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An Error Analysis for Numerical
Multiple Integration. 111

By Robert E. Barnhill and Gregory M. Nielson

Abstract. Asymptotic results of two types are given for minimum norm cubatures, defined
ona certain Hilbert space of analytic functions. Cubatures with a high degree of precision are
realized as the limits of minimum norm cubatures, and an algebraic approach for the deter-
mination of efficient rules is derived. Numerical methods and examples are also included.

1. Introduction. This paper is a continuation of earlier work [2], and it concerns
bounds on the cubature error for a class of uniformly bounded analytic functions of
two variables. Minimum norm (MN) and optimal cubatures have been defined and
discussed previously. This paper contains additional asymptotic results concerning
them, as well as numerical results. The methods for doing the numerical calculations
are described in some detail, both because they have changed considerably from the
methods used earlier, and because we believe them to be “optimal.” One of the asymp-
totic results given in this paper is that, in certain cases, efficient cubature rules are the
limits of MN rules, and the algebraic proof of this result should be useful for deter-
mining new efficient rules.

2. Asymptotic Properties of MN Cubatures. The Hilbert space of analytic func-
tions to be considered is L* = {f(z, w): fis analytic inside E, x E, and |f]?* =
e e, (2 w)|*dxdydudv exists}, where z=x+iy, w=u+iv, E,is the
ellipse with foci + 1, semimajor axis a, semiminor axis b = (a*> — 1)"/?, and p =
(a + b)?. With I = [—1,1], we define

!
R(f) = J:[ , Sf(x, u)dx du — k;} A f (X, ).

A MN cubature with I nodes is a cubature with weights 4, and nodes (x,, u,) such
that |R,[| is a minimum. It is of interest to have an upper bound on |[RMV|| in terms
of I One such upper bound appears in [2]. Let R, be the remainder of the (m x
tensor product (“cross product”) Gaussian rule, with I 2 mn. Of course, |RMV||
IRG|l and Theorem 1 contains an upper bound on ||RS,|.

THEOREM L. In the space L?

NS

() [REIZS Y Y alr, plus, p[1m02m60 + 7,6052" + 7,3,02m52"]2,

r=2ms=2n
r and s even

where
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22m + l(m |)4

ar, p) = 40 + DI = o770 = G e T

and
s 0 D+ D2 = 1] [ + 12 = ]
" 13(2l+1) .
Proof.
2) IRl = ZO i a(r, p)as, p)|Rg..(U,(x)Us(u))|2,

where a(r, p) is as above and U, is the rth Chebyshev polynomial of the second kind.
Stancu [11] has shown that

P
RS(f) = (M—r—lﬁ Su+1,0E 1) + (—I_V—_%-il—)_' Son+1(er,n)
() b
Q
- (M ¥ 1})"'(1\1}, ¥ 1)| fM+l,N+1(e, '1)9
where
b m d n

Py=@d-o) ];Il(x—x.-)de>0, Onv=(—a) ,l:[l(y—yj)zvdy>0,

¢ and ¢, are in [a, b], and n, and nin [c,d]. Wehave a =c= -1, b=d =1,
M =2m — 1, and N = 2n — 1, the latter being the respective precisions of the
Gaussian quadratures. It turns out that

2m+ 10, 1\4
Pans = G TG = @'
and
2n+ 10, 1\4
Oaurs = G e T = @0
Thus,
RE(UIV ) S 7V (0,)
@ + UGV + 3 UEP@UE ).
Now

<+ Dlr+ 1> =17 [(r + 1)* — %]
a 1-:3--Qi+1) ’
for i =0, 1, ---. (The empty product is interpreted as the number 1.) Let the upper
bound in (5) be denoted by . Then we observe that 30 = (r + 1) and d; = 0 if
i > r, because U, is a polynomial of degree r. The substitution of (5) into (4) and'(4)
into (2) yields the desired result. Q.E.D.

We note that ||RS,[? is O(p~™*Vp~*1) = O(p~™*"*?) for functions of two

-1

lIA
A

&) [UPe) e <1,
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variables. A similar analysis for functions of k variables yields |Rpmym]® =
0(/)_("” +oee +mk+k)).

Stancu’s article concerns tensor product rules, and so the error bounds of Theorem
1 are “rectangular” in form. Thus, the error formula (3) is applicuble in spaces with
polynomial precision in each variable separately. The corresponding space is called
Bp3m 247 by Sard [9]. Secondly, the error bound in (1) would be improved, if only the
third term of (3) were present. This is exactly what is obtained by the use of Gordon’s
“blending functions” [5]. The blending function of interest here is the following:

Be) = T Sl + 3 S0 uhmt) = 33 s wma

is1j=
where Ii(x) = [[c4: ((x — xa)/(x; — x;)) and m; dually. This function interpolates f
along “lines,” ie., B(x;,u) = f(x;,u), i = 1,---,m foralluinIand B(x,u)) = f(x,u)),
j=1-,nforalxinl.

3. Asymptotic-in-p Properties of MN Cubatures. A cubature rule is said to be
efficient if it integrates exactly as many of the low order monomials as there are
parameters in the rule; e.g., for a two-dimensional cubature with n nodes, there are
3n parameters, n weights and n nodes, each of which contains two parameters. Also,
there are

d+ 2 d+2)d+1
2 )T T T
monomials in two variables of degree <d. For functions of one variable, Gaussian
quadratures are efficient. Since the nodes of these quadratures are the zeros of the
- related orthogonal polynomials, various authors [6], [7], [8] have tried to use the
common zeros of sets of orthogonal polynomials in more than one variable as the
nodes for efficient rules. Stroud [10] has recently obtained sufficient conditions for
the common zeros of orthogonal polynomials to be the nodes of a cubature with a
certain precision, but the formulas so discussed need not be efficient. We remark that
Stroud’s article also contains a good bibliography on the subject of orthogonal poly-
nomials and their relation to cubature theory.

For functions of one variable, it is known [2] that the MN weights and nodes
converge to the Gaussian weights and nodes as p — c0. For functions of two varia-
bles, if the nodes are an interpolating set, [3, p. 27], and the number of them is of the

0es)

for some positive integer d, then the weights converge to the corresponding interpola- .
tory cubature weights [2] and, in fact, the order of convergence is p~“* 1. A similar
result is known for functions of n variables, n > 2. We conjectured that the MN

cubature nodes converge to the nodes of an efficient cubature. If so, then we would

have a computationally feasible way of finding efficient cubatures. We have obtained

only partial results, both theoretically and numerically. Our numerical evidence to

date (see the Tables) has indicated that the above conjecture is not true in the gen-

erality stated.



304 ROBERT E. BARNHILL AND GREGORY M. NIELSON

We shall state the theoretical result in a special case for clarity of the ideas; the
generalization follows without difficulty. Radon [8] has discovered an efficient seven-
point formula of precision 5, in two variables. The cubature nodes are the common
zeros of three polynomials, each of degree three. Let the region of integration be the
square S: —1 < x,y = L

THEOREM 2. Let the cubature formula be

,
ﬂs f(x,y)dxdy ~ kZ A f (X, Y-
=1

Assume that (1) the MN nodes form an interpolating set (at least for all p > some p*),
and (2) the common zeros of the sample polynomials (this term is defined in the proof),
corresponding to the MN nodes and to some efficient rule, are all continuous functions
of the coefficients of these polynomials. Then the MN nodes converge to the nodes of an
efficient rule as p — 0.

Remark. A key assumption is that there exists an efficient rule (whether known
explicitly or not), and the Radon rule validates this assumption for this case. Note,
however, that Theorem 2 does not imply that the MN cubature necessarily converges
to the Radon cubature.

Proof. 1. We denote the remainder of the Radon rule by RY. Then

(6) IRY™N[1* < IR
Now
() IRF(* = +Z>5 a(r, p)ads, p)|RE(U (x)U)?,

where a(r, p) = 4r + 1)/[n(e"*' — p™"" )] = 0@~ """') as p - oo. The sum’s
index is r, s, such that r + s > 5, because R® has precision 5, U, is a polynomial of
degree r, and U, dually. Thus |R%|? = O(p™°"2) = O(p~7), whereas |R¥N||? =
O(p~2). We multiply both sides of (6) by p? and observe that

RIN(1) + 0(p™ HRIN(x) + O(p™ HRIN(Y) + -+ + O(p~*)RIN(x?)
+ o+ O(pHRYNGS) = 0(p~%), ie,, lim RY¥N(1) = 0.

p—
Using this fact and multiplying successively by p3, p*, ---, p”, we obtain the following
result:

®) lim R¥N(xiy*) = 0, 0<j+k=5S

p—©

2. Equation (8) can be rewritten as the following system of 21 equations (where
the integrals are each over S):

Al + A2 + ce + An = jl + 800,
Apxy + AgXy + o 4 Agxq = [x + g4,
9) Ay + Azys + o+ Agys = [y + €01,

AT+ Agys + o 4 Agys = Y+ egs,
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where the ¢;; = ¢;;(p) = 0 as p —» o0. These 4;, x;, and y; are the MN values. We
form three so-called “sample” MN third degree polynomials P,, P,, and P; with the
MN (x;, y;) as their common zeros. We note that a general third degree polynomial
in two variables has ten terms, and the requirement of seven zeros means that there
are three linearly independent solutions P,, P,, and P,. We also observe that every

efficient cubature satisfies Eqs. (9), with the perturbations ¢;; equal to zero.

3. We now perform a sequence of (reversible) algebraic steps, the upshot of which
is to change (9) from a nonlinear system, with perturbations tending to zero, to a
rectangular linear system. The idea is to develop a two-dimensional analog of the
so-called “algebraic” approach of Kopal [10] to Gaussian quadratures. Consider

Py(x,y) = Z Cijxiyj,

0si+jg3

and assume that P, has some cubic term, say x>. Then, without loss of generality,
we may assume that c;, = 1.

(i) Multiply the first equation of (9) by ¢y, the second by ¢4, -+, the last by c,;.
coo[Ar + =+ + A7] = coo[ f1 + €00),
cro[A1xy + - + Aq9x7] = cyo[ [x + €10,

1-[Ax} + - + A.x3] = 1-[[x® + &30),
cai[Axty, + - + A;x3y,] = e[ X2y + &54],

coa[A1yi + - + A493] = cos[ [y + £03l.
Add these equations and factor each of the 4; to get:
Aylcoo + croxy + -+ Lox] 4+ - + coayi] + 4[]y + - + Aq[]5

(10.1)
= coo[ f1 + €00] + - + 1-[x> + e30] + - + cos[ [¥* + €03l

where []; means the bracketed expression following A, with the substitution x; = x;.
Thus, the left-hand side of this equation is zero, since the (x;, y;) are zeros of P,. If
we regard the c;; as the unknowns, then (10.1) is one equation in nine unknowns.

(i) To obtain a second equation, we multiply different equations by the same
constants as before to get the following:

coolA1xy + =+ + Asx,] = cool [X + &10];
CIO[Ale + e + A-,x?,] = Clo[.[xz + 820],
cor[A1X1yy + =+ + Asx7y5] = cor[ [xy + €14],

L[4yt + o+ 4x3] = 1-[fx* + eq0),

cos[A1x1y3 + ++ + Ax293] = coa[ [xy® + &13]
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Add these equations and factor each of the A;x; to get:
Aixy[coo + C1oXy + -+ + Coayi] + Axo[ 1y + - + A4[]5
= cool [x + &10] + - + cos[ [xy® + €3]

Again, the left-hand side equals zero, and so we have a second equation.

(iii) This argument can be continued exactly, so long as the monomials involved
are of total degree < 5. If we consider {10.2) as coming from a “multiplication by x”
of (10.1), then the same procedure can be followed for multiplication by 1, x, y, x2, xy,
and y?, the first two yielding (10.1)’ and (10.2), respectively. Thus we obtain six equa-
tions in nine unknowns. Each solution of the unperturbed (ie., all the ¢; = 0)
(10.1), (10.2), -+-, (10.6) is a polynomial R, (x, y) with leading term x> and with roots
(at least) at {(x;, y;)}/-,, such that (9) holds with the ¢; = 0. Since the unperturbed
equations have a solution, by the assumption of the existence of an efficient cubature,
the solutions of the perturbed system are continuous in the perturbations, and thus

(10.2)

MN cfficient

Cij d Cij as p - 0.

The zeros of P, and R, are both continuous functions of their coefficients, by hypothe-
sis, and so the zeros of P, approach the zeros of R,. (Warning: R, need not be one
of the Radon orthogonal polynomials. See the tables.) Similar arguments applied to
P, and P; yield the conclusion. Q.E.D.

Remarks on Theorem 2. The algebraic approach, developed in part 3 of the proof,
does not depend on there being exactly seven nodes and, in fact, the same approach
can be used to obtain a formula of precision 5 with a minimal number of points.
Theorem 2 can be generalized to functions of more than two variables, to more general
regions of integration, and to other degrees of precision. If the degree of precision in n
variables is to be d, then we show that

lim R(U,, - U,)=0 forr, +r,+--+r,=4d,

p— ™
just as before. The number of sample polynomials depends on the number of nodes as
in part 2 of the proof, and the number of equations corresponding to (9) is

d+n
(‘.
for precision d in n dimensions.

Symmetry of the MN Rules. In the numerical examples calculated, we have ob-
served that MN rules frequently have symmetries of various types. It is not always
possible to have full symmetry, i.e., symmetry around x =0, y =0, and y = *x,
because, e.g, an efficient rule with precision 11 in two variables would require 26
points, and 26 is not divisible by four. We conjecture that the p — oo limit of a MN
cubature is exact for at least an efficient number of monomials. However, these are
not necessarily the lowest order monomials, e.g., the 5-point rule given in Table 6
which integrates all monomials of degree <3 and, by symmetry, all odd monomials,
but does not integrate x2y2. (To be efficient, a 5-point rule in two variables should
have precision 4. However, sugh a rule does not exist [13].) Secondly, we conjecture
that a p — co limit of MN cubatures integrates at least as many of the lowest order
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monomials as there are degrees of freedom in the cubature. These degrees of freedom
are the original number of variables minus the number of symmetries.

4. Connection Between MN Cubatures and the Reproducing Kernel for L2. The re-
producing kernel function for the space L? is

K(z,w,s,t) = Y pl2pwp(s)p(t),

ru=0
where

pAz) = 2[(r + 1/mlp™ " — p~" " H]2UL2).

If R, denotes the remainder of an n-point cubature, then a MN cubature minimizes
| R,||* and hence is a solution of the equation

(11) V|R,|? =0,

where the gradient is taken with respect to each weight and each coordinate of each
node. After a short calculation, Eq. (11) can be rewritten as follows:

[ O(|[Ra1%)/04;
V|R,|2 = | a(|R.|*Véx;
La(| R,[1%)/0y;

—2R(z,w)K(z7 w; Xj, yj)
(12) = | 24;R;,.\0K(z, w; x;, y;)/0x;
L24,R 0K (z, W3 %, 1,)/0Y;

[2R,(n;)
= |24;R,(n7) |=0;
“2A;R,(n})

where R, ,, means that the functional R applies to functions of z and w, ; = 7,(z, w)
is the representer of the point functional L;(f) = f(x;, y;), so that

n;(z, w) = K(z, w; x;, y;),
and
n; = ni(z, w) = 0K(z, w; x;, y;)/0x;
is the representer of the functional
Li(f) = 0f(x;, y;)/0x;,

and #} is dual. Thus, Eq. (11) is equivalent to the requirement that a MN cubature
be exact for the representers #; of the point functionals and the representers nj and n’;
of the partial derivatives of the point functionals. If the nodes are fixed and the mini-
mization is only with respect to the weights A;, then the requirement R,(7,) = O,
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j = 1,---,n can be seen as follows: Let L be the integration functional with representer
n. Then

min |R,| = min |L — Z4,L,|| = min |n — ZA4un,|
Ay Ak Ay
by the duality properties of Hilbert space. Then
(L = ZAL1ny) = (n — ZAym, m) = 0,

because # minus its best L2-approximation by linear combinations of the #, is or-
thogonal to all of the ; and hence R,(n;) =0, =1, ---, n. (Cf. Corollary 8.6.2 in
Davis [3].)

5. Numerical Results.

(a) Method of calculation. The gradient V||R,|? involves infinite sums which must
be truncated in the numerical calculations. Instead of solving (12) to find stationary
values of V||R,||2, for each sum we consider the infinite system of equations R,(¢;) = 0,
i =1,2,-.-. (The definition of ¢; depends on which sum is involved, of course.) This
system is truncated to R,(¢;) = 0, i = 1, ---, L and then solved in the [*>-sense by a
generalized Newton’s method. A typical L used was 200. Let z* be the 3-tuple of
n-dimensional vectors (A%, x®), 3®), and let

F(_z(k)) = [Rn(¢1 5 Z(k))a T Rn((;bl.; z(k))]T7

where R,(¢, ; z*) was called R,(¢,) above. The Newton’s method used is the following:
(13) 24D = z® — [F(z%)]* F(zW),

where F'(z%) is the Fréchet derivative (i.e., the Jacobian) of F at z® and [F'(z®)]*
is its generalized inverse. Since F'(z) has full column rank n, the generalized inverse
has the simpler form [-]* = {[-]*[]} ~'[-]*, where * denotes the conjugate transpose.

This method of calculation has more global convergence properties [ 16] than the
standard Newton’s method which has been used in the past. This lessens the insta-
bilities inherent in solving least squares problems. (See Gautschi [4] for a discussion
of these instabilities.) In some cases the iterates changed too rapidly. When this
occurred, relaxation factors were included in (13):

(13) 24D = 20—y [F'(z®)]* F(z¥).

Usually y, = y and y as small as 0.01 were used.

We add one disconcerting note: stationary values of V| R,||? need not correspond
to minima of |R,||%. The 5-4 example given later illustrates this possibility.

The choice of initial approximations is difficult and was done in an ad hoc fashion
for each case, usually with some symmetries assumed. The nodes were assumed to be
in the region of integration. In all cases, tt ¢ region is [—1, 1] x [—1, 1], unless
otherwise stated

(b) Representative Results.

Tables 1 and 2. The first example is a 7-point formula in the plane. An efficient rule
has precision 5. The column labeled |R%|? is the square of the norm of the limit
functional (when known).
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TABLE 1
Weight Nodes
+(s, 1), £(r,9)
0,0)
a A r s B t C IR IRS|I?
1.5 427743 .878312 .368882 .594762 .682098 1.09801 .3432(—3) .3579(—3)
2.0 .419542 .887496 .373003 .595426 .682976 1.13096 .1210(—5) .1222(-Y5)
2.5 417729 889478 .373799 .595330 .683081 1.13838 .2234(—7) .2242(-—7)
30 417158 .890115 .374048 .595283 .683109 1.14080 .9732(—9) .9749(-0)
50 416726 .890589 .374232 .595244 .683128 1.14261 .2033(—12) .2033(—12)
6.0 416695 .890623 .374245 .595241 .683129 1.14272 .1047(—13) .1047(—13)
8.0 416675 .890645 .374253 .595239 .683130 1.14282 .9978(—16) .9978(—16)
o 416667 .890654 .374257 .595238 .683130 1.14286
or or or or or or
_5_ 7+\/24 7—\/24 é l §
12 15 15 42 15 7
TABLE 2
Weight Nodes
A i(h 5)9 __{-(_n S)
B +(0, 1)
C 0, 0)
a A r s Bt C |RJ* RSP
1.5 .553929 .774102 .573848 .343078 .936629 1.09658 .3551(—3) .3815(—3)
2.0 .555209 .774732 .576536 .324345 957778 1.13045 .1268(—5) .1292(-5)
2.5 .555426 .774672 .577052 .320057 962917 1.13818 .2349(—7) .2366(—7)
3.0 .555496 .774635 .577214 .318655 .964624 1.14070 .1025(—8) .1028(—38)
5.0 .555548 .774602 .577334 .317605 .965914 1.14260 .2142(—12) .2143(—12)
6.0 .555552 .774599 .577342 317529 .966007 1.14273 .1102(—13) .1102(—13)
8.0 .555554 .774597 .577348 .317482 .966065 1.14282 .1052(—15) .1052(—15)
oo .555556 .774597 .577350 .317460 .966092 1.14286
or or or or or or
5/9 J3/5 \/1/3 20/63 /14/15  8/7

Table 3. The next example is a 12-point formula in the plane. An efficient rule has

precision 7. The MN numerical results are given in Table 3. The limiting cubature, as
a — oo is an efficient rule due to Tyler [14]. There is a second such efficient rule, due
to Mysovskih [12], but its nodes are notin [—1, 1] x [ -1, 1].
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TABLE 3

Weight

B
C
a A r B s

Nodes

+(0, r), £(r,0)
_-t(S, S), i(—S, S)
i(t’ t), i(_t$ t)

c t IRy, [I? [RE||?

L5 247575
2.0 243382
3.0 242214
5.0 .242004
8.0 .241979
10.0 .241977
oo 241975

or

28

1. .520593
or
4(178981 + 2769,/583/1888920)

2. 380554
or
(114 — 3,/583/387)'/2

920359
924469
925592
925793
925816
925818
925820

or
Js

516249
.519490
.520405
.520570
.520589
.520592

.380051
.380373
.380521
.380550
.380554
.380554

(see 1.) (see 2.)

236164
237128
237381
237426
237431
237431

.807223
.806319
.806039
.805987
.805981
.805980

1066(—4) .1083(—4)
8946(—8) .8982(—8)
1203(—11) .1204(— 11)
3019(—16) .3019(— 16)
2205(—20) .2205(— 20)
2471(—22) 2471(-22)

(see 3.) (see 4.
3. .237432

or

4(178981 — 2769,/583/1888920)

4. 8059798
or
(114 + 3,/583/287)'/2

Tables 4, 5, and 6. The third example concerns 5-point formulas in the plane. An
efficient rule would have precision 4, but no efficient rules exist for this case. Three
different stationary values of V|R;]||> were found.

TABLE 4
Weight Nodes
A +(r,r), £(=r,1)
B (9,9 ,
a A r B q IRs|? IR
20 702832 687126 1.18795 10713 .3483(—4) .3499(—4)
3.0 703570 .688060 1.18569 10-16 .1623(—6) .1625(—6)
6.0 703696 .688236 1.18522 10713 .3032(-10) .3033(—10)
7.0 703699 .688241 1.18520 10713 4661(—11) 4663(—11)
8.0 703701 .688244 1.18519 10714 9256(—12) 9256(—12)
00 703704 688247 1.18519 0.0
or or or
19/27 3//19 32/27
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TABLE 5
Weight Nodes
A (Sa r)’ (_rs _S)
B ( - t? t)
C (v, —u), (u, —v)
a A S r t
1.5 631441 485659 781122 1.080644 515539
20 578063 497280 .812022 1.146004 505742
3.0 .539836 .506069 .836316 1.187194 498267
6.0 517174 511755 .852244 1.211646 493494
8.0 .513875 512615 854671 1.215239 492773
150 .510841 513415 .856929 1.218558 1492103
25.0 .510068 .513620 857509 1.219403 491932
40.0 - .509804 513690 .857707 1.219693 491873
1000.0 .509634 513735 .857835 1.219879 491836
a C u v |Rs]?
1.5 .820605 139892 767683 .2895(—2)
20 .848520 129679 767892 3617(—4)
3.0 .866556 121341 767029 1579(—6)
6.0 .877003 .116010 766578 .2813(—10)
8.0 878504 115212 766527 .6821(—12)
15.0 .879881 .114473 766485 .6231(—12)
250 .880230 114284 - .766475 9333(—18)
40.0 .880349 114220 766471 .3304(—20)
1000.0 .880426 114178 .766469 .5531(—37)
TABLE 6
Weight Nodes
A +(0,7), £(r, 0)
B ,0)

a A r B IRs | IR
1.5 1.024699 173464 —.125221 .6599(—2) 7462(-2)
2.0 1.089254 774336 —.358678 9915(—4) .1022(-3)
3.0 1.107392 774553 —.429617 4785(—6) 4810(—6)
6.0 1.110898 774594 —.443591 .9000(— 10) .9003(—10)
8.0 1.111044 774595 —.444178 .2788(—11) .2788(—11)
1) 1.111111 174597 —.444444 :

or or

or
10/9 J3/5 —4/9



312 ROBERT E. BARNHILL AND GREGORY M. NIELSON

The configuration in Table 4 is similar to one reported by Valentin [15]. It is
interesting to note that the limiting cubature in Table 4 has more polynomial pre-
cision than the corresponding one in Table 5, but that the norm in the second case
is smaller than in the first. The limiting cubature of Table 4 has precision 3 and enough
symmetry to be exact for all monomials x*y# where o or B is odd. The “limiting”
cubature of Table 5 numerically has precision 3, but does not have sufficient sym-
metry to obtain any further algebraic precision. The limiting cubature of Table 6
has sufficient symmetry to be exact for all monomial x*y? where a or § is odd. It
also is exact for the monomials x?, y2, x*, y* Thus, it lacks only exactness for the
monomial x?y? of having precision 4. Of the three rules, the one in Table 6 has the
most polynomial precision, but at the expense of a negative weight..

Tables 7 and 8. We have computed two examples for the three-dimensional cube
[-L1] x [-1,1] x [—1,1]. A 5-point precision 3 formula would be efficient, but
such a formula does not exist [12]. Convergence of the Newton iterates was not ob-
tained for this case. 13 — 5 and 14 — 5 formulas are known, the latter being efficient
and the former hyper-efficient. The cubature corresponding to a = oo of Table 7 is'a
hyper-efficient formula of degree 5. It is due to Stroud [12]. The cubature correspond-

ing to a = oo of Table 8 is an efficient formula of degree 5. It is due to Hammer and
‘Stroud [6].

TABLE 7
Weight Nodes
A 0,0,0)
B +(r, s, 8), £(s,7,5), +(s,5,71)
C + W, u, v), +(u, v, u), +(v, u, u)

a A B r s C
1.5 1.54223 .563452 .859686 —.493456 511637
5.0 1.68338 .545106 .880190 —.495840 507664
8.0 1.68409 .545005 .880287 —.495847 507647
0 1.68421 .544987 .880304 —.495848 507644

a u v IR5 | IR 12
1.5 787474 .030395 .5314(-3) .5668(—3)

5.0 795586 .025326 2212(—13) 2215(—13)
8.0 795616 025298 4189(—17) .5404(—17)

o0 .795621 025293

(c) Examples. We have used the MN rules to integrate some specific functions and
the numerical results are given below. Let f(x,y) = 1/@4 + x + y), so (L1, f =
1.046496, and let g(x, y) = sin(xy) so that [L{L,g = 0.
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TABLE 8
Weight Nodes
A (£r,0,0),(0, £r,0), (0,0, £r)
B (£s, x5, £3)
a A r B s IR 4l IR

L5 852894 792192 .359569 743122 .3900(—3) 4131(-3)
50 .886234 795807 335324 758694 1579(—13) .1580(—13)
oy) .886427 795822 .335180 758787

or or or or

320 19 121 19

361 30 361 33

TABLE 9
a R,(f) R,(f) R4(9)

1.5 —.002141 .000019 —0.011012
2.0 .000246 .000003 —0.009892
3.0 000206 000003 —0.009738
50 .000200 .000003 —0.009718
oc .000200 .000003 —0.009715

R,,(g) = 0.000000 for the above a.

For the function g(x, y) = sin(xy), the MN error bound for the 7 — 5 case is the
following:

a= 1.5,

|RMN| = 1.85 x 1072 max |sin(zw)| = |sin(@%)| = ¥(e** — ¢™*) = M.

(z,w)eE, x E,
Then |g|| £ Mnab = 2497 and
IR¥N(g)| = |RYN| - Mrab = 462 x 1072,

The actual error is, from Table 9, 1.10 x 1072, so that the error bound is con-
servative by only one order of magnitude. It is also interesting to compare this bound
with the corresponding bound for the 7 — 5 Radon cubature. If R¥ is the 7 — 5§
Radon rule’s remainder, then ||R%|| = 1.95 x 1072 Thus the bound |R¥| - Mnab
is 1.95/1.85 = 1.054 times what it is in the MN case, i.e., 48.7 x 1072

Finally, the same function’s 12 — 7 MN bound, for a = 3, is |R}Y[(Mnab) =
119 x 1072,

(d) Remarks on the Use of the Cubatures. MN cubatures have essentially the same
advantages and disadvantages as efficient rules, as would be expected from Theorem 2.
There are two main types of cubature rules in use currently: monomial rules and
cross-product rules. Monomial rules integrate all polynomials of a certain total
degree M — 1 or less, while cross-product rules integrate all polynomials of a certain
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degree m — 1 or less in x and of a certain degree n — 1 or less in y. The spaces defined
by Sard [9] as B,,, and By, ., respectively, are the appropriate function spaces for
these two possibilities. IIRI[Z, for these two cases, is O(1/p ¥*?)and O(1/p ;*?), where
N is the minimum of m and n. With respect to these O terms, monomial rules yield
the same order of convergence as cross-product rules which involve twice as many
parameters. (The corresponding Sard spaces are B,, , and By, 4 pm+n|-)

6. Conclusion. Perhaps the most important feature of the MN cubatures is their
utility in finding efficient cubatures. Two ways of accomplishing this have been given
in this paper: consider the limit as p — oo of the MN cubatures or use the algebraic
approach developed in the proof of Theorem 2. Different regions of integration R,
as well as weight functions, can be used, the only restriction being that it must be
possible to integrate U,(x)U (u) over R.
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