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Discrete Least Squares and Quadrature Formulas 

By M. Wayne Wilson 

Abstract. The purpose of this paper is two-fold. Firstly, we explore some of the intimate connec- 
tions between discrete least squares processes and quadratures. Secondly, we present an algorithm 
to construct Gauss-type integration formulas, and consider briefly the method proposed by 
Gautschi [2]. 

1. Introduction. Primarily, this paper is an attempt to explore the intimate con- 
nection between numerical integration rules and discrete least squares methods. If L 
is a linear functional on C[- 1, 1], the set of continuous functions defined on [- 1, 1], 
then (Taylor [7, p. 195]) there exists a function a e BV[- 1, 1], the set of functions 
of bounded variation on [-1, 1], such that 

(1.1) L(f) = f(t) dx(t), V f e C[ -1, 1]. 

We call a the integrator of L. 
For a E BV[ - 1, 1], we can consider a linear functional 

L(f) fr f(t) dx(t) 

or a bilinear form 

gf ) _ f (t)g(t) da(t). 

Clearly, for such an a, (f, g) = L(fg) and L(f) = (1, f) and these we call an 
associated pair. Note that if a is a step function, with a finite number of discontinuities, 
then L, and ( , ) are finite weighted sums of function values. Similarly, finite 
weighted sums can be represented as Stieltjes integrals, with integrators which are 
step functions. 

For a given linear functional L, we call a linear functional L, of the form 

N 

(1.2) Ln(f )=EA~n) f(ti) 
i=O 

an (N + I)-point degree n quadrature formula for L if 

(1.3) Ln(p) = L(p), Vp e Pn, 

where Pn is the set of polynomials of degree at most n. 
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If a E BV[- 1, 1], then its kth moment is 

NWa,= tkda(t). 

Condition (1.3) is then equivalent to 

(1.4) Ik(CXN) = Pk(Y), k = 0, 1,.. ., n, 

where AN is the integrator of (1.2). 
Section 2 is dedicated to the principle that formulas should use available data, if 

at all possible. The first result, Construction 2.1 shows how to obtain an (N + I1 
point degree n quadrature formula, utilizing a user prescribed point set. One inter- 
pretation of this construction is as a transformation, taking a degree 71 quadrature 
formula with prescribed data points (for example, a known Gauss-type rule for a 
particular weight function), into an (N + 1)-point degree n rule, utilizing the desired 
N + 1 data points, N > ni. Theorem 2.1 gives a characterization of these rules, 
from which a statistical interpretation is drawn. 

Construction 2.1 is then used as a basis for Construction 2.2, showing how to 
obtain a discrete inner product, utilizing again N + 1 user specified points, whose 
first r + 1 orthogonal polynomials, N ? 2r - 1 are precisely those of a user speci- 
fied continuous distribution. This allows one to use the power of discrete Fourier 
series expansion, utilizing data points, and the polynomial system of one's choice. 
An example is given. 

Section 3 applies the previous construction in the computation of Gauss-type 
quadrature formulas. In Section 4, we consider the method of Gautschi [2], suggest 
a modification, and show that in some sense, he still utilizes moment data. 

2. Discrete Least Squares and Quadrature Formulas. Throughout, we will con- 
sider the linear function L of (1.1), with integrator a. Our first result is a method of 
constructing an (N + 1)-point degree n quadrature formula for L, using a prescribed 
set of data points. 

CONSTRUCTIoN 2.1. Let - I < to < t I< ... < tN ? t be N + 1 prescribed 
points in [-1, 1], N > 71. Let wi, i = 0, 1, . . . , N be a set of strictly positive numbers, 
such that 

N 

(2.1) Z Wi = o(a 
i=O 

The inner product [ , ] given by 
N 

(2.2) [U, q] = E wif(ti)g(t), 
i=O 

possesses an orthonormal sequence of polynomials q0, q1, . q.., q. Then an (N + I1 
point degree n1 quadrature formula for L is given bv 

N 

(2.3) L"(f) - E n)f(ti) 
i=O 

where 
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(2.4) i = wi {1 + E qj(ti)M} i =O ..., N. 

and 

(2.5) M, = L(qj). 

Proof. For f E C[ -1, 1], its nth Fourier segment sn(f) is given by 
n 

sn(f) = [f ,qj]qp, n <N. 
j=o 

(If N n, Sn(f) is the interpolation polynomial.) 
Defining Ln(f) by L(sn(f)), we have 

n 

Ln(f) = E If qj]Mj 
j= o 

N ( n 

f (ti) ZWi E qj(ti)Mi}. 
i=O j =? 

But (2.1) implies [1, 1 = o= L(1) so that 

qo(t) = and M0 = Ato,. 

Thus, L"(f) is given by (2.3)-(2.5). For PCe Pn, sn(p) p, so L"(p) = L(p), Vp e Pn, 
and (2.4) is indeed a quadrature formula of degree n. Q.E.D. 

Of course, if N = n, (2.3) is the unique interpolatory quadrature formula for the 
data points, regardless of how the numbers wi were chosen. We delay discussion of 
calculation of AEn) to prove the following characterization of the rule. 

THEOREM 2.1. For a given set of points to, t1, ..., tN, and a given set of weights 

wO, w1, .. . , WN, then amongst all possible (N + 1)-point degree n quadrature formulas 
for L, of theform 

N 

Qn(f) = Z Aif(ti), n ? N. 
i=o 

Ln, defined by (2.3)-(2.5), is the unique formula minimizing 
NA2 

i=o w 

Proof We express the problem as that of minimizing the norm of an element sub- 
ject to linear constraints, and apply a theorem in Davis [1, p. 229]. For a vector 
x = (xO, x,.., XN) in EN+ 1, define an inner productKK , ?by 

<<x, y>> E Xiyi 

i=O w 

Define ho, hl,..., h by 

hi (woqi(to), w1q1(t1) * , wNqi(tN)). 

By definition, 
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<<hi, hj>? = [qh, qj] = 6ij, ij = 0, 1, ..., n. 

Now, L"(p) = L(p), Vp E Pn iff Ln(qj) = L(qj), j = 0, 1, ..., n; that is, the vector 
A = (AO, A1, ..., AN) must satisfy the constraints 

< <A, hi>> = Mp, j = O.10 , n. 

Applying the theorem in Davis, the unique element A* of EN+1 satisfying these con- 
straints and minimizing d(A) = <<A, A>> is given by 

n 
A*= E MJhJ, 

j=O 

whose ith component, 
n 

A* = E wiqfjt)M, 
j=O 

is precisely An"), given by (2.4). Q.E.D. 
By computation, or as a corollary to the theorem in Davis, the minimum value 

d(A*) is EZ=o Mi. These quadratures contain, as a special case, the quadratures 
described in Wilson [10], and in the author's thesis. 

This characterization has the following statistical interpretation. Let each function 
value f(ti) have an error si, which, considered as an independent random variable, 
has variance ai. Taking wi = 1/ut, Theorem 2.1 shows that the variance c2 

N\ 
(2= E 

i=o 

of the total error, E, 

(E = E Aj) of 2N 

is minimized if Ai are determined according to Construction 2.1. 
Turning now to the calculation of A4n), the values qj(ti) are obtained by generating 

the set q0, qj, ..., qn by the three-term recurrence formula. For any inner product 
( , ) the orthonormal polynomials Pox P1, .. and their monic forms Po, P1, . .. 
satisfy the recurrence 

P- M- ot) = 1, PoO 

(2.6) pA+1(t) = (t - ai))i - I = 0, 1,... Where 
= (tOAI )/(iK, Pi), pi = Hi, fi)/i- 1, Pi- 1) and 

pi = fi)112 

which we collectively call (2.6) 
Note that the square root operation indicated above is easily avoided in computing 

)~n), since 

qj(tj)Mj = 4i{ti)L(4j)/(4j, 4j)- 
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The values Mj = L(qj), or alternatively L(4j) are known in principle. They may 
be obtained from the moments uk(o), k = 0, 1, ..., n, via an (unstable) recurrence 
given in Gautschi [2]. If the 4j can be identified with a set of classical polynomials 
(wishful thinking in general), analytic techniques might be employed. However, if 
there exists some degree n quadrature formula for L, say Q, then Mj or L(4q) are 
easily computed. In effect, we are then transforming the known quadrature Q,, (for 
example, a Gauss-type rule, involving approximately 1/2n data points) into a degree 
n formula, with (N + 1) specified data points, N > n. One advantage of this method 
of creating quadrature formulas is that we do not require the solution of a system of 
equations. 

This process has application in creating quadrature formulas for data arising from 
experimentation, where it may be impractical, if not impossible, to obtain data to fit 
known rules. It has the added advantage that, via Theorem 2.1, known error charac- 
teristics of data can be incorporated. 

The construction can be modified to handle the more general situation, where by 
degree n we mean that L"(f) = L(f) for all function f in an (n + 1) dimensional 
subspace of C[- 1, 1], spanned by (n + 1) linearly independent continuous functions 
(PO ,D ..1, (Pn, The three-term recurrence formulas, which orthonormalize 1, t, t2, 

tn are replaced by the Gram-Schmidt orthogonalization process. 
Next, we consider further ways the choice of weights wi affect the computation of 

).n). Let J be the linear functional associated with the inner product [ , ]. That is 

(2.7) J(f) [1, f], Vf E C[- 1, 1]. 

Condition (2.1) implied that J was an (N + 1)-point degree 0 quadrature formula 
for L. 

LEMMA 2.1. Suppose J is a degree m quadrature formula for L. Then, for m < n, 

f n 
(2.8) an) = wi {1 + E qj(ti)Mj 

j=M+ 1 
while for m _ n, A4n) - wL. 

Proof. Since J(p) = L(p), Vp e P.m we have Mi = L(qj) = J(qj) = [1, qj] = 0, 
for j = 1, 2, ..., min(n, in), by definition, assumption, and orthogonality. Q.E.D. 

Thus, Aln) can be considered as wi, with a correction factor, which takes account 
only of the increase in degree. If m > n, J is already a degree n formula with the re- 
quired N + 1 data points. 

If we treat (2.2) as a bilinear form, we can relax the strict positivity requirements 
on the weights wi. Everything previous will hold, with nonzero weights, provided the 
bilinear form [ , ] will generate a set of monic orthogonall" polynomials 40, 41, 
.q. I 4n via the three-term recurrence formulas (2.6). Struble [5] shows that the recur- 
rence breaks down only if, for some k < n, [4k' qk] = 0. Thus, the existence of 
40, q 4, * n qn implies the existence of "orthogonal" polynomials qO, q 1,, . qn1, 
normalized in the usual fashion. We admit the possibility of [qu, 4n] = 0. 

Starting with [ , ] and assuming J is of degree im < n1 < n, n1 an integer, 
observe that in addition to creating Ln, we could create Ln,. Taking as a new set of 
weights wi the coefficient Atn,), (which need not be strictly positive), we can create an- 
other degree n formula, by a second application of the construction. Unless N =n, 
(so that Ln is the unique interpolatory quadrature for L), the two-degree n formulas 
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are not in general the same. This is easily seen from Theorem 2.1, or from experi- 
mentation. 

LEMMA 2.2. Let ( , ), the bilinear form associated with L, possess a sequence of 
monic orthogonal polynomials, fo, P1, . . ., fl. Let J, the associated linear functional 
of [ , ] be of degree m. Then [ , ] possesses a sequence of monic polynomials 

40, I 1I.. . 4r, for any r satisfying r < 1, 2r-1 ? m. 
Further, 4j = fj, j = 0, l...., r, and qj = Pj; = 0, ,. . ., r - 1. If, in addition 

r satisfies 2r _ m, r < 1, then q, = Pr, provided (Pr, Pr) # 0. 
Proof. From Szego [6, Section 2.2], or Stroud and Secrest [4, Section 1.2], or 

directly from the recurrence formulas, the polynomial fk is determined by the mo- 
ments ,tkx), a the integrator of L or ( , ), for j = 0, 1, .. ., 2k - 1. If (k. Pk) : 0, 

Pk is determined by kjLox), i = 0, 1, . . . , 2k. Since J is a quadrature formula of degree m, 
its integrator has the same first m + 1 moments as L. Q;E.D. 

In the statement of the lemma, if 1 is finite (we allow 1 to be finite or infinite), then, 
unless degeneracy occurs, pi is also available. If a(t) is monotonic increasing, we have 
orthogonal polynomials in the classical sense, and degeneracy cannot occur. 

This leads to the following 
CONSTRUCTION 2.2. Let ( , ) be a bilinear form, possessing a sequence of monic 

orthogonal polynomials, fo, Pl, fir. Taking n ? 2r -1, N > n, the discrete 
bilinearform < , >, given by 

N 

<Kf g> = Z )")Af(ti)g(ti) 
i=O 

where )An) are obtained by Construction 2.1, using positive weights wi, and prescribed 
points - 1 ? to < t1 < *<- < tN ? 1, possesses a set of monic polyn1omials (0, i, 
.. .,q1, where l > r, such that qi = Pi, i = O. l, ... r, andqi = pi, i = 0 l, . . .,r-. 
If n > 2r, we have, in addition, qr = Pr, provided degeneracy does niot occur. 

Proof Immediate from Lemma 2.2 
Thus, for the given data points, to, t1, ..., tN, we can create coefficients A4n), not 

necessarily positive, to obtain a discrete orthogonality relation for a prescribed set 
of (classical) polynomials. 

It is interesting to note that just writing 
N 

<Kf g> = E aif(ti)g(ti) 
i=O 

for N + 1 prescribed points, and imposing the r(r + 3)/2 constraints 

<Pi, Pj> = O. 0 ? i _ j _ r, 

<pi, pi> = 1, i =0,I,.., r -1, 

we can find coefficients ai, i = 0, 1, . . ., N, for any N > 2r - 1, which satisfy the 
constraints, provided that there exists an a E BV[ - 1, 1], such that 

Jxp#()p#~) da(t) 

satisfies the same constraints, where Pk is a polynomial, of degree k, k = 0, 1, . . ., r. 
In addition to its use in the next section, Construction 2.2 allows one to use all 
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the methods of (discrete) least squares, with both the data points, and the polynomial 
system, of one's choice, whether or not < , > is in fact an inner product. 

As an example of the methods outlined here, take a(t) = t in (1.1), so that L is 
ordinary integration. For a point set, take equidistant points, ti = - 1 + i/8, i = 
0, 1, ... , 8. Constructing a degree 6,9 point quadrature formula, we obtain the weights 

O-= 8 = 0.078747, 21 = -7 = 0.343570, 

X2-6 = 0.185866, )3 = = 0.237791, )4 = 0.308052 

using Construction 2.1, with wi = 2/9, i = 0, 1,... . 8. 
The known classical polynomials of ax(t) = t are of course, the Legendre poly- 

nomials, Pi. The orthogonal polynomials of < , >, given by Construction 2.2, 
when suitably normalized, are 

Qi = Pi, i = 0,1,12, 3,4, 

Q5 = P5 - 0.380533P3, 

Q6 = P6 - 0.475798P4 - 0.298990P2, 

Q7 = P7 - 0.224238P5 - 0.501186P3 - 0.222107P, 

Q8 = P8 + 0.242958P6 - 0.536490P4 - 0.559967P2 - 0.138817Po. 

The normalization was to expand each 4j as a Legendre series, and then to make 
the coefficient of the highest degree Legendre polynomial unity. The calculations 
were done in double precision, on an IBM 360 model 67, although only reported 
to six figures. 

If we expand f E C[- 1, 1] as a discrete Fourier series, using < , 

f,= A ajQj where aj= Kft'Qj> 
j=O <QQ> 

then 2aO is the value L(f), i.e., of f f(t) dt to degree 7 accuracy. That is if f is 
sufficiently differentiable, then there is a constant K, and a 4 e (- 1, 1), such that 
2aO - L(f) = KfI8)(j). 

That the rule is actually of degree 7, not 6, follows from the symmetry of the 
points and weights. 

3. Gaussian Quadrature Formulas. The preceding analysis gives rise to another 
approach in creating an r-point Gauss quadrature formula for the integral 

(3.1) L(f)= { f(t) da(t) 

where we now assume cx(t) is monotonic increasing, with at least r + 1 points of 
increase. Recall that the more usual integral (' w(t)f(t) dt where w(t) > 0 on [-1, 1], 
and not identically zero, can be put into the above form. If po, Pt, is, Pr are the 
orthonormal polynomials associated with a, then, the Christoffel numbers can be 
calculated from 

(3.2) c -(r [l )] 2 
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where 41, C21 . C, are the zeros of Pr. If the polynomials are readily available, 
this is the most direct process for finding the r-point Gauss rule for a. 

If the polynomials are not known, and if we have available an (N + 1)-point 
degree n quadrature formula for L, where N > n _ 2r - 1, we can apply Con- 
struction 2.2, to obtain po, Pl, ., Pr-i' fr. Then, root finding techniques, (3.2), 
and improvement techniques can be applied. Gautschi [2] and [3] give details 
and algorithms for such techniques. This process would, under the assumptions, 
probably still be the most direct approach. 

Gautschi [2] shows that the usual methods for finding Gauss-type rules, starting 
with the first 2r moments, and either solving a nonlinear system, or inverting a 
Gram matrix, are highly ill conditioned. He proposes a scheme that obtains ap- 
proximations to po, Pi' ..., Pr, and uses the zero of the rth degree approximant 
as described earlier. Since his scheme (we consider it in more detail in Section 4) 
appears relatively stable, proceeding as we do from an (N + 1)-point degree n 
quadrature formula, and also generating approximants to P0o P1, ..., Pr, the pro- 
posed scheme should also be stable, providing the quadrature formula involved 
is also stable. Although we can give no formal definition of stability of a quadrature 
rule, practically, the coefficients should all be of the same order of magnitude with 
few, if any, negative coefficients. In this connection, recall that Tchakaloff [8] (see 
also Wilson [9]) shows that for any n, there does exist an (n + 1)-point degree n 
quadrature formula for L, with positive weights. One method of finding such rules 
has been given in Wilson [11]. 

Let us now consider a different problem, that of creating, for L, a quadrature 
rule of degree n, in a stable fashion. This does not mean the rule obtained is neces- 
sarily stable. However, if it is reasonably stable, we can proceed to the calculation 
of the Gauss-type rule as outlined above. 

If we are extremely fortunate, we might be able to calculate analytically 
1 

| sj(t) doc(t)q j-O = 1, . . . , n, 

where so, s1, ..., s, are a known set of classical orthogonal polynomials, with re- 
spect to an integrator # e BV[ -1, 1]. Further, let us suppose that so, s1, ..., 

satisfy a discrete orthogonality relation, over a set of N + 1 points, N ? n. (The 
polynomials so, sl, ..., sn always have such a relation with respect to the discrete 
inner product formed from any (N + 1)-point Gauss-type rule for the integrator fi, 
N. > n.) Then Construction 2.2 will create an (N + 1)-point degree n quadrature 
rule for L, i.e. for the integrator ac. 

One important example occurs when we take sj = Tj, the first kind Chebyshev 
polynomial, where we can examine, for N = n, the condition of the process. Defining 

n 1 1 

F, if= - a0 + a, + a2 + ... + an-l + - an 
i=O 2 2 

we have the natural orthogonality 
n 

i" Tk(ti)Tjti) = 0, i = -, 
i=O 

(3.3) = n, i = j = O, = n, 

= n/2, i =j 0 0, # n, 
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where tj = cos(ini/n), i = 0, 1, ... ., n. 
Applying Construction 2.1, we obtain the quadrature rule, of degree n, 

n 
Ln(f)=E Aln 

i=O 

where 

2 n 
(n) - "Tj(xi)MA, i = 09 1, ... , n, 

n j=o 

and MJ = L(Tj). 
This is equivalent to solving the matrix system BX - M* where 

1=Q ) M* =(M*) 

and bij = Tj(tj), i, J = 0, 1, ..., n. 
The matrix B has a known exact inverse, immediate from the discrete orthogonality 

condition (3.3), namely 

xTo(to)q oT 1(to)q . .. 9 Tn - 1 (0) 'Tn(tO) 

/ TO(tl), T1(tj), ... , Tn- 1(t1), ATn(ti) 

2 
_*. . . . . . . . . . . . . . . *. . . . . . . . . n() i 'TO(tn_ 1)9 Tj(tn_ 1) . .. 9 Tn-1l(tn-J 1) Tn(tn- I) 

\TO(tn)g 'Tl(tn), . . 1 @ Tn- 1 409 1 Tn(tn) / 

Using the vector norm |x = maxi Ixd|, and the corresponding matrix norm 

||B|| = max E Zaiji, 
i i 

we see, since the entries are essentially cosines, ||B|| = n + 1 and JIB-'1I < 2 so 
that the condition number of the system 

K(B) = 11lB11 -'11B < 2(n + 1). 

Knowing MJ then leads to a reasonably conditioned process for determining a 
(n + 1)-point degree n quadrature rule for (3.1). 

The importance of this example is now apparent. Even if we cannot calculate 

M = Tj(t) dc(t) 

analytically, accurate approximation of the values, which may readily be possible, 
does not alter the rule obtained substantially, since the matrix system is reasonably 
conditioned. 

If we are actually dealing with the special case 1 f(t)w(t) dt, where w(t) ? 0 
on [-1, 1], it is pertinent to remark that many methods of obtaining polynomial 
approximations to w(t), particularly minimax methods, lead directly to approximants 
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of the form Zk=o aiT (x) where ai rapidly decrease in magnitude. Since 1 T (t)Tj(t) dt 
can be calculated, quite accurate estimates to Ml may be obtained. 

There is one class of integrators where M* are clearly analytically available, 
namely, suppose a is piecewise linear. For example, suppose 

I W1 fn 1/2 1 

f(t) d(t) = f(t) dt + f(O) + f(t) dt. 
.- -1 J-1 3/4 

Since Tj(x) is essentially a cosine, analytic calculation is easy. 
Finally, for completeness only, if moment data is available, Gautschi [2] gives 

recurrence formulas for generating "moments" with respect to given classical orthogo- 
nal polynomials, although, as he indicates, such recurrences are not stable. 

The scheme given here is not meant to replace classical methods, or the scheme 
proposed by Gautschi [2], but is an alternative which, like any scheme, may or may 
not be practical, depending on the data available. It is eminently practical if one has 
an (N + 1)-point degree 2r - 1 quadrature scheme handy, N > 2r - 1, or if one 
is easily calculated. Several situations where the latter case occurs have been outlined 
above. 

The proposed scheme appears to show the stability of Gautschi's scheme. Finally, 
the proposed scheme may be applied to more general situations than Gautschi's. 

4. Gautschi's Scheme. Consider now the scheme proposed by Gautschi, which is 
applicable in situations where L is given by 

L(f) = 1 f(t)w(t) dt, 

where w(t) > 0 on [-1, 1]. We outline his scheme, indicate a modification, and 
show that in some sense, his scheme is not totally free of moment data. 

Assume a sequence IM of (M + 1)-point quadrature formulas, of degree nM respec- 
tively, with points t4r), ..., tW) in [- 1, 1] and whose weights are positive. Although 
he specifically recommends two particular sequences of rules, they are not important 
to the description of the method, although they have great practical importance. 
We do require that, as M ,-+ oz, the norm of the partition tr?), tWM)..., t}) must go 
to zero. 

If we write IM as 
M 

IM(f) = Z xMtf (tM)), 
i=O 

then he considers the sequence of orthogonal polynomials q(M), j = 0, 1, . . ., r, gen- 
erated by the discrete inner product [f, g]m = IM(wfg) where w(t) is the weight 
function. 

He shows the sequence of polynomials qM), k = 0, 1, . . ., r converge, as M Doo, 
to the sequence Pk, k = 1, 2,.. ., r, the orthonormal polynomials associated with w(t). 

We will define 
M 

f, g]M = AM Z M)W( (t(M) 
i=O 

and assume AM is such that 
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[1, 1]M = w(t) dt = go 

so that the corresponding quadrature formula is degree 0. The choice has no effect 
on the monic polynomials, but will affect the normalization somewhat. For some M 
sufficiently large, he takes q(M)(t) as an approximation to pr(t) and calculates the 
Christoffel numbers CAM from its zeros ,M, as in (3.2). 

We now describe a simple modification. For n = 2r - 1, let N > n, and, as 
above, calculate qN)(t), k = 0, 1 ..., n, orthonormal with respect to [ , ]N. For 
M > N, we consider [1, f]M as the linear functional L(f) of Section 2, and using 
Construction 2.2, create the orthogonal polynomials 4qM), ..., q). Recall that the 
inner product < , > will correctly normalize q(M), J = 0, 1, .. ., r -1. 

This modification has value computationally if M > N, or if we compute a se- 
quence M1 < M2 < ... of such sets of polynomials. In the latter case, one may 
examine the convergence of the weights for use in the inner product < ,>, before 
obtaining the 4(M) polynomials. Although a similar type of procedure is easily incor- 
porated into Gautschi's method, (by examining the convergence of the coefficients 
of the three-term recurrence formulas) at roughly equivalent cost, a definite advantage 
occurs if the initial rules IM(f) have some form of point economization (as his sug- 
gested rules do). This advantage accrues because at each step, the Gautschi procedure 
involves inner products [4=M), q(M)], i 0, 1, . .. , r, of differing sets of polynomials, 
while the modification suggested involves only inner products [1, qN)]M, =-0, 1, 

. n, of a fixed set of polynomials. 
However, the variation above shows that in some sense, Gautschi's algorithm 

still depends on moment data, namely, on [1, 4kN]M, k = 0, 1 .., n which is an ap- 
proximation to 

4 qkN)(t)w(t) dt. 

(However, as M increases, the approximation improves.) Since Gautschi states that 
his procedure appears to be stable, it is conjectured that the modification will also 
be stable. 

Acknowledgment. The author gratefully acknowledges the constructive criticism 
of the referees; their suggestions have led to a much smoother presentation. 

IBM Scientific Center 
6900 Fannin Street 
Houston, Texas 77025 

1. P. J. DAVIS, Interpolation and Approximation, Blaisdell, Waltham, Mass., 1963. MR 28 #393. 
2. W. GAUTSCHI, "Construction of Gauss-Christoffel quadrature formulas," Math. Comp., v. 22, 

1968, pp. 251-270. MR 37 # 3755. 
3. W. GAUTSCHI, "Algorithm, Gaussian quadrature formulas," Comm. ACM, v. 11, 1968, pp. 432-436. 
4. A. H. STROUD & D. SECREST, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, 

N.J., 1966. MR 34 # 2185. 
5. G. W. STRUBLE, "Orthogonal polynomials: Variable-signed weight functions," Numer. Math. 

v. 5, 1963, pp. 88-94. MR 27 #4342. 



282 M. WAYNE WILSON 

6. G. SZEG6, Orthogonal Polynomials, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. 
Math. Soc., Providence, R. I., 1959. MR 21 #5029. 

7. A. E. TAYLOR, Introduction to Functional Analysis, Wiley, New York, 1958. MR 20 # 5411. 
8. V. TCHAKALOFF, "Formules de cubature mechaniques A coefficients non negatifs," Bull. Sci. Math., 

(2) v. 81, 1957, pp. 123-134. MR 20 # 1145. 
9. M. W. WILSON, Geometric Aspects of Quadratures with Non-Negative Weights, Ph.D. Thesis, 

Brown University, Providence, R. I., 1969. 
10. M. W. WILSON, "Necessary and sufficient conditions for equidistant quadrature formulas," 

SIAM J. Numer. Anal. (To appear.) 
11. M. W. WILSON, "A general algorithm for nonnegative quadrature formulas,"' Math. Comp., 

v. 23, 1969, pp. 253-258. 


	Cit r25_c27: 


