = g(e') + g(e") = 0. 

Therefore E(R) = -g(e') = g(e"). This implies from (11.1) that R is a solution 
for g. 

Case 3. H(z) is positive on K. In this case 1 + c > 0, since otherwise the g.l.b. 
of K would be nonpositive and H(z) would be negative in a neighborhood of z = 0. 

Subease 3.1. c is the closed end of J. Define R by 

R = (1 + c)S/(1 - e), 

then, since 

e' = c,H((l + c)/(1 - e)) = g(e') + g(e") > 0, 

we have E(R) = g(e") > -g(e'). This implies from (11.2) that R is a solution for g. 
Subcase 3.2. c is the open end of J. In this case no solution exists for g. In order 

to see this, assume that an R is a solution for g, then we have 

(22) c < e', g(e') + g(e") < 0 

from (11.1) and (11.3). On the other hand, we have 

H((1 +c)/(1 -e) +0) = g(c+0) +g((l +c)(1 +e)/(1 - e) -1) > 0. 
which, combined with (22), yields 

(1 + e')/(l + e") > (1 - e)/(1 + e) 

From here, a contradiction can be reached by the same argument as was used 
in Case 1. 

Case 4. H(z) is negative on K. This case can be treated quite similarly as Case 3. 
The lu.b. d of J should be finite. If d is the closed end, then R = (1 + d)S/(1 + e) 
is a solution for g. If, on the other hand, d is the open end, then there is no solution 
for g. This completes the proof. 

5. Applications. In this section, two examples will be worked out to illustrate the 
applicability of the present theory. 

Example 1. Cne-sided polynomial approximation. Consider the problem [n, 0; 
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1, f, 1; [0, co), g]. This problem always has a solution because it belongs to Case 2 
of Theorem 2. For the purpose of obtaining a solution, we may assume g(y) = y, 
since all the criterion functions are equivalent in this case by the Corollary of 
Theorem 5. Let S denote the solution of the standard version of the problem. In 
accordance with Theorem 6, we consider the function 

H(z) = g(z - e) + g(z + e) = 2z 

which is defined for z > e. Since H(z) is positive and c = 0 is the closed end, the 
solution for g is given by R = S + e. Clearly, we have E(R) = g(2e). 

Thus, for the special case of I = [-1, 1], f(x) = Xn+l, we obtain R = Xn+l- 

2-n(T.+ 1() - 1), E((R) = g(21-n). 

Example 2. Starting rational approximation of Newton iteration for Xl/8. The 
standard method for calculating Xl/8 by a computer is to apply Newton iteration 

(23) Ri+1 = ((n - 1)Ri + xRiil-)/n = N(Ri) = N'+'(Ro) 

to an appropriate starting approximation Ro. Let us assume as usual that x is 
confined in a positive finite closed interval I. A reasonable first choice for the start- 
ing approximation is to take Ro = S, where S is the solution of the standard 
problem 

(24) [p, q; I, Xi1n, X"n; (_ co, co), y] 

There is, however, another more reasonable choice, i.e., Moursund's choice to 
take as Ro an admissible function R of the problem (24) so that Ri calculated from 
Ro = R by (23) may be optimal in the sense that 

(25) max e(Ri, x) = min [max le(Ri, x) l; RI = N'(R), R E R]. 
xEI xCI 

As Moursund has shown [4] in the case of xl/2, the R satisfying (25) for i = 1 satisfies 
(25) for every i. 

Now it will be observed that the problem just posed can be formulated as a 
generalized problem 

(26) [p q; XI l/n, Xl/n; (-1 m) g(y)] 

where 

(27) g(y) = sgn (y)(- ((n - 1)(1 + y) ? (1 1)fl) - 

since we may assume R > 0 or e(R, x) > -1 by Lemma 2. The solution R of this 
problem is the desired starting approximation. Since we have 

limr 9(Y) = ( rn l g(y)I = vc 

it belongs to Case 4 of Theorem 2, and therefore it always has a solution. From 
Theorem 7, the solution is given by R = z*S, where z* is a zero of the function 

H(z) = g((1 - e)z - 1) + g((1 + e)z -1) 

Substituting (27), we find after an elementary calculation 
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(28) = (2(n 1- 1)e ((I e (I + e) 

In connection with the problem (26), we consider another problem 

(29) [Pi q; 'I xl /8 xl/8; (-1 o ), h (y)] 

with 

(sinh (n - 1) u 1 
(30) y = h-1 (u) = \(n-1) sinhu,) exp u-1 

defined for u E (- o, co). 
Substitution of (30) into (27) yields 

T(u) =(h(u)) = ( )(( sinh (n - I)u 
1 /n (n - 1) sinhu 

=(n -) sinhu nsinh (n - 1)u 

Since T(u) is an odd function, we conclude from Theorem 5 that g and h are equiv- 
alent, i.e., problems (26) and (29) have an identical solution. 

Case 1. Square root. Putting n = 2, we obtain 

Z*= (1 e2)-1/2 

h(y) = log (1 + y) . 

The finding that the optimal starting approximation R in Moursund's sense 
is a simple multiple R = z*S of the standard Chebyshev solution S, and can be 
obtained by solving (29) with h(y) = log (1 + y), is indeed the motive for the author 
to develop the present theory. It is interesting to notice that several authors in- 
cluding Chebyshev himself [5], [6] have obtained R correctly for some moderate 
values of p and q by solving not (24) but (29) for a technical reason to facilitate the 
analysis. 

During the revision of the manuscript, the author was informed by the referee 
of the works of Sterbenz and Fike [7], and King and Phillips [8], where similar re- 
sults are given. 

Case 2. Cubic root. Putting n = 3, we obtain 

Z* = (1 - e2)-2/3 

ho() = I log (I + 8(1 + y)3)112 
1 1 

2 2 

The form of h(y) shows that the adoption of h(y) = log (1 + y) is not successful in 
general. 
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