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Error of the Newton-Cotes and Gauss-Legendre 
Quadrature Formulas 

By N. S. Kambo 

Abstract. It was shown by P. J. Davis that the Newton-Cotes quadrature formula is convergent if 
the integrand is an analytic function that is regular in a sufficiently large region of the complex 
plane containing the interval of integration. In the present paper, a bound on the error of the 
Newton-Cotes quadrature formula for analytic functions is derived. Also the bounds on the 
Legendre polynomial and the Legendre function of the second kind are obtained. These bounds 
are employed to derive a bound on the error of the Gauss-Legendre quadrature formula for 
analytic functions. 

l. Introduction. Let zo, z1,.. ., Zn- I be n distinct points lying in the complex plane 
and let C be a closed contour containing these points in its interior. Suppose that 
f (z) is a regular function within C. Let 

n- 1 

(1) wn(z)= H (z - zi). 
i=O 

If now the points z = a and z = b also lie inside C, then, following the method 
given in [1, pp. 117-118], we have for any weight function g(t), 

('b n- 1 

(2) g(t)f (t) dt = Z )Lkf(Zk) d- E.(f) 
a k=O 

where 4O, A1,.. .,, -1 are the weights for interpolating integration at zo, zI, .. , Zn - 1 

and 

(3) En(f) = X f(z)vn(z) dz 
71i C Wn(z) 

)v(z) = 1 Wn(t)g(t) dt 

and 

(5) Ak= b g(tw(d (k = , 1 ...,n - 1). 
a(t - Zk)W'(Zk) 

Here En(f) designates the error of the n-point interpolating quadrature formula 
given by 
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rb n- 1 

(6) f g(t)f (t) dt Z EJkf (Zk). 
Ja k = 

The problem of estimating the error En(f) for analytic functions is connected with 
the estimation of v0(z) and wn(z) on C. In this paper, we shall bound the error of two 
special quadrature formulas over the interval [- 1, 1] (i.e., a = - 1, b = + 1) with 
the weight function g(t) = 1. For the contour C we shall take the ellipse Ep in the 
complex plane defined by 

(7) z =YA.+ -1), i = peiO 0 < 0 _ 2i and p > 1. 

The ellipse Ep has foci at z = + 1 and sum of its semi-axes is p (> 1). Let 

A(E ) = f: f is analytic on [-1, 1] and continuable analytically so as to be 

A(EP) = ~ single valued and regular in the closure of the ellipse Ep. 

Davis [2] discussed the convergence (as n -? oo) of the Newton-Cotes quadrature 
formula for functions fe A(Ep). In fact, it was shown by him that the Newton-Cotes 
quadrature formula is convergent provided fe A(Ep), where p > 2. Moreover, 
as n -* oo, the error En(f) tends to zero with geometric rapidity. In Section 2 we 
derive an upper bound on the error IENC(fI of the Newton-Cotes quadrature formula 
given in Theorem 1. For p > 1 + 12, this bound on IENC,(f)I converges (as n --+o) 
to zero with geometric rapidity. 

In Section 3 we derive an upper bound on jQn(z)l and a lower bound on IP,(z)j for 
z EP and p > 1/2, where Pj(z) and Qj(z) are the Legendre polynomial and Legendre 
function of the second kind, respectively. Using these bounds, we derive an upper 
bound on the error IEG,(f)l of the Gauss-Legendre quadrature formula given in 
Theorem 2. This result differs from similar results due to Chawla and Jain, since 
this result is a bound, while theirs is an asymptotic bound, i.e., a bound on the first 
term of the asymptotic expansion. 

2. Error of the Newton-Cotes Quadrature Formula. Newton-Cotes (n + 1)-point 
quadrature formula for the integral fi+1 f(t) dt is a special case of the nonsymmetric 
interpolating quadrature formula (2) when a =-1, b = + 1, g(t) = 1, and the 
abscissas are given by 

(8) Zi = xi= -1 + 2i/n (i = 0, ...,n). 

The weights Ak (known as Cotes numbers) and the error ENcn(f) of the Newton-Cotes 
quadrature formula are, respectively, given by 

(9) Ak = ( - X(X) (k = O1, ...,n) J 1 (X Xk)Wn' ? 1 (Xk) 

and 

(10) ENCn(f) = 1 f(z)Q*(z)dz ni C Wn+ 1(Z) 

where 

(11) Q*(z} vn+ i(z) = 1 X Wn+(x) dx Qn* ~ ~ -W 
Vn 1W 
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and wn J(x) is defined by (1), with zt given by (8). 
2.1 An Upper Bound on Q*(z). 
LEMMA 1. For z c Ep, 

00 J 

(12) Q*(Z) = nm 
m=l 1 

where 

(13) anm= {Wn+i(cos0) sinmO dO, (n, m= 1, 2 3,...) 

and ,*m is bounded as follows: 
(a) Let n ? 1 be an odd integer. Then 

lnmj < 0, m even, 

(14) < 4/3, m =1, 

< ,/ 2(n1/4), m > 1, 

and 

(15) IQn*(z)l < 4p/3(p2 - 1). 

(b) Let n _ 1 be an even integer. Then 

lO*mI < 0, m odd, 
(16) I2L (4m;-1 4mZ 9] 2 (s) m _ 2 

and 

(17) IQ*(z)I < 4-,/(2/105)(1/(p2 - 1)). 

Proof. In (11), setting x = cos 0 and z = g + - 1), we get 

I r 
n 1(cos 0) sin 0 dO 

(18) ' 4n Z~j: 1- 2'-cos 0 + 2 

Following [3, pp. 311--312], we get 

(19) sin [1 - 2-1COS 0 + :-2]-l = E sin mO 
M = 1 (I 

The last series converges uniformly and absolutely for 0 < 0 < i, and for all 
? p > 1. Using (19) in (18), we obtain (12). We now proceed to find bounds for 

i~r n 
(20) F= j H (cos 0 - xi) sin mO dO. 

O& 0i=O 

Proof of (a). Let n be odd, say, n - 2r - 1 (r = 1, 2, 3, . . .). From (20) 
= T r- 1 

an~m = n (COS20 _ X2) sin mO dO. 
in=m 
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Breaking the range of integration into two intervals, [0, it/2] and [it/2, 2t], we easily get 
Ir/2 Fr-- 1 

(21) = [1 + (-1)m++] 
| [ l 

(cos20 - X)sin mO dO. 
0 _i=O 

Hence T*m = 0 if m is even. We now bound Tem for odd integer m. Consider the fol- 
lowing two cases. 

Case 1. Let m = 1. From (21) 

UnmI < 2 { sin3O = 4/3. 

Case 2. Let m > 1. (21) yields 

knmI ? 2 { sin2Ojsin mOj dO 

F ir/2 i0r/2 1/2 

< 2 (J sin20 dO)(j sin20 sin2mO do)] 

where the second inequality is derived by employing Cauchy's inequality. This com- 
pletes the proof of (14). 

Proof of (b). Let n be an even integer, say, n = 2r (r = 1, 2, 3, .. .). We have from 
(20), 

Mra 2r- 

nT~m = T (cos 0 - xi) Cos 0 sin mO dO 
Jo i=o;i96r 

7r r - 1- 

= 1 Lti' (cOS20 - x)] cos 0 sin mO dO 
Jo i=o 

= [1 + (-i)m+2] 1 rl (cos20 - x)cos 0 sin mO d. 
Jo i=0 

Hence r*m = 0 for m odd. When m is even, we obtain 

7r/2 

lamI < 2 J sin2 0 cos Ojsin m0j dO 

_ 2 sin20 cos 0 dO)(j sin20 sin2mO cos 0 dO)] 

2 L78 (4m2 1 + 4m2 9)] ?4/(2/105). 

This proves (16). Bounds (15) and (17) follow from (12), (14), and (16). This completes 
the proof of Lemma 1. 

2.2 A Lower Bound on Wn+ 1(Z). 

LEMMA 2. For z e Ep, 

(22) Iwn+ l(Z)| > ((p2 _ 1)/(2p))n+ 1. 

Proof. We consider the two cases when n is odd or even. 
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Case 1. When n = 2r -1 (r = 1, 2, 3,...) is odd, we have for z E EE, 

1 r-1 

IWn~?(z) = (2pf+l H ' + 1 + 2I2 - 4W2x2I 
i=O 

1 r-1 

(2p)n+l H (i qj)(2 - l 

where qi = (2x2 - 1) + \/ 1(2xi(1 - x_ )12) and qi is the complex conjugate of 
qi. Also 1qiI = 1. Hence, 

~ 1 r-1 

(p2 

_ 

1)2 

= _ 

I~+ (ZI 
(2p) 1= O (2p) 

Case 2. When n = 2r (r = 1, 2, 3, ...) is even, we have for z E EE, 

r-1 

Iwe?i(Z)I = IH 1z2 - x21 
i=O 

21 I2 + 1) HI(I2 - qi)((2 qi- l 

> (p2 - 1)/(2p)n+ (p2 _ 1)2r = ((p2 1)/2p)n+1. 

This completes the proof of Lemma 2. 
2.3 A Bound on ENC.(f). From (10), by selecting the contour C as an ellipse Ep 

(p > 1) it follows that 

(23) ENC_(f)l I if I "(Z)I lQn*(z) IdzI 

Employing (15), (17), and (22) we obtain the following theorem. 
11 I UlAi 1. Let f E A(Ep), p > 1. Then for n ? 1 

(24) IENc.(f)I< KPM(p)(2p/(p2- 1))n+ 
1 

where 

4 (p2 + I) 
(25) K - -, n odd, 

3 (p2 _1) 

= 4 (105) ((2 ) n even, 

and 

(26) M(p) = maxlf(z)I on Ep. 

2.4 Discussion of the Results. Relation (24) gives a bound on IENCn(f)I for all 
p > 1 and all n ? 1. From (24) it is easily seen that the bound on IENC,(f)I tends to 
zero as n tends to infinity only if p > 1 + '2. However, Davis [2] proved the 
stronger result that IENCn(f)I tends to zero as n tends to infinity provided that p > 2. 
Therefore, it is of interest to tighten the bound (24). 

3. Error of the Gauss-Legendre Quadrature Formula. An important special case 
of the general interpolating quadrature formula (2) is the Gauss-Legendre quadrature 
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formula. The n-point Gauss-Legendre quadrature formula for J I f(t) dt is obtained 
by letting a = -1, b = + 1, g(t) = 1, and choosing zO, z1, Z2, . Z. Z-1 as the n 
zeros of the Legendre polynomial Pj(x). The weights Ak and the error EGn(f) of the 
Gauss-Legendre quadrature formula are, respectively, given by 

(27) Ak= | n d (k = 01, ...,n -1) 

1 (X - Zk)Pn'(Zk) 

and 

(' fb7If(zQz)d (28) EGn(f) = 1 fp 

where Qn(z), defined by 

I [+ 'Pn(t) dt 
(29) Qn(z) = J z 

is the Legendre function of the second kind. 
3.1 An Upper Bound on Qn(z). 
LEMMA 3. For z e Ep 

(30) Q (Z) = 1_ (7n,n + 2r + 1 

(, r=O ( 

where 

(31) 0 < Un,n+ 2r+ 1 < bn for r = O. 1, 2, 3. 

Moreover, 

(32) IQn(z)I < pbn/(p2 _ -)pn 

where 

(33) bn = (2)2n+ 1(n !)2/(2n + 1)! (< 2 for all n =; '0, 1, 2, . .. 

Proof Setting t = cos 0 and z= A + - l) in (29) and proceeding as in the 
proof of Lemma 1, we get 

00 
n 

(34) Qn(z) = Y m 

where 

(35) =nm Pn(cos 0) sin (mO) dO. 

Heine [4, p. 311] gave the following evaluation of Unm . 

?nm = 2 jm2+2)rm n)/( 2 )r( +), 
(36) when m > n and m -n is odd, 

= 0. otherwise. 
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Writing m - n = 2r + 1 (r = 0, 1, 2, .. .), we obtain from (36) 

?n,n+ 2r+1 _ (r + 1)(n + r + 3/2) 1 
U7n,n +2r+3 (r + 1/2)(n + r + 1) 

Hence, for fixed n, the sequence {Unn+ 2r+ 1 } for varying r is strictly monotonically 
decreasing, yielding 

(n !)2(2)2n+ 1 
(37) 6Tnn+2r+l < nn+l = bn (2n + 1)! 

The results (30) and (31) follow from (34), (36), and (37). Bound (32) follows from (30) 
and (31). This completes the proof of the lemma. 

A similar result based on k<>nkl ? 2 was used to derive an asymptotic bound 
(n -+ oo) on JEGn(f)I (see [5]). Using Stirling's formula 

(38) bn ' 2V,/rn/(2n + 1) as n -+ oo. 

This extra n- 1/2 factor in (32) is vital to obtain a better bound. 
3.2 A Lower Bound on Pn(z). 
Li\IMMA 4. For z EP, 

IPn(z)I _ an(p2 + p-2n - 2)pn/(p2 _ 1) 

(39) > an (p2 - 2)pn/(p2 - 1) 

where 

(40) an = 
(2)2n n!)2= 

(2 +lb%(.1 -~ as n --+ o- 
(2)2(n!) (2n + l)bn 

n 

The bound (39) is significant if p > /2. 
Proof. It is shown in [3, Lemmas 12.4.1 and 12.4.3] that for z e EP 

n 
(41) Pn(z) = - a J{( 

j=O 

and 

(42) ajan -j < an, j = O. I 2,.) . .. n, 

where an is given by (40). From (41) 

P (z)j = | 1 + a -j n - 2j (aXnpn) 
j= an 

pn I J 1aa j jj 

? anp Li - X P21 (using (42)) 

= n [_ 2 > 2 pn (P2 2) 

This establishes the lemma. 
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3.3 A Bound on EGn(f). From (27) by selecting the contour C as an ellipse E, it 
follows that 

(43) _~~~~~~~~~ 1 f(z) IfQ.(z)f fdzj 
4IEG.(f)I JEP IP ( )I 

Let p > /2. Employing (32) and (39), we obtain 

(44) IEGM(f)I ? dn A~ (p2 + I 

where 

dn=(2)4 
+ 

(n !)4 
=(2n)!(2n + 1)! 

and M(p) is given by (26). 
It is easily seen that the sequence {dn} is strictly monotonically increasing and 

limn,, dn = 7r. Thus 

(46) 0 < dn < of 

and we have the following theorem. 
THIOREM 2. Let fe A(Ep), p > 1/2. Then 

(p2 + 1) M(p) 
(47) IEG.(f)I< dn (p2 - 2) p2fl 

where M(p) and dn are, respectively, given by (26) and (45). 
In view of (46), an overall bound is given by 
COROLLARY. Let n -* oo, then for p > 1/2 

(48) IEG~~(f)I < (p2 + 1) M(p) 
(48) |EGn( )| <-7 (p2-2) p2nf 

We mention here that Chawla [6, Theorem 1] obtained the following asymptotic 
(n -+ oo) result by using Davis' method. 

If f E A(Ep) and p > 1, then 

(49) IEGn(f)I < M(p) (1 + p 4)2(l + 0(1)). 

3.4 Discussion of the Results. The asymptotic (n -* oo) bound (48) is not better 
than the asymptotic bound (49). But the bound (47) is valid for all n and p > 12 as 
compared to the asymptotic bound (49) which is valid for n oo and p > 1. 

As a consequence of (47) we have the following asymptotic bound valid for p -* oc 

(50) IEGn(f)I _ d< I + p221 = dn p) [1 + O(p2)]. 

This bound is compatible with the asymptotic (p -* oo) bound of Chawla (unpublished 
work), having the same leading term. 

The bound (47) can be compared in some sense with the bound of Stenger [7] 
given by 
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32 MI(p) (51) IEGn,(f ) I< E P p2n 

-where Ml(p) = maxZ-Ep IReal part of f(z)l and p > 1. Now, if we compare the 
coefficients ((p2 + 1)/(p2 - 2)) dn and 32/i of (47) and (51), respectively, it is clear 
that the former is less than the latter, for 

(64 + n / 

(52) P > (32-id } 

The relation (52) is definitely true if 

(X)1264 + 212 

Thus we see that Stenger's bound is better for small p, but ours is better for large p. 
For small p < /2 ours does not exist. For large p ours is smaller by a factor n 2/32 = 
0.31. The cross-over point is near p = 1.83. These numbers depend on n but only 
slightly. 
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