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Integer Sequences Having Prescribed 
Quadratic Character 

By D. H. Lehmer, Emma Lehmer and Daniel Shanks 

Abstract. For the odd primes Pi = 3, P2 = 5,, we determine integer sequences Np such 
that the Legendre symbol (N/pi) = + 1 for all pi _ p for a prescribed array of signs + 1; (i.e., 
for a prescribed quadratic character). We examine six quadratic characters having special interest 
and applications. We present tables of these Np and examine some applications, particularly to 
questions concerning extreme values for the smallest primitive root (of a prime N), the class 
number of the quadratic field R(V - N), the real Dirichlet L functions, and quadratic character 
sums. 

Introduction. Let P1, P2, , Pm be a set of odd primes and let 11, s2, g*, m be a 
sequence with ?2 = 1. The problem considered here is that of finding an integer N 
such that 

(1) (N/ps) = si, (i = 1(1)m), 

where the symbol is that of Legendre. In other words we are looking for a positive 
integer N whose quadratic character with respect to each of the given pi is specified. 
This is a special case of a more general problem of Kummer in which the t's are kth 
roots of unity and the symbols are kth power characters. This problem has infinitely 
many solutions for every k, cf. Mills [1]. 

For k = 2 the infinitude of solutions follows from the law of quadratic reciprocity, 
since N lies in an arithmetical progression of difference 4pi for each of the m values 
of i, and hence there exists an arithmetical progression of difference 4P1P2 ... Pm 
every term of which is a desired number N. This argument can also be used to obtain 
the asymptotic density of the N's and even the density of prime values of N, but it 
fails to give any information about the smallest positive value of N. 

The problem of finding the values of N in natural order is solved automatically 
by the Delay Line Sieve, DLS 127 [2] provided the pi < 127. In what follows we 
consider six problems of special interest which have applications to other branches 
of the theory of numbers. In these problems P1 = 3, P2 = 5,... , pi is the ith odd 
prime, the e's form a simple pattern, -and N is usually specified modulo 8. 

We present tables of these integer sequences N for the several problems considered, 
and examine some of their applications, particularly to questions concerning primi- 
tive roots, class numbers, Dirichlet L functions, and quadratic character sums. For 
example, we show that if any algebraic field R(1 - A) of class number 3 exists besides 
the known examples, then A > 1.4 1012. 
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Problem I. Find N 1_ (mod 8) with si = 1 for all odd pi < p in (1). A solution 
Np of this problem is a quadratic residue (=0) of all primes pi < p and hence every 
odd square satisfies the conditions of the problem. We shall be interested here in 
solutions which are not perfect squares and which have been called pseudo-squares. 

Marshall Hall [3] has shown how to use these numbers for a test for primality. 
Cobham [4] pointed out that the pseudo-squares afford a cheap way of deciding 
whether a given number is a perfect square or not. Kraitchik [5] listed the least 
pseudo-square for p ? 47, and Lehmer [6] and [7] extended this list to p ? 61, and 
p < 79, respectively. Using the DLS 127 this table was recently extended to p < 127. 
For completeness we give the least pseudo-square for 3 ? p ? 127 in Table I. 

TABLE I 

Table of Pseudo-Squares 

Least 
Least Prime Prim. 

p Least Solution Solution Root 
3 73 73 5 
5 241 241 7 
7 1009 1009 11 

11 2641 = 19 139 2689 19 
13 8089 8089 17 
17 18001 = 47 383 33049 29 
19 53881 53881 31 
23 87481 87481 29 
29 117049 = 67 1747 483289 31 
31 515761 515761 37 
37 1083289 1083289 41 
41 3206641 = 643 4987 3818929 53 
43 3818929 3818929 53 
47 9257329 9257329 53 
53 22000801 22000801 59 
59,61 48473881 48473881 97 
67 175244281 175244281 79 
71,73 427733329 427733329 83 
79 898716289 898716289 101 
83,89,97 2805544681 = 127 -859 25717 Unknown 

101 10310263441 = 40Q7 2573063 Unknown 
103 23616331489 23616331489 107 
107,109 85157610409 = 397 214502797 Unknown 
113,127 196265095009 196265095009 131 

The difficulty of this problem is the necessity of eliminating the perfect squares 
which, to start with, completely upset the expected asymptotic density of the solutions, 
which is 

(2) Am 1 _ 
8 i= p 
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To overcome this difficulty we exploit the capability of the DLS 127 of counting the 
number of its solutions without actually putting them out. It is clear that the number 
of unwanted perfect squares _ X is exactly the number 4(Pm, X"2) of numbers 
prime to Pm = P1P2 ... Pm and < X112. This, in turn, is the number of solutions 
x ? X1/2 given by the Sieve of the trivial Diophantine equation xy = 1. These two 
problems were run alternately, using a logarithmic search procedure until the extra 
nonsquare solution was located and verified. 

The deviations from the probabilistic estimate (2) caused by the squares is very 
marked. While odd perfect squares automatically satisfy N 1 (mod 8) and ei = 1, 
and there are therefore many more solutions of (1) than is indicated by (2), the number 
of pseudo-square solutions is substantially smaller. For example, for m = 22, pi < 
Pm= 83, there are 168091 solutions of (1) less than 13089432 = 1713331777249. 
But 161409 of these are squares, and only 6682 pseudo-square solutions occur. The 
number of solutions predicted by (2) is 12554. 

Western and Miller [8] tabulate the least prime solution Np for p ? 53. By the 
law of quadratic reciprocity this is equivalent to finding the least prime Np whose 
least quadratic nonresidue exceeds p. This insures that every prime <Np has a 
quadratic nonresidue less than p and that there exist primes with arbitrarily large 
least primitive roots. In Table I, the least prime solution Np and its least primitive 
root is also listed. 

Western and Miller also give a companion table of least negative prime solutions. 
From our point of view this corresponds to the following problem. 

Problem II. Find N -1 (mod 8) with ei = (-l/pi) for all pi < p. The negatives 
-Np of the solutions of this problem are quadratic residues (# 0) of all primes pi < p 
and hence can be thought of as negative pseudo-squares. 

This time there is no direct interference from actual squares and one may expect a 
more predictable distribution. The following short table is for Pm = 53, m= 15, 
Am = 1.03829 10- 6. 

Limits 10-6 No. of Sol. Exp. No. No. of Sol./Exp. No. 

275 150 286 .524 
324 200 336 .595 
466 300 484 .620 
725 500 753 .664 

1297 1000 1347 .742 
2720 2500 2824 .885 

19617 18560 20368 .911 
28925 27950 30033 .931 
81324 80654 84438 .955 
97900 97463 101649 .959 

117000. 116780 121480 .961 

If Problems I and II are thought of as a single problem, one can conjecture that the 
density of negative pseudo-squares approaches the expected value as the limit -+ cx 
and the influence of the perfect squares recedes. 
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TABLE II 

Negative Squares 
Least 

Least Prime Prim. 
p Least Solution Solution Root 

3 23 23 5 
5 71 71 7 
7 311 311 17 

11 479 479 13 
13 1559 1559 19 
17 5711 5711 19 
19 10559 10559 23 
23 18191 18191 29 
29 31391 31391 31 
31 307271 = 109 * 2819 366791 43 
37,41 366791 366791 43 
43 2155919 = 59 * 36541 4080359 47 
47 2155919 12537719 53 
53 2155919 30706079 59 
59 6077111 = 1039 * 5849 36415991 67 
61 6077111 82636319 67 
67 98538359 = 79- 1247321 120293879 73 
71 120293879 120293879 73 
73,79 131486759 131486759 83 
83 508095719 = 367 547 2531 2929911599 97 
89 2570169839 = 439 -5854601 2929911599 97 
97 2570169839 7979490791 109 

101, 103 2570169839 33857579279 107 
107 2570169839 89206899239 109 
109 2570169839 121560956039 113 
113,127 328878692999 328878692999 131 
131 513928659191 513928659191 139 

The least solution of Problem II for each 3 < p ? 131, and the least prime solu- 
tion, in case the least solution is composite, is given in Table II together, again, with 
the primitive roots. 

The negative squares have the property that the corresponding quadratic imagi- 
nary fields R(V - N) have exceptionally large class numbers relative to IN, and 
exceptionally large real Dirichlet L functions at argument 1: 

(3) X(1A ) = Z (~ )' 
n=1 \fl/f 

Here, (- N/n) is the Kronecker symbol. A reflection of this property is that for all 
-Np listed in Table II with p > 11 there exist reduced, binary quadratic forms 

(A, B, C) = Au2 + Buv + Cv2 

of discriminant -Npm = B2 - 4AC for every A = 1, 2, 3, . .. less than Pm+ 1. For 
example, for N9.7 = 7979490791, we have 
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TABLE Ila 
Negative Squares 

p h(- NP) L(1,%) h(-Np) L(1,%) 
3 3 1.96520 
5 7 2.60987 
7 19 3.38472 

11 25 3.58858 
13 51 4.05786 
17 109 4.53127 
19 153 4.67767 
23 213 4.96137 
29 289 5.12442 
31 992 5.62213 1121 5.81495 
37,41 1121 5.81495 
43 2968 6.35035 3997 6.21634 
47 2968 6.35035 7457 6.61614 
53 2968 6.35035 12017 6.81293 
59 5092 6.48918 12719 6.62151 
61 5092 6.48918 20299 7.01518 
67 21934 6.94169 24503 7.01855 
71 24503 7.01855 
73,79 25817 7.07318 
83 51460 7.17211 128755 7.47286 
89 122106 7.56669 128755 7.47286 
97 122106 7.56669 219207 7.70933 

101, 103 122106 7.56669 456929 7.80137 
107 122106 7.56669 761619 8.01103 
109 122106 7.56669 883537 7.96118 
113,127 1499699 8.21554. 
131 1870227 8.19583 

(1, 1, 1994872698), (2, ?1, 997436349), (3, ?1, 664957566), 

(4, ?3,498718175), (5, +3, 398974540), (6, ?1, 332478783), 

(6, ?5,332478784), . . . . . . . . . . . . . . . . . .,(100, ? 53, 19948734). 

Similarly, for this discriminant, the series (3) begins as the harmonic series 

1 1 1 1 
2 3 100 101 

-with the first hundred terms positive. 
We list in Table Ila these class numbers h(-Np) and these functions L(1, X) for 

both prime and composite NP. The composite cases (with even class numbers) are on 
the left, as in Table II. These numbers, which are related by 
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(4) L(1, X) = 7th(-N)/JN, 

were computed by the method described in [9]. 
Returning briefly to Problem I, we note that a Table Ia would begin: 

p h(N) L(1, X) h(N) L(1, X) 
3 1 1.79464 
5 1 2.41835 
7 7 3.07844 

11 2 3.50737 1 3.48451 
13 1 3.96332 

We have not completed this table as the functions are much more difficult to compute 
for large positive discriminants. But two comments are in order. First, while these 
L(1, X) tend to be large, no particular correlation is indicated for the corresponding 
class numbers. Instead of (4) one has 

(5) L~t, X) = NE (N)1 ln(u + vJ/N)h(N) 

where u2 - Nv2 = 1 is the smallest Pell solution. Usually, h(N) is quite small, and 
the largeness of L(1, X) is reflected, instead, in an exceptionally long period for the 
regular continued fraction for JN. (It is this that makes the computation difficult.) 
Secondly, while the L(1, X) are relatively large, they are not as large as could be ex- 
pected by a simple probabilistic estimate. This, again, reflects the peculiarities in the 
distribution of the pseudo-squares discussed above. While the phenomenon is of 
interest, we will not pursue it here. 

The problem which can be thought of as complementary to Problem II is as follows. 

Problem III. Find N 3 (mod 8) with ei = - (- 1/pi) for pi < p. The negatives 
- Np of the solutions of this problem are quadratic nonresidues (=# 0) of all the primes 
Pi < p. Such numbers were first considered by Euler in connection with quadratic 
functions whose values have a high density of primes. In fact, the polynomial 

(6) X2 + x + (N + 1)/4 

of discriminant -N will not be divisible by 2, or any of the specified primes. Euler 
hit upon the remarkable N37 = 163, which led to the well-known polynomial 
x2 + x + 41. Other polynomials of this sort were proposed by Beeger, Poletti, and 
others [10]-[11]. See also [14]. 

Since it was established by Stark [12] that 163 is the largest number N with a 
class number h(- N) = 1, we know that there does not exist another value of N for 
which the polynomial (6) is a prime for all values of x < (N + 1)/4. Nonetheless, 
further solutions of Problem III beyond N37 = 163 do provide examples in which 
the class number h(- N) and L function (3) are apt to be unusually small, while the 
quadratic polynomial formula (6) possesses an unusually high density of primes. The 
first two properties are especially obvious when we rewrite (3) in product form: 
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since we now have (- N/p) = -1 for all small p, and that minimizes all of the cor- 
responding factors. 

Least solutions Np and least prime solutions N, for 3 < p < 163 are given in 
Table III. Table 1I1a gives the class numbers and L functions. Table III extends an 
earlier table to p = 107, by Lehmer [13]. Mohan Lal [14] has also computed the 
h(- Np) through p = 107, and in [14] he, and one of us, discuss some other aspects 
of this problem. 

The decrease of L(I, X) with p is, of course, not monotonic. The Legendre symbols 
beyond (N I p) remain unspecified, and if, in these first solutions, these following sym- 
bols have an early preponderance of values (-N I pi) = -1, as in N127, the L(1, x) 
is especially small. Contrarywise, as in N'139, the L(1, X) is "rather poor". 

Such small values for L(1, x) relate to an investigation of Chowla, Ayoub and 
Walum [15]. It is known that h(-q) for primes q 3 (mod 4) can also be obtained 
from the sums 

SI(q)= : vK;)= -qh(-q) 

or from 

q - 1 
2 2 

S2(q) = ,2 ( = h(-q) 
v-l q 

and these quadratic character sums are therefore, of necessity, negative. But in [15] 
it is proven that 

SA() = I ~(q 

will be positive for infinitely many primes q. 
To obtain a positive S3(q) it would suffice if 

(8) L(1, X) < () = 0.12863, 

but that is not easy to attain. No entry in Table 1Ila is that small, or even close. For 
all q = N, listed, we have S3(q) < 0; e.g., S3(163) =-2066677 =-12679 163. 

As was indicated, there is no reason for the first solution N, to be especially good, 
in this respect, and we have also examined some subsequent solutions. The best 
prime q presently known to us has 

h(-85702502803) = 16259 with L(1, .) = 0.17448. 

This is a subsequent solution for p = 107. The smallest L(1, X) presently known to us 
for negative discriminants is that of a large, composite solution for p = 149: 

N = 84148631888752647283 = 6079 30469 132137 3438209 

has 

h(-N) = 496652272 and L(1, X) = 0.17009. 
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TABLE III 

(P)= -(p) for all pi p, N =8x + 3 

p Least Solution Np Least Prime Solution N, 

3 19 19 

5,7 43 43 
11,13 67 67 
17,.. .,37 163 163 
41 77683 = 131 * 593 222643 
43 77683 1333963 
47 1333963 1333963 
53,59 2404147 2404147 
61 20950603 20950603 
67 36254563= 127 285469 51599563 
71 51599563 51599563 
73,79 96295483 96295483 
83 114148483 = 101-463-2441 146161723 
89 269497867 = 317 419 2029 1408126003 
97,101,103 269497867 3341091163 

107 585811843 = 14081h41603 52947440683 
109,113 52947440683 52947440683 
127 71837718283 = 281h3709 68927 193310265163 
131,137 229565917267 229565917267 
139 575528148427 = 149*283 13648781 915809911867 
149 1271259755683 1271259755683 
151,157,163 1432817816347 1432817816347 

It is clear that we are a long way from exhibiting even a single example of S3(q) > 0 

unless its necessary condition is substantially more generous than the sufficient con- 
dition (8). 

In fact, however, one has [15] 

(9) S3(q) = q X/q [2r2 L(3, X) - L(1, X)1, 

where we have corrected an erroneous factor of 4 and where 
00 p 3 

L(3, X)= T1 3 ;- 

Now 

L(3, X) > H = C(6) = 0.84634, 
p=2 P I C(3) 

and this gives the sufficient condition (8). In our cases L(3, X) will be slightly larger; 
e.g., for q = 163, 
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TABLE MIla 

(N ) = -( p1) for all pi _ p. N = 8x+ 3 

p h(-Np) L(1, %) h(-N') L(1,%) 

3 1 0.72073 
5,7 1 0.47909 

11,13 1 0.38381 
17,...,37 1 0.24607 
41 22 0.24798 33 0.21971 
43 22 0.24798 79 0.21488 
47 79 0.21488 
53,59 107 0.21680 
61 311 0.21346 
67 432 0.22540 487 0.21299 
71 487 0.21299 
73,79 665 0.21290 
83 692 0.20348 857 0.22270 
89 1044 0.19979 2293 0.19197 
97,101,103 1044 0.19979 3523 0.19148 

107 1536 0.19937 13909 0.18990 
109,113 13909 0.18990 
127 15204 0.17821 26713 0.19087 
131,137 29351 0.19245 
139 44332 0.18358 59801 0.19632 
149 66287 0.18470 
151,157,163 70877 0.18602 

9260i93 
L(3, x) = 16321163 = 0.84643, 

but for p ? 41 in Table i11a we must have 

41 P3-1 
L(3, X) < p=2P3 + C(3) = 0.84644. 

Therefore, 

3 
2 L(3, X) < 0.12865, 

and since this is smaller than any L(1, X) shown in Table I11a, we do confirm that 
S3(q) < 0 for all of these primes. 

In contrast, consider 
q - 

14 ( 
SA() = 
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Now we have 

(10) S4(q) = qlq L23 L(3,, ) - L(1, X) 

which may be neatly derived from (9) as follows. For any n > 0, we obtain 
q- 1 

Z v (q - V) 1 

since 

((q - v)/q) = -(v/q), 

and each term v = a cancels that for v = q - a. 
For n = 2 and 1 we obtain 

S4(q) - 2qS3(q) + q2S2(q) = 0, S2(q) -qS1(q) = 0, 

and thus 

(11) S4(q) = 2qS3(q) + q4h(-q). 

Combining (11) and (9) now gives (10). 
Therefore, a sufficient condition for S4(q) > 0 is 

(12) L(, X %) < 2 - (6) - = 0.25726. (12) L(1, x) < 
~~~2~(2)C(3) 

This condition is met by all N, shown in Table i11a starting with N'37 = 163. (In 
fact, from (11) and the previously indicated value of S3(163), we have S4(163)= 
[1632 - 2(12679)]1632 = 1211 1632.) 

It is reasonable to conjecture that S4(q) > 0 for all subsequent Np beyond our 
table, but probably that would be difficult to prove. Presumably, one should attempt 
to prove it for all p > po (hopefully small), and then continue the table (if necessary) 
up to this lower bound po. 

In passing, we note that these character sums may be expressed simply in terms 
of generalized Euler numbers [16]. For q 3 (mod 8) we have 

S3(q) = q(cq, - 4q2cq,o)/12 
(13) 

S4(q) = q2(cq,i - 2q2Cqo)/6. 

For example, c163,0 = 3 and C163,1 = 166680, and we may verify the previously 
indicated sums. 

Problem IV. Find N -1 (mod 8) as in Problem II, but with ri = -(-l/pi) as 
in Problem III. Since the first factor on the right of (7) is now 2 instead of 2 as it was 
in Problem III, we can expect the values of h(- N) to be about 3 times those of the 
last problem. It might seem, at first, that these N are of little interest, since we clearly 
are aiming at small h(- N) and yet we start off immediately in the wrong direction. 

But there is another viewpoint. The pre-Kronecker formulation of these problems 
by Gauss and Dirichlet dealt only with even discriminants. One has the forms 
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Au2 + 2Buv + Cv2 

of determinant 

D = B2 - AC 

for every nonsquare integer D. The class number is now h(4D), and the Dirichlet 
series, for negative D = - N is now 

ith(- 4N) 00 
2 = __ __ 

(14) LN(l) = 4 H1 = (14) ( ) 2,4N k=O (2k + 1) 2k + I p=3 P - ( - Np) 

with Jacobi symbol (-N/(2k + 1)) and Legendre symbol (-N/p). The quadratic 
polynomial (6) now becomes 

(15) x2 + N, 

and similar questions arise concerning its density of primes, cf. [17]-[18]. 
It is known that 

h(-4N)= h(- N) 

for our present N - 1 (mod 8), while 

h(-4N)= 3h(- N) 

for N _ 3 (mod 8). This nullifies the previously mentioned factor of 3, and now, using 
LN(l) instead of L(1, X), these two residue classes modulo 8 can be compared on an 
equal basis, not only with each other, but with any residue class modulo 8. This gives 
us a much richer population to study. 

We list the first composite and prime solutions in Table IV, while Table IVa gives 
the values of h(- N) = h(-4N) and of LN(l). The smallest LN(A) presently known 
to us is 

L569078186623(l) = 0.25346; (p = 137). 

It is smaller than those for any of the N singled out for special mention in the previous 
problem. These have values 

L71837718283(1) = 0.26731, (p = 127) 

L857025028030) = 0.26172, 
and 

L84148631888752647283(1) = 0.25513. 

In Problem V below our smallest value is 

L3666575384938() = 0.26064 (p = 157). 

Analogous to our remarks concerning h(- 163) in the previous problem, we call 
attention to 

h(- 4 7) = 1, h(- 4 127) = 5, h(- 4 487) = 7 

in Table IVa. These have been proven [19] to be the largest negative determinants 
with these class numbers. While the same is probably true of the entry 
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TABLE IV 

Pi (i )for all pi < p, N = 8x + 7 

p Least Solution Np Least Prime Solution N, 

3,5 7 7 
7 127 127 

11 247 =13 a 19 463 
13 463 463 
17 487 487 
19 1423 1423 
23 33247 33247 
29 56743 = 179 * 317 73327 
31 74743 = 41 * 1823 118903 
37,41 118903 118903 
43 348727 = 241 1447 454183 
47 348727 773767 
53,59,61 773767 773767 
67 2430943 = 227 10709 86976583 
71 2430943 125325127 
73 2430943 132690343 
79 242675623 = 191 263*4831 788667223 
83 393292183 = 5573 70571 788667223 
89 393292183 1280222287 
97 393292183 2430076903 

101 1656835783 = 739 827 2711 10703135983 
103 2713676023 = 17747 152909 10703135983 
107 4352137927 = 64661 67307 10703135983 
109 8133814327 = 643* 12649789 10703135983 
113,127 8133814327 15605135527 
131 8363603623 = 57047 146609 148202808007 
137 8363603623 569078186623 
139 1128864945583 = 4943 228376481 3506439768967 
149,151 3402396344407 = 138727* 24525841 3506439768967 
157,163 3402396344407 Unknown 

h(-4- 1423) = 9, 

that remains unproven [19]. But the proposition is not general. For example, 

h- 4 - 33247) = 53 with L33247(1) = 0.45658 

certainly looks unlikely in view of the size of its LN(l), and, in fact, we find in Ordman's 
table [20] that there is a larger example: 

h(-4 39103) = 53 with L39103(1) = 0.42101. 

It is instructive to note that this latter determinant already fails on p = 13: 
(- 39103 1 13) = + 1. 
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TABLE IVa 

(Pi) ( - 

for a Pi < p, N = 8x + 7 

p h(-4Np) LNP(l) h(-4N,) LN;(1) 

3,5 1 0.59371 
7 5 0.69693 

11 6 0.59968 7 0.51101 
13 7 0.51101 
17 7 0.49826 
19 9 0.37477 
23 53 0.45658 
29 60 0.39565 73 0.42346 
31 66 0.37921 83 0.37810 
37,41 83 0.37810 
43 136 0.36176 157 0.36594 
47 136 0.36176 185 0.33036 
53,59,61 185 0.33036 
67 312 0.31433 1927 0.32456 
71 312 0.31433 2295 0.32202 
73 312 0.31433 2273 0.30996 
79 3064 0.30896 5313 0.29718 
83 3718 0.29449 5313 0.29718 
89 3718 0.29449 7173 0.31490 
97 3718 0.29449 9529 0.30364 

101 8096 0.31243 18545 0.28157 
103 9826 0.29629 18545 0.28157 
107 12384 0.29487 18545 0.28157 
109 16602 0.28916 18545 0.28157 
113,127 16602 0.28916 22635 0.28462 
131 16760 0.28787 66011 0.26934 
137 16760 0.28787 121725 0.25346 
139 182424 0.26970 344909 0.28933 
149,151 323392 0.27540 344909 0.28933 
157,163 323392 0.27540 Unknown Unknown 

Class Number 3 and a Brief Return to Problem III. The question whether 

h(-4 1423) = 9 

exhibits the largest determinant having class number 9 is essentially equivalent to 
that whether 

h(-907) = 3 

exhibits the largest discriminant having class number 3. The primes p = 8x + 7 
having h(-p) = 3 or 9 are completely known [19]: 

h(-p) = 3 forp = 23,31; 

h(-p) = 9 for p = 199, 367, 823, 1087, 1423; 
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and if we join these sets, respectively, with all p = 8x + 3 having h(- p) = 3, we 
would obtain the complete set of discriminants with h(- p) = 3, or the complete 
set of determinants with h(- 4p) = 9. 

The known p = 8x + 3 with this class number are [19]: 

p = 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907 

to which we may add 

P5 = 243 

if we do not insist that the discriminant be square-free. There are no other h(- p) = 3 
for p ? 166807 by the tables of Ordman [20] and Newman [21]. 

Any P = 8x + 3 > 1467 = 32. 163 having h(-P) = 3 must have 

L(1, X) < 0.24607. 

By a systematic calculation, we find that there are only eight p = 8x + 3 < 318028 
with an L(1, X) that small, and they have these class numbers: 

p h(-p) P h(-p) 
90787 23 210907 35 

166147 29 222643 33 
191563 33 253507 39 
205627 35 296587 41 

Since any further example P must therefore exceed 318028 = 4 . 433, the argument 
in [19, esp. p. 153, 162], based upon composition of forms, may now be applied as 
follows. If (-P | q) = + 1, there is a form F = (q, b, c) of discriminant -P. Then 

TABLE V 

(N) 2 P( )for all Pi _ p, N = 8x + 5 

p Least Solution Np Least Prime Solution N' 

3 5 5 
5, ...,523 29 29 

29,... ,47 23669 23669 
53 1508789 1508789 
59 5025869 5025869 
61,67 7841261 = 227 34543 9636461 
71 9636461 9636461 
73 18127229 = 491 36919 37989701 
79,83 31839341 = 101-239 1319 37989701 
89,97 37989701 37989701 

101,103,107 240511301 240511301 
109 23739440141 = 241 - 367 . 268403 41868418349 
113 44913466781 = 13339 3367079 90664613309 
127,131,137 60664576541 = 149 407144809 123464393861 
139,149,151 123464393861 123464393861 
157 ...,181 1833287692469 1833287692469 
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F3 = Fh(-P) represents q3 and equals the principal form. Therefore, 

q3 = u2 + uv + (P + l)v2/4 or 4q3 = Qu + V)2 + pV2 

Since this is impossible for 4q3 < P, we must have 

(-P/q) = -1 

for every q ? 43. By Tables III and I11a we therefore have P > N43 = 1333963. 
But, one also has 

4 673< N'43, 4 - 1633 < N'67, 

and 

4 70793 < NM63, 

so repetition of the argument shows that 

P ? N'079 > N'163 = 1432817816347, 

and 

(-P/q) = - 1 

for all q ? 7079, are both necessary. Such a P must also have 

L(1, X) < 3X/1VN'163 = 0.0000079, 

and therefore either 907 and 1423 are the last examples of h(- p) = 3 and h(- 4p) = 9, 
or any counterexample would (easily) satisfy S3(P) > 0. We must admit that we 
would be pleased with either contingency. 

TABLE Va 

(-) = -(-) for all Pi < p, N = 8x + 5 

p h(-8NP) L2N (1) h(-8N') L2N;(l) 

3 2 0.99346 

,5 ... 923 2 0.41251 

29, ...,47 46 0.33210 
53 406 0.36713 
59 718 0.35573 
61,67 832 0.33002 950 0.33991 
71 950 0.33991 
73 1148 0.29949 1698 0.30599 
79,83 1648 0.32440 1698 0.30599 
89,97 1698 0.30599 

101,103,107 3990 0.28577 
109 39880 0.28749 53510 0.29047 
113 59012 0.30928 77970 0.28762 
127,131,137 65300 0.29448 89478 0.28285 
139,149,151 89478' 0.28285 
157, ...,181 317722 0.26064 
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Our next problem is associated with some of the fields having class number 2. 

Problem V. Find N 5 (mod 8) with 8 = -(-2/pi) for all pi < p. This implies 
that - 2N is a quadratic nonresidue of all odd primes < p. The solutions are given 
in Tables V and Va, as before, and note, that in this case, L2N(1) and L(1, X) are iden- 
tical. The first two entries have h( -8N') = 2. Recently, Peter Weinberger [22] 
proved that h(- 8N') exceeds 2 for all N' > 29. We also note that, for all p, 

h(-8N') _ 2 (mod 4). 

This follows from the fact that the only ambiguous form besides the principal form is 

(2, 0, N'), 

and this form is not in the principal genus since 2 is a quadratic nonresidue of N'. 
Therefore, the class number is a multiple of 2, but not of 4. 

Relative to Table IV, Table V is quite short since many of its least solutions are valid 
for a whole string of pi, e.g., 123464393861 is valid for six pi, and then 1833287692469 
is valid for six more. We do not know if this phenomenon is of significance, or merely 
a fluke. A number Qf these N' -those for p = 5,29, 101, and 157 -have exceptionally 
small values ot L2N;(l) for determinants of their size. 

We round out our choice of quadratic characters by returning to positive dis- 
criminants and examining the problem that complements Problem I and extends 
Problem III into the positive range. 

Problem VI. Find N _ 5 (mod 8) with A = -1, for all pi < p. The least prime 
residue of N will therefore exceed p. The least solutions are given in Table VI. Those 
for p = 43 - 53 were given earlier by N. Beeger and E. Karst [23]. As with Problem I, 
we have not completed a Table VIa and merely show its beginning: 

p h(NP) L(l, X) h(Np) L(1, X) 

3 1 0.43041 
5 1 0.54002 

7, 11 1 0.39091 
13 1 0.33144 
17 2 0.29106 1 0.26009 

19, 23 1 0.26045 
29 4 0.25762 1 0.29195 

31, 37, 41 5 0.26510 

In Table VI we have included 3D values of L(1, X) for each N. These approxima-. 
tions were obtained by a program called SPEEDY that computes the partial prod- 
ucts of (7) for p < 132000. It evaluates the needed Jacobi symbols by the Reciprocity 
Law, and requires only a few seconds on an IBM 7094 for each discriminant. While 
it is very difficult to bound the error of these partial products with a bound that is 
both realistic and mathematically sound, we know by comparison with many exam- 
ples where L(1, X) is known exactly that usually these SPEEDY approximations are 
correct to 1 part in 1000. The very low value of L(l, X) for N131 = 49107823133 is.of 
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TABLE VI 

- =-1 for all Pi < P. N= 8x + 5 
Pi 

p NN L(1, %) N' L(1,%) 
3 5 5 0.430 
5 53 53 0.540 

7, 11 173 173 0.391 
13 293 293 0.331 
17 437= 19-23 0.291 2477 0.260 

19, 23 9173 9173 0.260 
29 24653=89 277 0.258 61613 0.292 

31-41 74093 74093 0.265 
43 170957 170957 0.246 
47 214037=193 1109 0.250 360293 0.224 
53 214037 = 193-1109 0.250 679733 0.223 
59 214037= 193-1109 0.250 2004917 0.205 
61 2004917 2004917 0.205 
67 44401013= 157 282809 0.212 69009533 0.209 
71 94948157=317 299521 0.226 138473837 0.233 
73 154554077 = 97 1593341 0.223 237536213 0.224 
79 154554077 = 97 1593341 0.223 324266477 0.227 
83 163520117=2027 80671 0.214 324266477 0.227 

89,97 163520117 = 2027 80671 0.214 1728061733 0.194 
101, 103 261153653 = 8191-31883 0.190 1728061733 0.194 
107--113 1728061733 1728061733 0.194 

127 9447241877 9447241877 0.181 
131 19553206613 = 14221 1374953 0.177 49107823133 0.169(5) 

137,139 49107823133 49107823133 0.169(5) 
149-163 385995595277 = 191-10711-188677 0.174 Unknown Unknown 

special interest. It is exceptionally small for a discriminant of this size, and appears 
to be even smaller than the 0.17009 value mentioned in Problem III. 

These Table VI integers N have a pleasing property when considered as negative 
determinants. All negative determinants - N have ratios 

h(-4N)/VN 

that are asymptotically bounded as N -+ oo by 

AN-E < h(-4N)/VN < AN'E 

for any positive E [24]. Our present N satisfy 

(-N/pi) = (l/pi) (pi ? P) 

and therefore have 

LN(l) = C(P) H q 
q>p q - (- N/q) 
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where the coefficient 

3 5 7 11 p 
C(p)=3 - 1 5 + 1 7 - I 11 - I p + (- /p) 

converges to xn/2 as p --* o, cf. Euler, Landau [25]. These N, therefore, have class 
numbers h(-4N) approximately equal to IN by (14). But the convergence is, of 
course, quite slow: 

h(-4N131) = 145644 = 1.042N 1 31, 

h(-4N'131) = 224546 = 1.013VN1 31, 

h(-4N149) = 592288 = 0.953V'N149. 

There are obviously many similar problems that one can propose and solve with 
the Delay Line Sieve [2]. The DLS 127 is available to anyone with a suitable problem 
without charge. We are pleased to acknowledge the assistance of Richard Serafin in 
computing most of the class numbers. 
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