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An Analysis of "Boundary-Value Techniques" 
for Parabolic Problems* 

By Alfred Carasso ** and Seymour V. Parter 

Abstract. Finite-difference methods for parabolic initial boundary problems are usually treated 
as marching procedures. However, if the solution reaches a known steady state value as t - , 
one may provide approximate values on a line t = T for a preselected T suitably large. With this 
extra data, it is feasible to consider the use of elliptic boundary-value techniques for the numerical 
computation of such problems. In this report we give a complete analysis of this method for the 
linear second-order case with time-independent coefficients. We also discuss iterative methods 
for solving the difference equations. Finally, we give an example where the method fails. 

1.1. Introduction. Consider the one-dimensional "heat equation" in a strip: 

(1.1) au/at = a2u/Ox2, 0 < x < 1, t > o 
subject to the Dirichlet conditions 

u(x, O) = f Ox, < x < 1, 
(1.2) u(O, t) = u(1, t) = 0, t > 0. 

It is well known that, provided f (x) is "smooth", there is a unique solution u(x, t) and 

(1.3) |u(x, t)j ? K exp[-ir2t], where K is a constant. 

Let Ax = 1/(M + 1), M a positive integer, let At > 0, let Vk = v(kAx, nAt), and 
consider the following finite difference approximation of (1.1), (1.2): 

Vn+1 - n-i1 Vn+,-2n+ 
Vk 1-k -+= 1, ... 

, M n = 1, 2, ..+. 
2At Ax2 M 

(1.4) V n= V + 1 = O, n = 0, 1, 2, . . . 

v= f (kAx), k = 0 1, . . ., M + 1. 

Rather than use these equations as a marching procedure, D. Greenspan recently, 
(see [10], [11]), proposed an alternative approach: Choose N large and solve the 
system 
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Vn+1 .Vn -i1 V+ 2n+V At A _ - 2+ k= 1, ..., M, n = 1, ..., N. 

(1.5) tv = vM+1= 0, n =O, 1, 2, .. .,N+ 1 

V' = f(kAx), VO 0, k = O1,.., M + 1 

of MN linear equations in MN unknowns. Indeed, Greenspan suggested this method 
for a general class of parabolic problems, linear and nonlinear, and carried out several 
interesting computational experiments. 

The scheme selected by Greenspan is the leap-frog scheme discussed in Richtmyer 
[15]. When used as a marching procedure with parabolic problems, this scheme leads 
to an improperly posed numerical problem as data on the line t = At must be sup- 
plied, in addition to the usual data, in order to start the calculation. (This is why it is 
possible to use it as a boundary-value procedure.) However, even if this extra data 
were exactly known, the scheme would in general be useless as a marching procedure: 
it is unconditionally unstable and therefore always diverges whenever the solution 
to the analytic problem contains arbitrarily high frequencies. We will show, however, 
that as a boundary-value procedure, for linear problems with time-independent 
coefficients, the scheme iN unconditionally uniformly convergent, and the rate of 
convergence is O(4u2) as the "mesh-size" pu - 0, T -* oo, under minimal smoothness 
of the solution. Indeed, for linear problems with time dependent coefficients and for 
mildly nonlinear problems, one has uniform convergence at the rate of O(At312) as 
At -* 0, T -* o0, Ax = O(At), and at the rate of O(At2) for sufficiently smooth ex- 
ponentially decaying solutions. These results will appear in a later report (see [4] also). 

We also analyze an example with which Greenspan had computational difficulty 
and which points out one of the interesting features of the boundary value method. 
We then discuss the convergence of the usual iterative methods for solving the systems 
of linear equations which arise in this method. We observe that, unlike the case of 
systems of elliptic difference equations, line iterative methods may diverge even if the 
related point iterative methods converge. 

As we have undertaken a very thorough study of this method, it is reasonable to 
comment on its merits and the meaning of the results at the conclusion. Thus, we 
include a short section of commentary. 

1.2. Notation and Definitions. Let Ax, At be small increments in the variables x, t, 
and let T = (N + 1)At where N is a positive integer. Let M be a positive integer 
so that 1 = (M + 1)Ax. Introduce a mesh over RT {(x, t) I 0 < x < 1, 
O< t< T} bymeans ofthe lines x = kAx, k= 1, ..., M, t nAt, n= 1, ..., N. 
We will be dealing with functions v(x, t) defined at the mesh-points of RT and we 
adopt the notation 

(1.6) Vn v(kAx, nAt); 

Denote by Vn the M component vector, or M-vector 

(1.7) V = I V2, * I VM 

and let V be the "block" vector of MN components 

(1.8) V = {V', V2,..., VN}T. 
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Let 4 denote an N-component vector 

(1.9) 
4 = {14 

2 
., XNJT 

We define the following norms and scalar products for complex-valued mesh func- 
tions: 

For any two M-vectors, Xn, Y", let their scalar product be defined by 
M 

( 1. 1 0) < Xn, yn> = AXE Xnjx, 
k= 1 

and let the corresponding norm be 
M 

(1.1 1) (X , Xn> = Ax E IXn2 = ||XnII2 
k= 1 

For N-vectors 4, / define 
N 

(1.12) [4,t/i] = At Z y 
n= 1 

and 

N 

(1.13) ~11112,N = At Z kf|I2. 
n= 1 

We will also use the norms: 

(1.14) jjXn 1 = Max {IxjI}, 

(1.15) jV j0j = Max {11 Vn II}, 
n= 1, I-N 

N 

(1.16) 112 = At E IIVnII2. 
n= 1 

For any square matrix A of appropriate size we define 

(1.17) || A | = Sup ||AXI| 
1iXII =I1 

the supremum being taken over all complex vectors. 
Given a function u(x, t), we sometimes write u(to) to denote the function of x ob- 

tained from u when t is fixed at the value to. Also u"(x) stands for u(x, nAt). 

2. Abstract Problems of Parabolic Type. Let H be a separable Hilbert space of 
complex valued functions defined on the open interval 0 < x < 1 with scalar 
product (u, v) and corresponding norm ||U||H. Let ||u||OO be the essential supremum 
norm for such functions, and assume that there exists a constant K such that 

(2.1) IIUIIH < KI|1utI for every u e H. 

Let A be a linear operator with domain and range contained in H, and let bo, b1 be 
linear boundary operators acting at x = 0, x = 1, respectively. Consider the 
eigenvalue problem 



318 ALFRED CARASSO AND SEYMOUR V. PARTER 

Av=;tv, 0<x< 1, 
(2.2) bov = b1v = 0. 

We assume that the problem (2.2) has a complete set of orthonormal eigenfunctions 
{fPk} corresponding to strictly positive eigenvalues {ik} with the property that 

(2.3) E Z1 k Jo < 00. 
k k 

Let R be the strip {(x, t) I 0 < x < 1, t > O} in the (x, t) plane, and let f be a real 
valued function on R such that f (t) E H, as a function of x, for each fixed t. 

Let x(x) be a real valued function on [0, 1] belonging to H, and let f0(t), #1(t) be 
defined and real for t ? 0. Consider the following abstract initial boundary-value 
problem on R, associated with the linear operator A: 

Find a real valued function u(x, t) defined on R such that for each fixed t, u(t) E the 
domain of A as a function of x, and u is differentiable as a function of t, for each 
fixed x, and 

au = -Au + f, O < x < 1, t > O. 
at 

(2.4) u(x, 0) = x(x), 0 ? X ? 1, 

bou = f0(t), b1u = #1(t), t > 0. 

We assume that the above problem has a unique solution u(x, t) which reaches a 
known steady state value u*(x) as t -+ 0o, in such a way that u(t) - U*1H -k 0 as 
t -+ 0o, and so we speak of problems of parabolic type. Our main concern in this 
section is to describe a uniformly convergent semidiscrete finite-difference approxi- 
mation to this abstract problem. 

2.1. Semidiscrete Approximation to (2.4). Let At > 0 be a fixed "small" time 
increment. Let K 1 be a suitable positive constant. Choose T so that for some positive 
integer N we have 

(2.6) T = (N + 1)At and |Iu(T) - U*H _ K1At3. 

Consider the following semidiscrete* **approximation to the analytic problem (2.4): 

vn+ 1(x) - v"- (xJ - Av(x) + fn(x), n = 1, ..., N, 
2 At 

(2.7) vO(x) = X(X), VN+ 1(x) = U*(x)9 

boVn = n/, b vn =i fn n = 1,...,N. 

The system of linear Eqs. (2.7) is an approximation to the analytic problem in the 
following sense: 

*** Semidiscrete approximations, where only the time is discretized, have been considered from time 
to time in the literature. In Varga [17, p. 279], the author notes that such a procedure was used by Hartree 
and Womersley in 1937 to obtain a numerical solution to the heat equation; in Garabedian [9, p. 493], 
they are used to prove the existence of a solution to the heat equation and the author remarks on the 
connection with methods in the abstract theory of semigroups. 
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If u(x, t) is the solution to (2.4), then u satisfies the equations 

2-A (X) - 

-Atn + fA n + Tn, n = N, 

(2.8) U U, n=1,...,N. 

U (X) = x(x) U (X) = u-(X), 

b Un = n - n = on n ,. ,N 

where T n(x) is an error term. For n = 1, ..., N - 1, Tn(X) is the "truncation error" 
-(au/at)n + [(U (x) - un '(x))/2At]. 

For n= N, 

zN(X) = u*(X) - UNI(X) (@U8N u(T) - UN l(x) aU + u* - u(T) 
2At Oat] 2At aft} 2At 

We will assume that u is such that 

(2.9) IIZ"IIH < K4 At2, n = 1, ..., N K4 = constant. 

For example, this condition will be satisfied if u(x, t) has bounded continuous third- 
order time derivatives on R, and T is chosen so that 1Iu(T) - U*IH ?< K1 At3. 

Because IIZ'IIH -+ 0 as At -+ 0, we say that (2.7) is consistent with the analytic 
problem. We rewrite (2.7) as 

vox)/2At + f 1x 

(2.10) Q K = f 2(x) 0 <x< 1, 

x)-u*(x)/2At 

with b0vn = o, bjvn = Ofrn, n = 1, ..., N and where ac= 1/(2At). Since we 
assume that u*(x) is known a priori, the right-hand side of (2.10) is known. Having 
effectively replaced the problem (2.4) by a coupled system of linear equations for N 
functions of x, we must consider two questions: 

(a) Does the system (2.10) have a solution? Is it unique? 
(b) Does the solution of (2.10) converge to that of (2.4) as At -+ 0? If so, in which 

norm and at what rate does this convergence take place? We will show the following: 
THEOREM. The system (2.10) has a unique solution V(At) = {v'(x), .... vN(x)}T. 

Moreover, if U is the exact solution to (2.4) on the lines t = nAt, i.e. U = {u'(x), 
u2(X),..., uN(x)}T, then 

IIV(At) - U0- Max N nv" - u"I ? Ko At2 
n= 1, -,N 

so that V(At) converges uniformly to U at the rate of O(At2) as At -+ 0, T oo. 
We begin our analysis with the following key result. 
Let T = (N + 1)At, Ai > 0, aj = 1/2AjAt and consider the following N x N 

matrix TN(aj): 
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1 j 

TN(uj) = 

0oaj 
If we define 

1ITNIX = Sup |ITNXII|,|, 
II Xl K0 = 1 

it is well known that then 
N 

||TN||oo = Max E IaijI, 
i= 1,-,N j= 1 

where aij is the element in the ith row and jth column of the matrix TN. 

LEMMA 2.1. TN(Uj) is always invertible and fj TN- j j1 . remains bounded independently 
of N, up, as N - oo, At-*0, Ai R- o. In fact, if tsr denotes an element in the sth 
row, rth column of TN- 1(a), we have 

(a) ItsI <- 4(1 + 2) -112exp ( Ai /- iit exp - 2AT )' 
1?+2AjAt /IL+ 2~A tj 

(b) E Itsrl < 4(1 + 2AjAt)(1 + AjAt2)- 112 1- exp 2)~.T 1 
r=1 +I [ e~ + 2A3At) 

( __ ____ (_ ) (T - sAt)"\ x [2 + ? t-exp At _ AsAt - exp 1 +2) sAt 

Proof: We prove this lemma by explicitly computing T- 1(a). 
The determinant AN of TN satisfies the recurrence relation 

A~n+ 1= An + C2An-l n = 1, ..., - 1, (a =aj) 

with 

A-=1 and A0= 1. 

Hence, if a =I + {1 + 4q2)1"2 f = - I(1 + 4u2)1'12, are the two roots of 
x2 _ X - = 0, we see that 

AN = (XN+1 - fN+1)/(C - fi) on using Al = AO 1. 

Now the cofactor of the element aij of TN is 

Aij = (-)i+ij-j~AN-i(-U)j-i, if j > i, 

= (-) iA. -AN-j(aj-i, if i > j 

and both formulae hold if i = j. 
If tsr is the element in the sth row rth column of T- 1, we then have 

tsr = AN a rAN-s if s > r, 

= A\1 AN-rs if s < r. 
- N Nr_ 
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Since 1|= Max,= 1, ,N r = 1 Itsrl, we will first estimate Itsrl by means of these 

formulae and then proceed to estimate Ztsrl. 
Since o, /3 are roots of x2 - X _ U2 = 0 and a > 0 whereas /3 ? 0, we have 

J2 = 2 +/3 < 2 (C2 = a2 + 2C > U2 

Hence 

a - 1= 1_ a < 

Consider first Itsrl for s > r. Using the formula for the determinants Ak,we obtain 

= 1+1 a 
qs 

(XN-s+1 /N 
S + 1 

Itsrl Xr 
_ 

#r) 
_ 

-N+1 - JN+ It | = 2 1/2 (L~ - a8 r LX 1 _N+ 1 

2 r as 2 N-s+ 1 

= (1 + 4a2)1/2 aIr (XaN+ 1(1 - f1N+ 1/N+1) 

4 Aas-r 1 

(1 + 4U2)1/2 (a)S 1 - (Il|/L/)N+ 1 

Since /3 = -1, 

(X)(X = (i - = (i - 1 + (1 + 4q2)1/2) 

and (1 + 4a2)1/2 ? 1 + 2a since a ? 0. Hence 

(~~~~~~~~ + + 11+4212 1- ) ( N + 1 )( + aT) N+ 1 (1- ~~~2 \+1< (I 
1 I +1 = I 

(N + 1)/(1 l j\~ 

I\ + (1 + 4a2)1/2! I\ + a) N+ 1 

which shows that (jfl3/o)Nc+1 < exp(-(N + 1)/(1 + a)) using the well-known fact 

that for 0 < x < n, (1-x/n)n < e-X. 
Substituting a = aj = 1/2AjAt, T = (N + 1)At, we obtain 

( a ) ( tI + 2A, Ait 

Hence, 

1 - (If3I/ )N+1 _ - exp(-1 - 2 iA)l 
Let us now examine (a/o)s - r We have 

(ax)s-r = (1 _ (t - <)/o)sr ? (1 - 1/2oc)sr since ot - a > 2 

< (1 - 1/(2 + 2a))s-r using (1 + 4a2)1/2 < 1 + 2a. 

Hence, by a similar device, 

(a)S < exp + 2A-At 

Now if r > s, all formulae still hold with r and s interchanged. This concludes the 

proof of part (a) of the lemma. Let us now estimate Er= 1 Itsrl| We have 



322 ALFRED CARASSO AND SEYMOUR V. PARTER 

E t5l < 4 \ ? 402 At2) - 1 - J i 1 

x Z exp( 2A 

Let p = 1/(1 + 2Ajlt), and consider 
N S-I N-s 

At E exp[-pijs - rl At] = At I exp[-pXjpAt] + At Y exp[-p j;pAt]. 
r = 1 p 1 

We may use a geometric argument (the integral test) to show 
s-i s-i 

At I, exp[-pA~jpAt] = At + At Z exp[ - pAjpAt] 
P = P = I 

< At + exp[ - paju]du, t = sAt, 

and similarly 

At I exp[ -p1)/;jpAt] < f exk[-pXju]du, T = (N + 1)At. 
P=1 

Hence 
N At +2 - exp[-PA t] - exp[-p( T-t)] At E exp[ - p)~js - r.1 At] < _________ 

r =1 

i.e., Er=N , Itrl satisfies the estimate in part (b) of Lemma 2.1. Notice that as A (DC 

1 - exp 1 2AiAT) e 1 - eTIA - 1- e (N+ 1) 

Clearly, the sum in part (b) is bounded as Ai oo, At 0, and the bound is inde- 
pendent of s. This proves the lemma. 

Remark. In a subsequent discussion (in Section 4.1) we will also need the following 
result: Let Al flAt2 with fl fixed # 0 as At -+ 0. Then IIT- 1(a1)K remains 
bounded as At 0. We may see this as follows: since 

Itsr(U)I _ 4(1 1+ [ 
F - 

+ 2A1/t X exp( k 
+ 2-~ 

r 

< 4(1 + or2)- 1/2 [1ep( -2 AT) L \~1 + 2A~AtJJ1+2~A 

we have, on substituting l = flAt2 in the last expression, 

ItsrlI< 4fAt3 I - (e)2flAt] ep I1+ 2fJAt3}J 

and both the numerator and denominator of the last expression approach zero as 
At -+ 0, if T is fixed. Differentiating with respect to At and using L'Hospital's rule, 
we obtain 
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lrn - 4flAt23 =1r (12#3At2)(1 + 2flAt3)2 
A1-O _e - 2/_t2 T Al- (4flTAt - 4J2 Ts\4T)e - 2PAt2 

1 ? 2flAt3 If2A~) 1 ?2/At3 

and, since the last expression tends to 3At/T - 3/(N + 1) as At -* 0, we have 

N 

E Itsrl < (N + 1) Max tsrl -+3 as At -+0. r= 1 r,s 
LEMMA 2.2. The system of Eqs. (2.10) has a unique solution V(At). 
Proof Let M be the matrix of linear operators occurring in (2.10). In an obvious 

notation we may write (2.10) as 

(2.11) M V = F. bo V = *0, bjV = 01. 

Observe that F is such that each of its components belongs to H. Because we have 
assumed the existence of a solution to (2.4), it is sufficient to prove that, given any G 
whose components g'(x) belong to H, n = 1, . . ., N, the system 

MV = G, NV = biV = 0 

always has a unique solution. To do this, expand in the eigenfunctions of the problem 
(2.2) above. Set 

00 00 

vn = E cXj, g'(x) = Edn 
j=l j=l 

Then if aj = 1/2AjAt, we obtain the following equations expressing the c! in terms 
of the known djn 

dn n n+ 1 -c1) + c - n = 1, N.., j =1, 2, ... 
i~~~~~~~~ 

with 

C9 =cy+ 1 = 0 V 

Hence if TN(aj) is the matrix of Lemma (2.1), we have 

(2.12) [TN(j )] K |. K j = 1 2. 

Since TN(aj) is invertible for every j, (2.12) uniquely defines the cjn, so that the reduced 
problem above always has a unique solution. Q.E.D. 

We are now ready to prove the convergence theorem of Section 11.1. 
Let Wn = Vn _ in, then wn(x) satisfies 

wo WN+ 1 = o 

wn+1 - Wn-I 
=-Aw" + Tnr boWn = b1wn = 0, n =1,...,N, 

2At 

where Tn(X) e H and li T" II1H K4At2. Setting 
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00 

Wn =EC10j, n = 1, .. , N., 
j=l 

and 
00 

Tn =Edl.pj, n = 19 . .,qN, 
j=l 

we have Idij = j(Tz, 4)j ? II_ n IIHIIOjIIH ? K4At, and Eqs. (2.12) are satisfied for 
the c;'s. 

By Lemma (2.1), II TN1 is bounded as At -+O, N-+ so, Aj so. Hence 

Sup Ici| < K5At2/A2. 
n 

Therefore, 

11 w11,0 < ZI IC7 I K ' K5At2 E 
j=1 ~1j=l 

Since by assumption 

Z 11+1110 -< 00 

j i. 
we have 

Sup ||w |Kn < K6At2 K6 = constant, 
n 

and this proves the theorem. 
Examples of such operators A are provided by regular Sturm-Liouville differential 

operators, operating in H = L2[0, 1]. Thus for the problems 

[a(x)u']' + b(x)u' - c(x)u + ).u = 0, 0 < x < 1, 
(2.13) u(O) = u(1) = 0 

where a(x) > ao > 0 and c(x) > 0, it is known that the eigenvalues are real and 
form a countably infinite set, Al _ A2 <? 3 < .... Moreover Al > info<,< c(x) 
(see [14, p. 37]). 

It is a standard result that the eigenvalues of (2.13) can be characterized as the 
zeroes of an entire function [16, p. 190], and, as observed by Atkinson in [1], this 
function is of order at most 1/2 so that, 

I Z 
+E<0 

k (Ak) 

for every ? > 0. Also, the normalized eigenfunctions may be shown to be uniformly 
bounded in the supremum norm, i.e., 

LI4kI0K < constant [17, p. 335]. 

t A standard transformation, puts (2.13) in selfadjoint form. 
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We remark, however, that A may be a singular differential operator and still 
satisfy property (2.3). Thus consider in L2[0, 1], the problem 

Au _- - [(1- x2)U'] = Au, O < x < 1 
(2.14) u(O) = 0, (1 - x)2u'(x) -+0 asxt 1. 

If 

1 dn 
Pn(x) = (x2 - )n 2nn! dx' 

are the Legendre polynomials for n = 0, 1, 2, ..., then the eigenfunctions for this 
problem are 

P2+ 1, n = 0, 1, 2, ... 

corresponding to the eigenvalues 

in = (2n + 1)(2n + 2), n = 0, 1 2, ... (see [7]). 

The set {P2,+, } spans L2[0, 1], since the complete set of Legendre polynomials 
spans L2[ 1, 1] and P,(x) is an even function if n is even. As defined above, the P. 
are not normalized but satisfy IIPnJI,, = 1 for IxI ? 1. However, if 

T,(x) = ((2n + 1)/4)1"2Pn(x), n = 0, 1, 2,..., 

then the T. are orthonormal on (0, 1) and 

|Tn| ja) = ((2n + 1)/4)1/2, 
thus 

E AI- < ?? 
n odd n 

Finally, we remark that although we have emphasized one-dimensional problems, 
similar problems may be formulated in Rn with H, for example, being a Sobolev space 
of functions on some bounded domain Q and A a uniformly elliptic operator of suf- 
ficiently high order. 

3.1. Linear Parabolic Initial Boundary Problems: Fully Discrete Methods. We are 
concerned here with the numerical computation of problems of the following kind: 

- t- = , a(x) + b(x), - - c(x)u + h(x, t), O < x < 1, t > O 
at Ox Ox O 

(3.1) u(x,O0) = X(x), O < x _ 

u(0, t) = 41(t), u(1, t) = 02(t) 

x(O) = 1(0), x(l) = 42(0) 
We assume that a(x) > ao > 0 and c(x) _ 0, a having three or more continuous 
derivatives and b one or more continuous derivatives in R. We assume further that 
a, b, c, h, X, &1, P2 are bounded and sufficiently smooth that a solution u(x, t) exists 
having three continuous time derivatives and four continuous space derivatives. All 
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of the above mentioned derivatives as well as u itself will be assumed bounded on R. 
(For existence, uniqueness and regularity theorems for parabolic equations, consult 
Friedman [8].) As in the previous section, the amount of smoothness that we assume 
will suffice for the truncation error T- to be of the order of At2 + Ax2 in the discrete 
L2 norm and that is all we need. Thus, our assumptions may be weakened somewhat. 
We assume that h, &1, 42 reach a steady state as t -+ oo. Since c(x) > 0, u(x, t) 
converges to a steady value u*(x) (see Friedman [8, Chapter 6]) and we assume this 
convergence to be uniform in x. We may suppose that u*(x) is known without loss 
of generality. Indeed, we only require its values at mesh points, and these can be 
obtained with sufficient accuracy by existing numerical techniques, since u*(x) satisfies 
an inhomogeneous boundary-value problem for an ordinary differential equation. 
Finally, we assume that, given any E > 0, it is possible to estimate how large T must 
be chosen so that 

IIu(T) - u*I1 < E 

e.g. by means of asymptotic formulae. 

3.2. Discrete Approximation to the Analytic Problem. Choose T so that for some 
positive integer N we have T = (N + 1)At and 

( M 1/2 
IIu(T) - U*112 {Ax E Iu(kAx, T) - u*(kAx)12 < KAt3, 

k=1 

where K is a fixed positive constant independent of At. Introduce a mesh over RT 
as in Section 1.2. 

Our finite-difference approximation to (3.1) will be 

Vn+1 _ Vn-1 ak+ 1I2(vk+ 1 - vn) - ak.112(Vk - V1) b(v?1 -V) 

2At Ax2 + 2At 

(3.2) - CkV + hn, n = 1,.. .,N k = . . ., M 

with Vd = (kAx), VN+ 1 = u*(kAx), k = 0. 1, ..., M + 1, 

V = 1(nAt), v +1 = 42(nAt), n = 1 .. ., N. 

As before, this approximation is consistent with the problem (3.1), i.e., the exact 
solution u satisfies (3.2) if we add an error term Tn on the right-hand side. For n = 1, 

N - 1, Tn- is the truncation error due to replacing derivatives by finite-difference 
quotients. For n = N, there is an additional error due to prescribing u*(x) on the 
line t = T instead of the exact solution u(T). Since we chose T large enough, we 
have the estimate 

( M )112 

i|T 112 {Ax E I T 22 < KO(AX2 + At2), 
k= 

where Ko is a fixed constant independent of Ax, At, and n. Let 

ak = [ak+ 1/2 + ak- 1X2] + Ck AX2, fk = [ak+ 1X2 + bkAx/2] 

and 

Yk = [bkAx/2 - ak- 1X21, k = 1, ..., M 



"BOUNDARY-VALUE TECHNIQUES" FOR PARABOLIC PROBLEMS 327 

and define the tridiagonal matrix L of order M by 

01 
Ax . fl. - 

YM ? " M 

We may write the approximation (3.2) in the form 

(3.3) (Vn+1 - V-')/2At + LVn = Fn, n = 1,..., N, 

where Vo, VN + 1 are given and Fn is an M-vector containing the known lateral bound- 
ary data and the inhomogeneous term hk. We may also write (3.3) in "block" form. 
Let M be the MN x MN block tridiagonal matrix 

where I is the M x M unit matrix and a = 1/2At. Then we have 

(3.4) MV = F, 

where F consists now of data at the four boundaries as well as the inhomogeneous 
term h(x, t). 

LEMMA 3.1. There exists a nonsingular diagonal matrix D such that D- 1LD = L 
is a real symmetric matrix and IIDII, IID-1IlK ? Ko < so as M -- oo, Ax 0, 
(M + 1)Ax = 1. 

Proof. See r4j, r5]. 
Remark. The change of variables X = DZ is the discrete analog of the trans- 

formation 

u(x) = exp (-! 
x b(t) dt) v(x) \ 2j0 a(t)/ 

which puts the linear differential operator 

[u] - (au')' - bu' + cu, 0 < x < 1 

u(0) = u(1) = 0 

into the selfadjoint form 

tv] -(av')' + [c + lb' + lb2/a]v, 0 < x < 1, 

v(0) = v(1) = 0. 

LEMMA 3.2. The eigenvalues of L are strictly positive and remain bounded awayfrom 
zero as M -+ so, Ax -+ 0, (M + 1)Ax = 1. Let {),}jM= 1 be the eigenvalues of L 
arranged in increasing order. Then there exists a positive integer jo, independent of M 
as M -* oo, such thatfor all Io < j < M, we have 
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Cl j2 < Aj < c2j2 where c1, c2 

are positive constants. 
Finally, let Vi be the eigenvector of L corresponding to the eigenvalue Aj and nor- 

malized so that 
M 

Ax EIvV = 1. 
k= 1 

Then, there exists a positive constant Ko and a positive integer jI, independent of 
M, such thatfor all j] < j ? M, 

IlVill = Sup IvfI ? KO(j)112. 
k= 1,---,M! 

Proof: In the selfadjoint case (i.e. b(x) 0) these results are to be found in Bfick- 
ner [3]. In this more general case, the lemma follows from the discrete maximum 
principle, and from Lemma 3.1 together with Bfickner's argument. Another proof 
may be found in [4] and [5], which proceeds via a discrete analog of the Sturm com- 
parison theorem. 

THEOREM. Let y2 = (At2 + Ax2) and let { V}J' I be the solutions of Eqs. (3.3), or 
equivalently of (3.4). Let { UnIN I be the vector obtainedfrom evaluations of u(x, t) 
at the mesh points. Finally, assume 

(3.5) |1"||112 -< Kjy2. 

Then, there is a constant K2 such that 

-I Vn _ Un?1j _ K2i2. 

Proof. The argument is very similar to the proof of the main theorem of the pre- 
ceding section. Let W = V - U. With D the diagonal matrix which symmetrizes L, 
let Xn = D- I Wn and substitute into (3.3), to obtain 

xn+1 - X 
(3.6) -- - + Lx = D- 1T n = 1,...,N, X? = N = 0 

Since L is real symmetric, it has a complete set of orthonormal eigenvectors Zi, 
j = 1, . . ., M. We may solve by expanding in terms of the Zi. Thus if 

M M 

X= ciz', D-'Tn = djZn, 
j=1 j=1 

we obtain on substituting into (3.6), MN equations for the coefficients cl: 

ni+1 _-c1 

(3.7) S 2tv + AJ2A = di, ,... , N, j = 1, .. . , M, 

where 

CJ =JC +I= 0, j=1,...,M. 

Let aj = 1/2A) At; then 
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(3.8) [TN(= 1...,M, 

where TN(uj) is the N x N matrix of Lemma 2.1. The proof now follows from 
Lemma 3.2 and the fact that 

00 

Yi (j)-3/2 < 0 

j= 1 

4.1. An Example. Consider now the problem 

U, uXX + 'n2 u + sin 7rx cos t, 0 < x < 1, t > 0 
(4.1) u(x,0) =0, 0 

u 
x _ 1, u(O, t) = u(1, t) = O, t 

? 
O. 

This problem has the unique solution u = sin itx sin t. It differs from the class 
of problems considered in the previous sections in that c(x) is negative and the 
related Sturm-Liouville problem has the eigenvalue A = 0. Nevertheless, since 
u =0 at t = iz and at t = 27, we may select either of these lines as the line t = T 
and prescribe the exact solution u _ 0 on t = T in our difference approximation 
to (4.1). Thus, if H is the tridiagonal matrix of order M given by 

(4.2) ~~1 2 -1. O 

with eigenvalues 0 < h1 < h2 <. . .< hM and if W1 is the M-vector wk = sin kit Ax, 
k = 1, . .., M, our approximation may be written as 

vn + 1 - vn -2 
(4.3) + (H- 2I)Vn = 11 cosn/t, n =I 

V0 = VN+ l = 0. 

where the cn'5 satisfy 

cn+ 1 _ n-i1 

c -c~~~~~~~~~~ 

(4.4) 2At + (h_ -2It2)Vn = cos nAt, n = 1, ... N 

O = CN+ 1 = 0. 

The computation of this example was attempted by Greenspan in [10] with 
T = 2it. However, he was not able to solve the system of difference equations by 
point successive over-relaxation for any value of w. Apart from that, the above exam- 
ple has another interesting property: As we shall see, it makes a difference whether 
one selects T = it or T = 2. With T = i, the unique solution V of the system 
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(4.3) (even though it remains uniformly bounded as Ax, At -+ 0, with Ax = O(At)) 
does not converge to the analytic solution U, unless N -+ oo through even integers. 

We begin with a few observations. The systems of difference equations occurring 
in (3.4) and (4.3) are special cases of the system 

(4.5) QV = F, 

where Q is a block tridiagonal matrix of the form 

A . aI 

(4.6) Q - It O al 

with a = 1/2At and A a nonsingular M x M matrix with distinct real eigenvalues, 
Aj, J = 1, ...,9 M. 

LEMMA 4.1. Let the eigenvalues of A be ordered so that 21| < ? 21* * *-< |AM| 
and let Y-, ] = 1,..., M be the corresponding eigenvectors. For fixed s, j, define the 
M vector Xs by 

(4.7) =iLSins (j 1 Y N. n = 1, ..., N. 

Let Xslj be the block vector 

(4.8) X = {XI., Xs2j, .,Xi} s.. ., ..,SN; j= 1,..., M. 

Let 

(4.9) 1 =- COS s(Gd-1 s=1,.., N. 

then the Xs j are eigenvectors of Q corresponding to the eigenvalues 

(4.10) ?Sj=(AiJ+tPS), s= 1,...,N; j= 1,...,M, 

respectively. 
Proof. Direct verification. 
LEMMA 4.2. Let Q be the matrix of (3.4), i.e. with A = L. Then 

(4.11) 11 Q -' 112 < constant as Ax, At -O 0. 

For the system (4.3), i.e. with A = H - n2I, we have 

(4.12) 11Q-1112 -X ), as At - 0, N -+ oc through odd integers 

(4.13) 11Q-'112 < constant as At - 0, N -* oo through even integers. 

Proof For the system (3.4), (4.1 1) follows from the fact that because of Lemma 3.1, 
there exists a nonsingular diagonal matrix P of order MN such that P-'QP is a 
normal matrix, and IIPjj2, 11 PJ 1112 ? constant, and from Lemmas 4.1 and 3.2. For 
the system (4.3) we first note that the eigenvalues h3 of H are given by 
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h = Sin2 

, 

2sx =1, ..., M, 
(4.14) h.Ax 
(see [2, p. 66]) and an elementary calculation shows that 

(4.15) r2 + O(AX2) = h1 < r2 

Since 1((N+ 1)/2) = 0 whenever N is odd, the eigenvalue of Q which is smallest in ab- 
solute value for N odd is Al = h, r2 < 0, and hence 

1 
(4.16) 11Q 112 = _ = o 00 

as At -O 0, N odd, Ax = O(At). 
On the other hand, if N is even, the eigenvalue of Q smallest in absolute value is 

i 7r 7~~~~r 2n 
Al + -ct Sin 2(N and At = or 

At 2(N +1) N +1 N?1 

depending on whether we choose T = X or T = 2n in problem (4.1). In either case, 
IQ - 1 112 remains bounded. 

LEMMA 4.3. Let S be the skew-symmetric N x N matrix 

2At 

then S has the distinct eigenvalues 

si 
(4.17) Ps . dCos 

SI 
ll s= 1, ..., N 

At N?+1 

with corresponding eigenvectors s = {s} s = 1, ..., N, where 

(4.18) s= in Sn ns n = 1, ..., N. 

If N is odd, 1((N+ 1)/2) is the only zero eigenvalue and the corresponding eigenvector may 
be taken to be 

(4.19) V((N+ 1)/2) = 61, O, 1, O..., 1}T 

with 5 chosen so that II/I(N+ 1)/2112,N = 1. 
Proof. Direct verification. 
THEOREM. Let V(At) = { Vn}N 1 be the solution of (4.3) and let At = y Ax, where 

y is a positive constant as Ax, At -O 0, and let U be the solution to (4.1) at the mesh 
points. Then 

(1) 11 V(At)jj 1 remains bounded as At -O 0. 
(2) V does not converge to U, if T = 7r unless N -* oo through even integers. 
(3) Even though 11Q 112 00 as At -O 0, N odd, 11 V(At)-U 11 0 0 as At -+0 

provided T = 2n. 
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Proof. Let En = U - V'. Then En satisfies 

E n+1 E n-l 
+ (H -r 2I)E"= , n = 1n,, ,N 

(4.20) 2At 
E? = EN+1 = 0 

where Tn is the truncation error and j1T n12 = O(At2). 
Expanding in the orthonormal eigenvectors of H, we are led to a system of MN 

linear equations for the Fourier coefficients cj of En, in terms of the coefficients dJ 
of zn, viz. 

(4.21) [TN rJ)] K h _2 J = 1..., 

where TN is the matrix of Lemma 2.1 with 

- 2At(hj _-n2 

From the fact that the eigenvalues hj of H are distinct and hj j2r2 as Ax 0, 
j fixed, we have 

h- _ n2 > ho > 0 for all j ? 2 

if Ax is sufficiently small. Moreover, since sin20/02 > 4/n2 for 0 ? 0 < i/2, we 
have from (4.14), 

(4.22) hi- n = 22 forj sufficiently large. 

Furthermore, if Wi, j = 1, . . ., M are the orthonormal eigenvectors of H, then it is 
well known that 11 Wi1 ,,, < constant. 

Using the estimate 

Max lcjn|l < |TN-1(j)llKO(At2)/(hj - 2), j= 1=..., 
n = 1, -N 

obtained by inverting (4.21) and using Lemma 2.1, we have 

IIn~l. < E ljlll0_ (t2) ( 
M 

1 il ) 
j=1 1h _n 

or 

1IE n"I < O(At2)jIV 110 + 0(At2) 

since EJM 2 11 Wjill j(hj - i2) is bounded independently of M. Thus 

(4.22) sup jf ? constant, 
n = 1 , -,N 

because h1 - 2 = O(Ax2), and we assume Ax = O(At). Since the exact solution U 

is bounded, it follows from (4.22) that 
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11 V(At)1l _ < constant as At -O 0. 

This proves the first part. 
Let us now examine the convergence of V(At) to U. Let IN be the N x N unit 

matrix. 
Let c c= 1 and p = {Pn}=1, where pTM cos nAt. Then, Eq. (4.4) takes 

the form 

(4.23) [S + (h1- _r2)IN]C = P, where S is the matrix of Lemma 4.3. 

Let N be odd. Whether T = i or T = 2ir, we have 
N 

[p, V'(N+ 1)/2] = At I cos nAt(N+ 1)/2 = 0. 
n= 1 

Hence, if we solve (4.23) by expanding in the orthonormal eigenvectors As of S, we 
see immediately that the solution c satisfies 

(4.24) [c, V'(N+ 1)/2] = 0. 

Suppose now that 

(4.25) IIV(At) - Ujj2 -+ 0 as N -- oc. 

Since Un = sin nAtW1, this means that 
N 

(4.26) At > ICn - sin nAtI2 -+ 0 as N -+ so. 
n= 1 

However, if T = a, sin t is positive on (0, i) and 
N 

At ? oI(N+ )I2)sin nAt ? # > 0 
n= 1 

and therefore, using (4.24), 
N 

At >3 (sin nAt - c)V'N+1)/2) > # > 0. 
n= 1 

By Schwarz's inequality 
r N )1/2 

0 < # ? IIiII((N+1)/2)112,N {At E |C - sin nAtI2}, 
n=1 

so that (4.26) is impossible, if T = ir and N is odd. In fact, V(At) cannot converge 
to U in any of the previously defined norms, since this would imply (4.25). 

On the other hand, if T = 27r, N odd, then we have 
N 

(4.27) At o V'nN+1)/2 sin nAt = 0. 
n= 1 

Let b be the N vector {bn} with 

At 
bn = it sin nAt, n = N. 

sin At S 

Then it is easily verified that b satisfies Sb = p. 
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Using (4.23), we then have 

(4.28) S(b - c) = (h1 -2)c. 

Expanding b - c in the orthonormal eigenvectors 0, of S, we have 
N 

b - c = asos 
s= 1 

Observe that by (4.24) and (4.17), we have a(N+ 1)/2 = 0. Since S(b - c) = Es apsyuV 
we have from (4.28) 

(4.29) |S(b - c)|,N = Z IasI2I|isI2 = (h1 <-2)2|c N < KAt4 

where K is a constant, because 11C 12,N is bounded and (h -U 2) = O(At2). 

Also, for s = 1, . . ., N, s # (N + 1)/2, the eigenvalues ps of S which are smallest 
in absolute value are given by 

(4.30) iu = ? sin 
A 

since At = 2Nr 

Therefore, using (4.29) 

sin 
2 At 

sn2 N 

At 2 Max 1a512 - Z 1a5121is12 < KAt4, s s=1 

i.e., 

Max laS12 < KjAt4. 

Consequently, 
N N 

(4.31) ||- C112N = Z 1a2 ? K1At3 E At ? 2irK1Ar3 
s=1 s=1 

and hence 
N 

(4.32) At Max Ib - cnI2 < At E Ib n- C n2 < 2irK At3. 
n n1 

Thus 

(4.33) Max lb n- cI ? K2At. 
n 

Now, 

(4.34) 1V- Un 1 < W 1i {Ibn - cnI + Ibn - sin nAt }, 

from which we obtain 

(4.35) V V-UK-+0 asAt-+0. 

Thus V(At) converges uniformly to U if N is odd provided T = 27r. 
If N is even, S has no zero eigenvalues and 
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(4.36) Min juy = 0(1) as At -+ 0. 
S 

Hence as before 

(4.37) Max laS12 ? KjAt4 
s= 1,-,N 

which implies uniform convergence whether T = z or 27r. This completes the proof 
of the theorem. 

We will see later, however, that whether T = z or 27r and whether N is even or 
odd, it is not possible to solve the system of difference equations (4.3) by either the 
point Jacobi or the point successive over-relaxation method. We conclude this 
section with an observation on the Moore-Penrose pseudo-inverse (or general 
reciprocal), of a matrix [see [12]], in relation to the semidiscrete approximation for 
the analytic problem (4.1). 

If we discretize only the time variable in (4.1), as was done in Section 2, we obtain 
the system 

v ~'(x) - v '(x) = av + r2v+ + sin tx cos nAt, n= 1 ... . Ng 
2At ax2 

(4.38) with vn(O) = vn(1) = 0, 

and v0(x) = vN+ 1(x) = 0. 

Clearly, any solution of the above system must have the form 

(4.39) vn(x) = c sin tx, n = 1, ..., N, 

where cn's satisfy the equation 

(4.40) Sc = p 

in the previously defined notation. 
Now let N be odd so that S is singular. Since p is orthogonal to the null space of S, 

there always exists a solution to the last equation and, in fact, all solutions of Sc = p 
have the form 

(4.41) c = b + Tf((NN+1)/2), 

where # is an arbitrary constant and where b is the vector b = {b}njN 1 with 

n At 
(4.42) b= s sin nAt, n = 1, ..., N. 

sin At 

The "pseudo-inverse" of S defines a unique solution of Sc = p by the requirement 
that c be orthogonal to the null space of S. 

Suppose now that T = 7r. Then, as previously noted, [b, V(N+ 1)/2] is positive so 
that the solution obtained via the pseudo-inverse must be such that 

(4.43) c = b + f3v(N+ 1)/2 with 1#1 > fo > 0 

and with this c, Vn(X) = cn sin rx does not converge to sin rx sin nAt. On the 
other hand, if T = 2xr, then rb, V((N+ 1)/2)j 

= 0 and the pseudo-inverse gives the 
correct solution 
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c = b. 

4.2. Solutions of the Difference Equations by Iterative Methods. In the iterative 
solution of linear equations, one distinguishes between point iterative and block 
iterative methods. The systems of linear equations which arise in the numerical solu- 
tion of elliptic boundary-value problems are usually such that block iterative methods 
are more efficient than point iterative methods, i.e., they have a larger asymptotic rate 
of convergence [see Varga [17]]. Such is not the case for the system (4.5) above. 

In the SLOR method, P and N are defined as follows: 

1 1 
(4.44) P =-[D + wE], N =-[(1 - w)D - wF], 

where o is a nonzero real parameter and D, E, F are the following block matrices: 

A 0~Ou. QL 

I0 A O 0 0 ] 

so that Q = D + E + F. 
The choice w = 1 in the SLOR method is known as the line Gauss-Seidel method. 

The line Jacobi method corresponds to the splitting Q = P' - N', where P' = D 
and N' = - (E + F) and (P) - 'N' is called the line Jacobi matrix. 

The following results are known for matrices such as Q which are so-called con- 
sistently ordered 2-cyclic matrices (see Varga [17] and D. Young [18]). 

(a) If the SLOR method converges, then 0 < w < 2. 
(b) Let p be an eigenvalue of P 'N, the SLOR matrix; if X satisfies 

(4.45) (p + ) _1)2 = x2co2p, a # 0, 

then X is an eigenvalue of the line Jacobi matrix. Conversely, if X is an eigenvalue of 
the line Jacobi matrix and if p satisfies (4.45), then p is an eigenvalue of the SLOR 
matrix. Hence, if the line Jacobi method converges, so does the line Gauss-Seidel and 
vice versa. 

(c) Starting from (4.45) and using conformal mapping arguments, D. Young [18] 
has proved the following: 

THEOREM. There exists an w such that the SLOR method converges if and only if 
all the eigenvalues X of the line Jacobi matrix satisfy IRe(x)I < 1. 

If f, > 0 and if no eigenvalue of the line Jacobi matrix is contained in the closed 
exterior of the ellipse 

[Re(X)]2 + [Im(x)]2/2P = 1, 

and if 0 < co ? 21(1 + fi), the SLOR method converges. 
Let us apply these results to our situation. 
Since Q = D + E + F has the eigenvalues y, + Aj, it follows that 

XS'j= SIj, s = 1,..,N, j =1,... M 
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are the eigenvalues of the line Jacobi matrix D- '(E + F). Hence if X is the spectral 
radius of D- '(E + F), we have 

(4.46) IxI = cos (N - ) (1i, I At) > 0(1/At) as At -+ 

so that for all At sufficiently small the line Jacobi and Gauss-Seidel methods diverge 
for the matrix Q. On the other hand, since D- '(E + F) has only pure imaginary 
eigenvalues, Young's theorem shows that if 

(1 + c)cos ( ~ frneO 

V18, At 

then the SLOR method converges for all 0 < w ? 2/(1 + f), i.e., for 

0 < W_ 21A (At)I At 

kI,(At)l At + (1 + s)cos N + 

Point Iterative Methods for the "Model Problem" A = H. We consider now point 
iterative methods for the case A = H corresponding to the heat equation. We will 
assume that At, Ax approach zero in such a way that At = yAx where y is a positive 
constant. 

We will show that there always exists an interval' 0 < w < w3 such that the point 
successive over relaxation method converges, but that the point Jacobi (and hence 
the point Gauss-Seidel) method converges if and only if y _ yc, where yc is a constant 
which depends on the range of the space variable x in the analytic problem. 

In the point Jacobi method, Q is again split so that Q = P' - N' where now P 
is the matrix obtained from Q by deleting all but the main diagonal elements of Q. 
If L and U are respectively the lower and upper triangular parts of N', the point suc- 
cessive over-relaxation method corresponds to the splitting Q = P - N with 

(4.47) P =-[P' + w)L], N =-[(1 - W)P' -WU]. 

Moreover, the convergence results (a), (b), (c) stated for line iterative methods 
remain valid if we replace line by point. 

Consider first the eigenvalues of (P')- 'N', given by 

(4.48) XSj = (hj + s - d)/d, s = 1,..., N, j =1, ... . M 

where d = 2/Ax2 are the constant diagonal elements of H. 
If X is the spectral radius of (P')- 'N' then 

(4.49) X2 = Max (2 - hi AX2)2 + AX4lu5l2 
Sj ~~4 

and the maximum is attained for s = j = 1. Hence, if At = yAx, 

(4.50) X2= (22 4 sin2 2) + At COS2 (N + 
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By Taylor's theorem, we have 

(4.51) (2 - 4 sin27rAx/2) = 2 cos 7rAx = 2 -7T2 + r4lAx4/12 + O(Ax6). 

Hence 

(2 - 4 sin2nAx/2)2 = 4 - 4n2AX2 + 4nf4Ax4 + O(Ax6) 
(4.52) = 4 - 4ir2y2At2/y4 + 4r4 At4/y4 + O(At6) 

on using At = yAx. Therefore 

- t fi2y2 
_ cos2 (ir/(N + 1))] 4 ir4At4 (4.53) x2 = 1- 4t24 4 + 

7 
4 + O(At6). 

This shows that the point Jacobi method converges for all sufficiently small At if 
and only if 

(4.54) y = At/Ax _ 1/27t, 

and the same is true of the point Gauss-Seidel method. 
The eigenvalues Xej of (P')- 'N' satisfy 

(4.55) [IM(Xs,j)]2 < At2 /(4 y4) 

(4.56) [Re(Xsj)]2 1 -_ 72At2/y2 + O(At4). 

Hence 

(4.57) 1 < y2[ 1 
1 - [Re(Xsj)]2 7r2 At2 [1 + O(At2)j 

and therefore 

(4.58) 1-[Re(Xs,)]2- [1 + O(At2)]. 
Consequently, given any E > 0, 3 b(g) such that if 0 < At < c 

(4.59) - [Im(Xs,j)]2 < 1 + E 
1 - [Re(Xs,j)12 <7~y 

Hence if 32 = (1 + 8)/47t2y2, we have 

(4.60) [Re(Xs,j)]2 + [Im(Xsj)]2/32 < 1. 

We see then that even if (4.54) is not satisfied, Young's theorem shows that the 
point successive over-relaxation method converges for all W such that 

(4.61) O<w 2 /( ( 412y2 

Point Iterative Methodsfor the System (4.3). Suppose now that A = H_-7 2I. In 
this case the eigenvalues of (P')- 1N' are given by 

(4.62) dhj 
_ 72 + ps-d s =1, ..., N, j = 1, ... M, 
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where now d = 2/A&x2 _ 72. Hence 

2 - 4 sin2 i\x) 
(4.63) Max IRe(X,,j)l = 2 -2Ax2 2 - r2Ax2 

Since 

(4.64) cos RAx = 1 - t2Ax2/2 + ir4Ax4/24 + O(Ax6), 

we have 

cos ~t~x [ ~2AX2 r4,Ax4 OA 

1- _r2AX2/2 [1 2 + 24 + ?X)j 

(4.65) X[ +7r2x2 7r4x4 +O(AX6) 

= 1 + ir4Ax4/24 + O(Ax6) > 1 

if Ax is sufficiently small. 
Consequently the point successive over-relaxation method diverges for every W by 

Young's theorem. In particular, the Gauss-Seidel method (and therefore the point 
Jacobi method) diverges. 

5. Remarks. 
(a) Merits of the Boundary- Value Method. It is impossible to comment fully on the 

merits of any method. On the one hand the advantages or disadvantages are to some 
extent determined by the existing computational hardware. Thus, suppose that in 
our present situation line iterative methods were advantageous, as in the case of 
elliptic problems, and that one had access to a large multi-processing parallel com- 
puter. Then the method analyzed here would be extremely worthwhile. At the present 
time, and with the existing approaches to the matrix inversion problem, one must be 
less enthusiastic. 

On the other hand, advantages or disadvantages of a method also depend on the 
computational requirements of the "customer." Suppose that one wishes to perform 
such a "long time" calculation and be certain of the error. In that case, the usual 
marching procedures, e.g., the Crank-Nicolson, suffer from the possible growth of 
round-off error. In the method described here for the problem (3.1), one has an esti- 
mate (uniform in t and ji = (At2 + Ax2)"/2) of the form 

(5.1) JIM-'I ? constant, 

where M is the matrix of (3.4), (see Lemma 4.2). Hence, one may obtain an a posteriori 
error estimate by simply computing residuals. As a matter of fact, the error in many 
marching procedures for (3.1) grows linearly with the time even in the absence of 
round-off error. Such is not the case here. 

(b) Further Comments. Aside from the potential usefulness of the boundary-value 
procedure, the results obtained here are of independent interest. Thus for the abstract 
problem of Section 2.1, we have shown that if the operator A satisfies (2.3), L2 con- 
sistency of the approximating semidiscrete problem is sufficient to guarantee uniform 
convergence. Presumably one may consider more general abstract problems; how- 
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ever, the example of Section 4.1 indicates the importance of requiring the operator A 
not to have zero as an eigenvalue. This example shows in fact that it is not sufficient 
to ask that the analytic problem have a unique solution, nor even that the fully- 
discrete approximate problem have a unique solution which remains bounded 
uniformly in At!! For problems such as (4.1), and more generally for problems where 
A has nonpositive eigenvalues, one may put v = e - kt u and consider instead the 
problem 

(5.2) avlat= -(A + kI)v + ek-f, 

where k > 0 is chosen so that the spectrum of A + kI lies in the open right half-plane. 
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