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An Error Analysis for Numerical 
Multiple Integration. III 

By Robert E. Barnhill and Gregory M. Nielson 

Abstract. Asymptotic results of two types are given for minimum norm cubatures. defined 
on a certain Hilbert space of analytic functions. Cubatures with a high degree of precision are 
realized as the limits of minimum norm cubatures, and an algebraic approach for the deter- 
mination of efficient rules is derived. Numerical methods and examples are also included. 

1. Introduction. This paper is a continuation of earlier work [2], and it concerns 
bounds on the cubature error for a class of uniformly bounded analytic functions of 
two variables. Minimum norm (MN) and optimal cubatures have been defined and 
discussed previously. This paper contains additional asymptotic results concerning 
them, as well as numerical results. The methods for doing the numerical calculations 
are described in some detail, both because they have changed considerably from the 
methods used earlier, and because we believe them to be "optimal." One of the asymp- 
totic results given in this paper is that, in certain cases, efficient cubature rules are the 
limits of MN rules, and the algebraic proof of this result should be useful for deter- 
mining new efficient rules. 

2. Asymptotic Properties of MN Cubatures. The Hilbert space of analytic func- 
tions to be considered is L = tf(z w): fis analytic inside Ep x Ep and IIf2 -- 

I.f(Z, W)12 dx dy du dv exists, where z = x + iy, w = u + iv, Ep is the 
ellipse with foci ? 1, semimajor axis a, semiminor axis b = (a2 - 1)1/2, and p = 

(a + b)2. With I = [-1, 1], we define 

ora 
RI(f)= JJ f(x, u) dx du- E Akf(XkUk). 

A MN cubature with 1 nodes is a cubature with weights Ak and nodes (Xk, Uk) such 
that IIRI|I is a minimum. It is of interest to have an upper bound on IIRMNII in terms 
of / One such upper bound appears in [2]. Let R7'n be the remainder of the (m x n) 
tensor product ("cross product") Gaussian rule, with 1 >a mn. Of course, IIR1N|I ; 
1R'OI11 and Theorem 1 contains an upper bound on II RGn 

THEOREM 1. In the space L2 

(1) tRmIl < 
Z ZER a(r, p)x(s, p)[7m6r fr + 7nbrs + (2mYr bsf]2 

r=2m s=2n 
r and s even 

where 
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c(r, p) 4(r + 1)/[,(prf +_ p -r- 1)], y = 2IT (n)4 
(2m + 1)[(2m)!]. 

and 

(r + 1)[(r + 1)2 -1] * [(r + 1)2-i2] 

r I3...(2i + 1) 

Proof. 
00 00 

(2) JlR GI2 = E Z oc(r, p)ax(s, p)IRJn(Ur(X)Us( ))I2 
r=O s=O 

where a(r, p) is as above and Ur is the rth Chebyshev polynomial of the second kind. 
Stancu [11] has shown that 

G PM__ QN 
Rmn(f) = (M + 1)! fM+,,O(e, ,) + (N + 1)! fON+l(8l,'1) 

(3) PMQN 

(M + 1)!(N + 1)! 

where 
PbM rd n 

PM = (d-c) H (XXi)2 dx > 0, QN = (b a) {JH (y yj)2 dy > 0O 

e and, 1 are in [a, b], andi and t in [c, d]. We have a = c = -1, b = d = 1, 
M = 2m - 1, and N = 2n - 1, the latter being the respective precisions of the 
Gaussian quadratures. It turns out that 

22m+ l(rn!)4 
= (2m + 1)[(2m)!]2 (2m)!y, 

and 

22n + 1 (n!)4 

= (2n + 1)[(2n)!]2 (2n)!yn 

Thus, 

|mn(Ur(X)Us(U))l :-! YmjU'r2- (8}US(q1)j 

(4) + 7n UrQ3 )U(2n)(ii)j + 
U 

yrnjU(2m)(g)U(2n)(q1). 

Now 

(5) U < (r + 1)[(r + 1)2 _ 1] [(r + 1)2W- 1 ? < 1, 
r (01 ~1 3 ... (2i + 1) 

for i = 0, 1, *. (The empty product is interpreted as the number 1.) Let the upper 
bound in (5) be denoted by 6t. Then we observe that 6' = (r + 1) and 6' = 0 if 
i > r, because Ur is a polynomial of degree r. The substitution of (5) into (4) and(4) 
into (2) yields the desired result. Q.E.D. 

We note that IIRm.ll2 is 0(p -(m+ 1)p-(n+ 1)) = O(p-(m ++ 2)) for functions of two 
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variables. A similar analysis for functions of k variables yields JRinln2...Jk '2 = 
Ml-(t+ ..*+Mk+k)) 

Stancu's article concerns tensor product rules, and so the error bounds of Theorem 
1 are "rectangular" in form. Thus, the error formula (3) is applicable in spaces with 
polynomial precision in each variable separately. The corresponding space is called 
BF2mi,2fl by Sard [9]. Secondly, the error bound in (1) would be improved, if only the 
third term of (3) were present. This is exactly what is obtained by the use of Gordon's 
"blending functions" [5]. The blending function of interest here is the following: 

m n m n 

B(x, u) = A, f(xi, U)A(x) + A f(x, u3)mu) - E A f(xi, uf)li(x)m/u), _=l J=_ i=1 j=1 

where 1i(X) = Hkt i ((X - Xk)/(Xi - Xk)) and mj dually. This function interpolates f 
along "lines," i.e., B(xi, u) = f(xi, u), i = 1, ..., m for all u in I and B(x, uJ) = f (x, u), 
j= 1,...,n forallxinI. 

3. Asymptotic-in-p Properties of MN Cubatures. A cubature rule is said to be 
efficient if it integrates exactly as many of the low order monomials as there are 
parameters in the rule; e.g., for a two-dimensional cubature with n nodes, there are 
3n parameters, n weights and n nodes, each of which contains two parameters. Also, 
there are 

(d + 2) (d + 2)(d + 1) 
2 ye2 

monomials in two variables of degree ?d. For functions of one variable, Gaussian 
quadratures are efficient. Since the nodes of these quadratures are the zeros of the 
related orthogonal polynomials, various authors [6], [7], [8] have tried to use the 
common zeros of sets of orthogonal polynomials in more than one variable as the 
nodes for efficient rules. Stroud [10] has recently obtained sufficient conditions for 
the common zeros of orthogonal polynomials to be the nodes of a cubature with a 
certain precision, but the formulas so discussed need not be efficient. We remark that 
Stroud's article also contains a good bibliography on the subject of orthogonal poly- 
nomials and their relation to cubature theory. 

For functions of one variable, it is known [2] that the MN weights and nodes 
converge to the Gaussian weights and nodes as p x-+ . For functions of two varia- 
bles, if the nodes are an interpolating set, [3, p. 27], and the number of them is of the 
form 

(1) (d + 2) 

for some positive integer d, then the weights converge to the corresponding interpola- 
tory cubature weights [2] and, in fact, the order of convergence is p-(d+ 1). A similar 
result is known for functions of n variables, n > 2. We conjectured that the MN 
cubature nodes converge to the nodes of an efficient cubature. If so, then we would 
have a computationally feasible way of finding efficient cubatures. We have obtained 
only partial results, both theoretically and numerically. Our numerical evidence to 
date (see the Tables) has indicated that the above conjecture is not true in the gen- 
erality stated. 
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We shall state the theoretical result in a special case for clarity of the ideas; the 
generalization follows without difficulty. Radon [8] has discovered an efficient seven- 
point formula of precision 5, in two variables. The cubature nodes are the common 
zeros of three polynomials, each of degree three. Let the region of integration be the 
squareS: - I x,y < 1. 

THEOREM 2. Let the cubature formula be 

('P 7 

f(x, y) dx dy - E Akf(Xk, YJk) 
JJS k= 1 

Assume that (1) the MN nodes form an interpolating set (at least for all p ? some p*), 
and (2) the common zeros of the sample polynomials (this term is defined in the proof), 
corresponding to the MN nodes and to some efficient rule, are all continuous functions 
of the coefficients of these polynomials. Then the MN nodes converge to the nodes of an 
efficient rule as p -+ x0. 

Remark. A key assumption is that there exists an efficient rule (whether known 
explicitly or not), and the Radon rule validates this assumption for this case. Note, 
however, that Theorem 2 does not imply that the MN cubature necessarily converges 
to the Radon cubature. 

Proof. 1. We denote the remainder of the Radon rule by RR. Then 

(6) IIR MNI12 
C IIR112. 

Now 

(7) || RR 112 = E a(r, p)c(s, p)R (Ur(X) Us(y))I2, 
r+s> 5 

where cx(r, p) = 4(r + 1)/[i(pr +1 -p-- 1)] = O(pr1) as p -+ oo. The sum's 
index is r, s, such that r + s > 5, because RR has precision 5, Ur is a polynomial of 
degree r, and Us dually. Thus || R R112 = O(p-5-2) = O(p-7), whereas IIR MN112 = 

0(p- 2). We multiply both sides of (6) by p2 and observe that 

R MN(1) + O(p -Y1)R MN(X) + O(p- 1)R MN(y) + * + O(p-S )R MN(X S) 

+ + O(p-s)R MN(ys) = O(p5), i.e., lim R7N(1) = 0. 
P -+ 00 

Using this fact and multiplying successively by p3, p4, , p7, we obtain the following 
result: 

(8) lim R MN(xjyk) = 0, 0 ? j + k 5. 
pa+ 00 

2. Equation (8) can be rewritten as the following system of 21 equations (where 
the integrals are each over S): 

Al + A2 + + An = i? + goo, 

A1x1 + A2X2 + + A7X7 = fx + sIO, 

(9) Aly1 + A2Y2 + .. + A7y7 = fy + g01, 

Aly' + A2y2 + + A7A = ly + e05, 
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where the ij = ij (p) -O 0 as p s-+ o. These Ai, xi, and yi are the MN values. We 
form three so-called "sample" MN third degree polynomials P1, P2, and P3 with the 
MN (xi, yi) as their common zeros. We note that a general third degree polynomial 
in two variables has ten terms, and the requirement of seven zeros means that there 
are three linearly independent solutions P1, P2, and P3. We also observe that every 
efficient cubature satisfies Eqs. (9), with the perturbations eij equal to zero. 

3. We now perform a sequence of (reversible) algebraic steps, the upshot of which 
is to change (9) from a nonlinear system, with perturbations tending to zero, to a 
rectangular linear system. The idea is to develop a two-dimensional analog of the 
so-called "algebraic" approach of Kopal [10] to Gaussian quadratures. Consider 

P1(x, y) = E cijxiyjl 
0(L +]j..3 

and assume that P1 has some cubic term, say X3. Then, without loss of generality, 
we may assume that c30 = 1. 

(i) Multiply the first equation of (9) by coo, the second by clo, ..., the last by c03. 

coo[A1 + ... + A7] = coo[j1 + Coo], 

c1O[Ajx1 + + A7x7] = c1o[fx + v10], 

1 [A1x3 + + A7x3] = 1 [fx3 + c30]' 

C21 [A lXly1 + * + A7X2y7] = c21jx2y + c21], 

c03[A1 y3 + + A7y3] = C03[fy3 + c03]. 

Add these equations and factor each of the Ai to get: 

A1[coo + c1ox1 + , + 1 x3 + *+ c03y] + A2[]2 + + A7[.]7 
(10.1) 

= c(o[fl + 600] + + 1 ['x3 + c30] + + C03[fy3 + 603], 

where [ ]t means the bracketed expression following AI with the substitution xi = x1 . 
Thus, the left-hand side of this equation is zero, since the (xi, yi) are zeros of P1. If 
we regard the cij as the unknowns, then (10.1) is one equation in nine unknowns. 

(ii) To obtain a second equation, we multiply different equations by the same 
constants as before to get the following: 

cOO[Ajx1 + .. + A7x7] = cOO[x + 1o0], 

clo[A X2l + + A7x2] = C1O[jx2 + v20], 

cOj[AjxjyI + *. + A7x7y7] = C01H[XY + e11], 

1 [A1x4 + + A7x4] = 1 [fx4 + c40], 

co3[A1Xy3y + + A7x7y3] = cO3[jxy3 + c13]. 
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Add these equations and factor each of the Aixi to get: 

A1xl[coo + c1ox3 + ' + c03yf] + A2x2[j2 + *' + A7[]7 
(10.2) = 

co0[.x 
+ e1] + *. + cO3[.Xy3 + c13] 

Again, the left-hand side equals zero, and so we have a second equation. 
(iii) This argument can be continued exactly, so long as the monomials involved 

are of total degree < 5. If we consider (10.2) as coming from a "multiplication by x" 
of (10.1), then the same procedure can be followed for multiplication by 1, x, y, x2, xy, 
and y2, the first two yielding (10.1) and (10.2), respectively. Thus we obtain six equa- 
tions in nine unknowns. Each solution of the unperturbed (i.e., all the eij = 0) 
(10.1), (10.2), .--, (10.6) is a polynomial R1(x, y) with leading term X3 and with roots 
(at least) at {(xi, y,)}.7 l, such that (9) holds with the eij = 0. Since the unperturbed 
equations have a solution, by the assumption of the existence of an efficient cubature, 
the solutions of the perturbed system are continuous in the perturbations, and thus 

CMN Cefficient as p o c. 

The zeros of P1 and R 1 are both continuous functions of their coefficients, by hypothe- 
sis, and so the zeros of P1 approach the zeros of R1. (Warning: R1 need not be one 
of the Radon orthogonal polynomials. See the tables.) Similar arguments applied to 
P2 and P3 yield the conclusion. Q.E.D. 

Remarks on Theorem 2. The algebraic approach, developed in part 3 of the proof, 
does not depend on there being exactly seven nodes and, in fact, the same approach 
can be used to obtain a formula of precision 5 with a minimal number of points. 
Theorem 2 can be generalized to functions of more than two variables, to more general 
regions of integration, and to other degrees of precision. If the degree of precision in n 
variables is to be d, then we show that 

lim R(Uri..*Urn)=0 forr1+r2+ + +rn d, 
P - GO 

just as before. The number of sample polynomials depends on the number of nodes as 
in part 2 of the proof, and the number of equations corresponding to (9) is 

(d + n) 

for precision d in n dimensions. 
Symmetry of the MN Rules. In the numerical examples calculated, we have ob- 

served that MN rules frequently have symmetries of various types. It is not always 
possible to have full symmetry, i.e., symmetry around x = 0, y = 0, and y = ? x, 
because, e.g., an efficient rule with precision 11 in two variables would require 26 
points, and 26 is not divisible by four. We conjecture that the p -- oo limit of a MN 
cubature is exact for at least an efficient number of monomials. However, these are 
not necessarily the lowest order monomials, e.g., the 5-point rule given in Table 6 
which integrates all monomials of degree ? 3 and, by symmetry, all odd monomials, 
but does not integrate x2y2. (To be efficient, a 5-point rule in two variables should 
have precision 4. However, suph a rule does not exist [13].) Secondly, we conjecture 
that a p -x o limit of MN cubatures integrates at least as many of the lowest order 
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monomials as there are degrees of freedom in the cubature. These degrees of freedom 
are the original number of variables minus the number of symmetries. 

4. Connection Between MN Cubatures and the Reproducing Kernel for L2. The re- 
producing kernel function for the space L2 is 

00 

K(z, w, S, t) E Pr(Z)Pu(W)Pr(S)Pu(t) 
r,u0 

where 

Pr(z) = 2[(r + l)/Z(pr+1 - p- r-1)112Ur(Z) 

If Rn denotes the remainder of an n-point cubature, then a MN cubature minimizes 
IIRnII2 and hence is a solution of the equation 

(11) VIIRn112 = 0, 

where the gradient is taken with respect to each weight and each coordinate of each 
node. After a short calculation, Eq. (11) can be rewritten as follows: 

[a(|1 Rn | 2)/aA1 

V||Rn 11 2 = 0(|1 Rn || 2)/aXj 

-0(11 Rn || 2)lay ; 

-2R(Z wK(z, w; xj, yj) 

(12) = 2AJR(ZW)8K(z, w; xj, yj)10xj 

L2AjR(ZW)aK(z, w; xj, yj)J0y 

-2Rn(q~j) 

- 2AARW(Nj) = 0; 

-AiRn(q') i 

where R(zw) means that the functional R applies to functions of z and w, nj = 1j(Z, w) 
is the representer of the point functional Lj(f) = f(xj, yJ), so that 

qj(z, w) = K(z, w; xj, yj), 

and 

tx = j-(z, w) = OK(z, w; xj, yj)10xj 

is the representer of the functional 

Lj(f) = af(x, yj)/axj, 
and qy is dual. Thus, Eq. (11) is equivalent to the requirement that a MN cubature 
be exact for the representers qj of the point functionals and the representers fjt and 11Y 
of the partial derivatives of the point functionals. If the nodes are fixed and the mini- 
mization is only with respect to the weights Aj, then the requirement RA(j) = 0, 
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j = 1, * *, n can be seen as follows: Let L be the integration functional with representer 
q. Then 

min I RnAl = min || - YAkLk l| = min 11f' - EAk,1k 
Ak Ak Ak 

by the duality properties of Hilbert space. Then 

(L - YAkLk)(qj) = (I - FAkqk, 1j) = 0, 

because t minus its best L2-approximation by linear combinations of the 1k is or- 
thogonal to all of the qj and hence Rn(qi) = 0,j = 1, ..., n. (Cf. Corollary 8.6.2 in 
Davis [3].) 

5. Numerical Results. 
(a) Method of calculation. The gradient VII 2 involves infinite sums which must 

be truncated in the numerical calculations. Instead of solving (12) to find stationary 
values of VlIRnII 2, for each sum we consider the infinite system of equations Rj(4j) = 0, 
i = 1, 2, *.. (The definition of Xi depends on which sum is involved, of course.) This 
system is truncated to Rj(4j) = 0, i = 1, ..., L and then solved in the 12-sense by a 
generalized Newton's method. A typical L used was 200. Let z(k) be the 3-tuple of 
n-dimensional vectors (A(k), X(k), y(k)) and let 

F(z(k)) = [Rn(41 ; Z(k), .., R(4L; z(k) )]T 

where R(4 k; z(k)) was called RJ(O1) above. The Newton's method used is the following: 

(13) Z(k+ 1) = Z(k) _ [F (Z(k))] +F(z(k)) 

where F'(z(k)) is the Frechet derivative (i.e., the Jacobian) of F at z(k) and [F'(z(k))] + 

is its generalized inverse. Since F'(z) has full column rank n, the generalized inverse 
has the simpler form [k] ? = {[.]*[j}1 [.]*, where * denotes the conjugate transpose. 

This method of calculation has more global convergence properties [16] than, the 
standard Newton's method which has been used in the past. This lessens the insta- 
bilities inherent in solving least squares problems. (See Gautschi [4] for a discussion 
of these instabilities.) In some cases the iterates changed too rapidly. When this 
occurred, relaxation factors were included in (13): 

(13') Z(k+ 1) = Z(k) _ Yk[F'(z(k))] +F(z(k). 

Usually Vk --y and y as small ab u.0 I were used. 
We add one disconcerting note: stationary values of V IRn112 need not correspond 

to minima of II Rn 11 2. The 5-4 example given later illustrates this possibility. 
The choice of initial approximations is difficult and was done in an ad hoc fashion 

for each case, usually with some symmetries assumed. The nodes were assumed to be 
in the region of integration. In all cases, t - region is [-1, 1] x [-1, 1], unless 
otherwise stated 

(b) Representative Results. 
Tables 1 and 2. The first example is a 7-point formula in the plane. An efficient rule 

has precision 5. The column labeled IIR` 112 is the square of the norm of the limit 
functional (when known). 
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TABLE 1 

Weight Nodes 

A + (s, r), ? (r, s) 
B +(-t, t) 
C (0, 0) 

a A r s B t C |JR7|12 IIR7 112 

1.5 .427743 .878312 .368882 .594762 .682098 1.09801 .3432(- 3) .3579(- 3) 
2.0 .419542 .887496 .373003 .595426 .682976 1.13096 .1210(-5) .1222(-5) 
2.5 .417719 .889478 .373799 .595330 .683081 1.13838 .2234(- 7) .2242(-7) 
3.0 .417158 .890115 .374048 .595283 .683109 1.14080 .9732(-9) .9749(-0) 
5.0 .416726 .890589 .374232 .595244 .683128 1.14261 .2033(-12) .2033(- 12) 
6.0 .416695 .890623 .374245 .595241 .683129 1.14272 .1047(- 13) .1047(- 13) 
8.0 .416675 .890645 .374253 .595239 .683130 1.14282 .9978(- 16) .9978(-16) 
xc .416667 .890654 .374257 .595238 .683130 1.14286 

or or or or or or 

5 177+1/24 7 - 124 25 77 8 
12 i 15 i 15 42 /15 7 

TABLE 2 

Weight Nodes 

A +(r, s), ?(-r, s) 
B +(0, t) 
C (0, 0) 

a A r s B t C |JR7|12 IIR 112 

1.5 .553929 .774102 .573848 .343078 .936629 1.09658 .3551(- 3) .3815(- 3) 
2.0 .555209 .774732 .576536 .324345 .957778 1.13045 .1268(- 5) .1292(- 5) 
2.5 .555426 .774672 .577052 .320057 .962917 1.13818 .2349(-7) .2366(-7) 
3.0 .555496 .774635 .577214 .318655 .964624 1.14070 .1025(-8) .1028(-8) 
5.0 .555548 .774602 .577334 .317605 .965914 1.14260 .2142(- 12) .2143(- 12) 
6.0 .555552 .774599 .577342 .317529 .966007 1.14273 .1102(-13) .1102(- 13) 
8.0 .555554 .774597 .577348 .317482 .966065 1.14282 .1052(-15) .1052(- 15) 
oo .555556 .774597 .577350 .317460 .966092 1.14286 

or or or or or or 
5/9 <3/5 11/3 20/63 /14/15 8/7 

Table 3. The next example is a 12-point formula in the plane. An efficient rule has 
precision 7. The MN numerical results are given in Table 3. The limiting cubature, as 
a -+ oo is an efficient rule due to Tyler [14]. There is a second such efficient rule, due 
to Mysovskih [12], but its nodes are not in [-1, 1] x [- 1, 1]. 
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TABLE 3 

Weight Nodes 

A + (0, r), ?(r, 0) 
B +(s, s), ?(-s, s) 
C + (t, t), +(t, t) 

a A r B s C t 11R 112 IIR0 112 

1.5 .247575 .920359 .516249 .380051 .236164 .807223 .1066(-4) .1083(-4) 
2.0 .243382 .924469 .519490 .380373 .237128 .806319 .8946(- 8) .8982(- 8) 
3.0 .242214 .925592 .520405 .380521 .237381 .806039 .1203(-11) .1204(-11) 
5.0 .242004 .925793 .520570 .380550 .237426 .805987 .3019(-16) .3019(- 16) 
8.0 .241979 .925816 .520589 .380554 .237431 .805981 .2205(-20) .2205(-20) 

10.0 .241977 .925818 .520592 .380554 .237431 .805980 .2471(-22) .2471(-22) 
so .241975 .925820 

or or 
-98 

/67 (see 1.) (see 2.) (see 3.) (see 4.) 
1 .520593 3..237432 

or or 
4(178981 + 27691/583/1888920) 4(178981 - 27691583/1888920) 

2. 380554 4. .8059798 
or or 

(114 - 31583/387)1/2 (114 + 31583/287)1/2 

Tables 4, 5, and 6. The third example concerns 5-point formulas in the plane. An 
efficient rule would have precision 4, but no efficient rules exist for this case. Three 
different stationary values of VIRI 112 were found. 

TABLE 4 

Weight Nodes 

A + (r, r), (-r, r) 
B (q,q) 

a A r B q II R5 II 2 II R5% II 2 

2.0 .702832 .687126 1.18795 10-15 .3483(-4) .3499(-4) 
3.0 .703570 .688060 1.18569 10- 16 .1623(-6) .1625(-6) 
6.0 .703696 .688236 1.18522 i0-15 .3032(-10) .3033(-10) 
7.0 .703699 .688241 1.18520 10-15 .4661(-11) .4663(-11) 
8.0 .703701 .688244 1.18519 10-14 .9256(-12) .9256(- 12) 
0o .703704 .688247 1.18519 0.0 

or or or 
19/27 3/1V19 32/27 
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TABLE 5 

Weight Nodes 

A (s, r), (-r, -s) 
B (-t, t) 
C (v, -U), (u, -v) 

a A s r B t 

1.5 .631441 .485659 .781122 1.080644 .515539 
2.0 .578063 .497280 .812022 1.146004 .505742 
3.0 .539836 .506069 .836316 1.187194 .498267 
6.0 .517174 .511755 .852244 1.211646 .493494 
8.0 .513875 .512615 .854671 1.215239 .492773 

15.0 .510841 .513415 .856929 1.218558 .492103 
25.0 .510068 .513620 .857509 1.219403 .491932 
40.0 .509804 .513690 .857707 1.219693 .491873 

1000.0 .509634 .513735 .857835 1.219879 .491836 

a C u v 11R5 112 

1.5 .820605 .139892 .767683 .2895(-2) 
2.0 .848520 .129679 .767892 .3617(-4) 
3.0 .866556 .121341 .767029 .1579(-6) 
6.0 .877003 .116010 .766578 .2813(- 10) 
8.0 .878504 .115212 .766527 .6821(- 12) 

15.0 .879881 .114473 .766485 .6231(- 12) 
25.0 .880230 .114284 .766475 .9333(- 18) 
40.0 .880349 .114220 .766471 .3304(-20) 

1000.0 .880426 .114178 .766469 .5531(-37) 

TABLE 6 

Weight Nodes 

A +(0, r), ?(r,0) 
B (0, 0) 

a A. r B 1JR5112 IIR5 112 

1.5 1.024699 .773464 -.125221 .6599(-2) .7462(- 2) 
2.0 1.089254 .774336 -.358678 .9915(-4) .1022(-3) 
3.0 1.107392 .774553 -.429617 .4785(-6) .4810(-6) 
6.0 1.110898 .774594 -.443591 .9000(- 10) .9003(- 10) 
8.0 1.111044 .774595 -.444178 .2788(- 11) .2788(-11) 
0O 1.111111 .774597 - .444444 

or or or 
10/9 A/3/5 -4/9 
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The configuration in Table 4 is similar to one reported by Valentin [15]. It is 
interesting to note that the limiting cubature in Table 4 has more polynomial pre- 
cision than the corresponding one in Table 5, but that the norm in the second case 
is smaller than in the first. The limiting cubature of Table 4 has precision 3 and enough 
symmetry to be exact for all monomials x'y' where a or /3 is odd. The "limiting" 
cubature of Table 5 numerically has precision 3, but does not have sufficient sym- 
metry to obtain any further algebraic precision. The limiting cubature of Table 6 
has sufficient symmetry to be exact for all monomial x'y# where x or /3 is odd. It 
also is exact for the monomials X2, y2, X4, Y4. Thus, it lacks only exactness for the 
monomial x2y2 of having precision 4. Of the three rules, the one in Table 6 has the 
most polynomial precision, but at the expense of a negative weight.' 

Tables 7 and 8. We have computed two examples for the three-dimensional cube 
'[-1, 1] x [- 1, 1] x [-1, 1]. A 5-point precision 3 formula would be efficient, but 
such a formula does not exist [12]. Convergence of the Newton iterates was not ob- 
tained for this case. 13 - 5 and 14 - 5 formulas are known, the latter being efficient 
and the former hyper-efficient. The cubature corresponding to a = cx of Table 7 is a 
hyper-efficient formula of degree 5. It is due to Stroud [12]. The cubature correspond- 
ing to a = so of Table 8 is an efficient formula of degree 5. It is due to Hammer and 
Stroud [6]. 

TABLE 7 

Weight Nodes 

A (0, 0, 0) 
B ? (r, s, s), ? (s, r, s), ? (s, s, r) 
C ? (u, u, v), ? (u, v, u), ?(v, u, u) 

a A B r s C 

1.5 1.54223 .563452 .859686 - .493456 .511637 
5.0 1.68338 .545106 .880190 -.495840 .507664 
8.0 1.68409 .545005 .880287 -.495847 .507647 
0o 1.68421 .544987 .880304 -.495848 .507644 

a u v 1R13 112 IIR`3l12 

1.5 .787474 .030395 .5314(- 3) .5668(- 3) 
5.0 .795586 .025326 .2212(-13) .2215(-13) 
8.0 .795616 .025298 .4189(-17) .5404(- 17) 
x0 .795621 .025293 

(c) Examples. We have used the MN rules to integrate some specific functions and 
the numerical results are given below. Let f(x, y) 1/(4 + x + y), so f1Jf 1f = 
1.046496, and let g(x, y) sin(xy) so that J ' 1 jg = 0. 
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TABLE 8 

Weight Nodes 

A (r, 0, ), (0 ?r, 0), (0, 0, ?r) 
B (?s, ?s, ?s) 

a A r B s IIR141l IRr4IV 

1.5 .852894 .792192 .359569 .743122 .3900(- 3) .4131(- 3) 
5.0 .886234 .795807 .335324 .758694 .1579(-13) .1580(-13) 
0O .886427 .795822 .335180 .758787 

or or or or 
320 /19 121 /19 
361 T 30 361 V 33 

TABLE 9 

a R7(f) R I 2(f) R7(g) 

1.5 - .002141 .000019 -0.011012 
2.0 .000246 .000003 - 0.009892 
3.0 .000206 .000003 -0.009738 
5.0 .000200 .000003 -0.009718 
00 .000200 .000003 -0.009715 

RI 2(g) = 0.000000 for the above a. 

For the function g(x, y) = sin(xy), the MN error bound for the 7 - 5 case is the 
following: 

a = 1.5, 

R7 = 1.85 x 10-2 max Isin(zw)l < Isin(a2i)I = -(ea2-ea2) M. 
(z,wx~fp x U 

Then 11911 Miab = 24.97 and 

|R7 N -g~l JIR7 || Mnrab = 46.2 x 10 

The actual error is, from Table 9, 1.10 x 10-2, so that the error bound is con- 
servative by only one order of magnitude. It is also interesting to compare this bound 
with the corresponding bound for the 7 - 5 Radon cubature. If RR is the 7 - 5 
Radon rule's remainder, then IIR ||I = 1.95 x 10-2. Thus the bound IIRRII . Mrab 
is 1.95/1.85 = 1.054 times what it is in the MN case, i.e., 48.7 x 10-2. 

Finally, the same function's 12 - 7 MN bound, for a = 3, is IIRMN2II(Mnab) = 

11.9 x 10-2. 

(d) Remarks on the Use of the Cubatures. MN cubatures have essentially the same 

advantages and disadvantages as efficient rules, as would be expected from Theorem 2. 
There are two main types of cubature rules in use currently: monomial rules and 
cross-product rules. Monomial rules integrate all polynomials of a certain total 
degree M - 1 or less, while cross-product rules integrate all polynomials of a certain 
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degree m - 1 or less in x and of a certain degree n - 1 or less in y. The spaces defined 
by Sard [9] as Bm n and B " -1 respectively, are the appropriate function spaces for 
these two possibilities. hRI12, for these two cases, is 0(1/p M+2) and 0(1/p ;?2), where 
N is the minimum of m and n. With respect to these 0 terms, monomial rules yield 
the same order of convergence as cross-product rules which involve twice as many 
parameters. (The corresponding Sard spaces are Bm n and Bf m + n,m + nI.) 

6. Conclusion. Perhaps the most important feature of the MN cubatures is their 
utility in finding efficient cubatures. Two ways of accomplishing this have been given 
in this paper: consider the limit as p -x o of the MN cubatures or use the algebraic 
approach developed in the proof of Theorem 2. Different regions of integration R, 
as well as weight functions, can be used, the only restriction being that it must be 
possible to integrate Ur(x)Us(u) over R. 

Acknowledgments. The first author's research was supported by the National 
Science Foundation by Grant GP 9021 to The University of Utah. The second author 
held a National Science Foundation Traineeship during his work on this research. 
The authors are indebted to Professor A. H. Stroud for helpful comments concerning 
known cubatures. 

The University of Utah 
Salt Lake City, Utah 84112 

1. J. ALBRECHT & L. COLLATZ, "Zur numerischen Auswertung mehrdimensionaler Integrale," Z. 
Angew. Moth. Mech., v. 38, 1958, pp. I- 15. M R 20 # 432. 

2. R. E. BARNHILL, "An error analysis for numerical multiple integration. I, II.," Math. Comp., 
v. 22, 1968, pp. 98-109; 286-292. MR 37 # 2438; MR 37 #6027. 

3. P. J. DAVIS, Interpolation and Approximation, Blaisdell, Waltham, Mass., 1963. MR 28 # 393. 
4. W. GAUTSCHI, "Construction of Gauss-Christoffel quadrature formulas," Math. Comp., v. 22, 

1968, pp. 251-270. MR 37 # 3755. 
5. W. J. GORDON, Blending-Function Methods of Bivariate and Multivariate Interpolation and Approxi- 

mation, General Motors Research Report GMR-834, Warren, Michigan, 1968. 
6. P. C. HAMMER, Numerical Evaluation of Multiple Integrals, Proc. Symp~os. Numerical Approxima- 

tion (Madison, Wis., 1958), Univ. of Wisconsin Press, Madison, Wis., 1959, pp. 99-115. MR 20 #6788. 
7. P. M. HIRSCH, "Evaluation of orthogonal polynomials and relationship to evaluating multiple 

integrals," Math. Comp., v. 22, 1968, pp. 280-285. MR 37 #2441. 
8. J. RADON, "Zur mechanischen Kubatur," Monatsh. Math.. v. 52, 1948, pp. 286-300. MR 11, 405. 
9. A. SARD, Linear Approximation, Math Surveys, no. 9, Amer. Math. Soc., Providence, R. I., 1963 

MR28 #1429. 
10. A. H. STROUD, "Integration formulas and orthogonal polynomials," SIAM J. Numer. Anal., 

v. 4, 1967, pp. 381-389. MR 37 # 3764. 
1 1. D. D. STANCU, "The remainder of certain linear approximation formulas in two variables," 

SIAM J. Numer. Anal. Ser. B, v. 1, 1964, pp. 137-.-163. MR 31 # 1503. 
12. A. H. STROUD, Approximate Calculation of Multiple Integrals. (Manuscript.) 
13. A. H. STROUD, "Quadrature methods for functions of more than one variable," Ann. New York 

Acad. Sci., v. 86, 1960, pp. 776-787. MR 22 # 10179. 
14. G. W. TYLER, "Numerical integration of functions of several variables," Canad. J. Math^, v. 5, 

1953, pp. 393-412. MR 15, 67. 
15. R. A. VALENTIN, Applications of Functional Analysis to Optimal Approximation for Analytic 

Functions, Ph.D. Thesis, Division of Applied Math., Brown Univ., Providence, R. I., 1965. 
16. G. M. NIELSON, Nonlinear Approximations in the 12 Norm, M.S. Thesis, Department of Mathe- 

matics, Univ. of Utah, Salt Lake City, Utah, 1968. 


	Cit r63_c67: 
	Cit r64_c68: 
	Cit r57_c61: 


