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Statistical Study of Digits of Some Square Roots
of Integers in Various Bases *

By W. A. Beyer, N. Metropolis and J. R. Neergaard

Abstract. Some statistical tests of randomness are made of the first 88062 binary digits (or equiva-
lent in other bases) of \/n in various bases b, 2 < n < 15 (nsquare-free) with b = 2,4, 8, 16 and
n=2,3,5 with b = 3,5,6,7, and 10. The statistical tests are the ¥ test for cumulative frequency
distribution of the digits, the lead test, and the gap test. The lead test is an examination of the
distances over which the cumulative frequency of a digit exceeded its expected value. It is related
to the arc sine law. The gap test (applied to the binary digits) consists of an examination of the
distribution of runs of ones. The conclusion of the study is that no evidence of the lack of random-
ness or normality appears for the digits of the above mentioned \/n in the assigned bases b. It
seems to be the first statistical study of the digits of any naturally occurring number in bases other
than decimal or binary (octal).

I. Introduction. The original interest in this work was motivated by the question
of whether irrational numbers of the form \/n (n a positive integer, not a square) are
normal numbers [cf. I1.2 below], in the sense of Borel, and whether in some sense
they are random numbers. The expansions have been computed, not only in the usual
bases of 2 (or 8) and 10, but also in those of 3, 5, 6, 7. Some investigators have on
occasion expressed the belief that \/2 may not be normal in base 10 or perhaps in
base 2. The conclusion of this study is that no evidence has yet appeared of lack of
normality in \/n,2 < n < 15 (n square-free) with base b = 2,4,8,16andn = 2,3, 5
with b = 3,5, 6, 7, and 10. (However, an exception might be made in the case of
(10,6)"/2.) Thus there still appears to be no evidence to contradict Borel’s statement
[1]:“ .. we should regard it as extremely probable that all numbers of simple defini-
tion with the exception of rational numbers, are normal numbers.” Borel goes on to
say: “...a proof of this fact would be one of the finest advances that could be made in
our arithmetical knowledge of numbers.”

With regard to randomness, Martin-Léf [13] has given a definition of a random
infinite sequence in some preassigned base. See also the work of Kruse [10]. By
definition, the b-ary expansion of \/n cannot be random for any n. Nevertheless, there
remains the question of whether there exists a random number test not obviously
related to \/n under which \/n is not random.

If an infinite (binary) sequence is not normal, it is not random. However, it could
be normal without being random; i.e., randomness implies normality, but not con-
versely.

Table | summarizes the known (to us) tabulations of square roots of integers. The
expansions in earlier work are in base 2 or 10; the present work includes these bases
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as well as several others. The notation y? in the table represents the usual statistical
test of the cumulative distribution of digits.**

This paper discusses the tabulations of 88,062 bits of (\/n);, 2 < n < 15; and the
equivalent for (\/n),, with 2 < n < 5 and base b = 3,5, 6,7, 10. These tabulations
have been deposited in the UMT file [24]. Statistical studies are made of these digits,
including the distributions of digits, length of leads, and gaps.

I1. Definitions and Background.

1. Definition of Random Number Test. A concise formulation and example is given
of the definition of a random number test based on the work of Martin-Lof [13].

Attention is first restricted to infinite binary sequences. These will be identified
with binary expansions of numbers on the interval I = [0, 1] (making in the usual
way the gloss about numbers terminating in a sequence of 1’s). Let A,, p = 1,2, ...
be a sequence of finite sets of even cardinality of rational numbers in I. Theset T =
(p, A,)(p = 1,2,...)isasubset of Z x #, where 2 denotes the set of positive numbers,
and £ the set of rational points on I. Let B, = | i) [x,;_,, x,;], where x,, x,, ...,
X,k(py are the members of 4,. If the set T is a computable subset of 2 x £ (in the
sense of logic), if B,,; < B, and if y(ﬂg’zl B,) = 0 where u denotes Lebesgue
measure, then T is called a random number test with respect to Lebesgue measure.
(A random-number test is a generalization of the construction of Cantor’s middle-
third set.)

If x (e I) belongs to ﬂ;;l B, for some T, then x is called nonrandom. Otherwise
x is said to be random. In [13] it is proved that there exists a universal test T with
corresponding B, such that x € I is nonrandom if and only if xe (-, B,.

An example is now given of a random-number test. The discrimination level
(described below) is set at .1, but any other level between 0 and 1 could be used. This
example is modeled from the y2-test for frequency distribution in the binary case.
The sets A, are defined inductively. Let A, = {0,273,7-273,1}. Let 4, be given, and
define A, as follows. The rational number g2~ **3) is assigned to A+, provided:
(1) q is an integer satisfying 0 < g < 2**3 — 1, (2) the interval [q2~%*?),
(@ + 1)27%*3] isin By, (3) if g2~ **3 = Y¥*} 27" with f; = Oor 1, and

2 k + 3)\2 k+ 3\2
2 _ - ) + -
O R U |

where n; = Y¥*? B; and ny = (k + 3) — ny, then

1 ©
WJ;Z t—l/2e—r/2 dr < .1.

If for some nonnegative integers g and j, (g — 1)27%*3 and (g + j + 1)27**+¥
arenot assigned to 4, , ,,buttheset C = {q2 **3 (g + 1)27**3 (g + j)2~**3N
is assigned to 4, , ,, then theset Cin 4, , isreplaced by g2 **3 and (g +j + 1)27**3,
It can be shown that the set T = (p, 4,) (p = 1, 2, .. ) thus constructed satisfies the
requirements for a random-number test.

For finite sequences a random-number test is defined as follows. Let &,, be a com-

** For definiteness, it should be remarked that, for minor technical reasons, the various statistical tests
for the binary expansion of \/n include the integer part of the radical, whereas for expansions in other
bases, the integer part is omitted.



STATISTICAL STUDY OF DIGITS 457

putable sequence of positive rational numbers which is computably convergent to
zero. Let X be the set of all finite binary sequences. The subset U < # x X is a
random-number test if (with U, = {x|(p, x) e U}):

@ Upeyc U, p=123,...,

(b) the number of sequences of length k contained in U, is less than 2"8,, for every
k and ¢,

(c) U is a computable subset (in the sense of logic) of Z x X.
The preceding example is also an example of a random number test for finite se-
quences.

2. Normal Numbers. A number x is simply normal in base b if

lim Bn,j) _ 1

now N b

for each of the b possible values of j = 0,1,...,b — 1, where B(n, j) is the number of
occurrences of j in the first n places of the b-ary expansion of x. A number x is normal
in base b if all of the numbers x, bx, b2x, ... are simply normal in all of the bases
b,b?, b3, . ... Schmidt [ 18] has shown that there exists a number x and bases by # b,
such that x is normal in base b, and not normal in base b, . In fact, if b, and b, are
spch that there do not exist integers m and n such that bT = b3, then this holds for
a set of x having the power of the continuum. Thus, it is reasonable to investigate the
normality of \/n in different bases.

3. Result of Polya and Szego. Polya and Szegd [16, p. 72, Problem 178] prove the
following result. Let Py(j, n) be equal to 1 if the ith digit in the fractional part of the
expansion of \/n in base b is j and Pj, n) = 0 otherwise. Then

1
lim L Y. Pj, k)= 1/b
-0 l k=1
forevery j =0,1,...,b — 1 and for each i.

Now if an appropriate version of the ergodic theorem held, with measure replaced
by density of a set of integers, then it would follow from the above result that the set
of integers n, for which

R S 1
lim - P, k) # -,
= b

-0 l i
would have density zero. However, see the remarks of von Mises [15, pp. 175-176].

1. Operational Details.

1. Method Used. The radicals \/n were calcufated on Maniac II using Newton’s
formula: x,4, = 3(xx + n/x), xo = 1. Multi-precision division is required. The
standard word length on Maniac II is 43 bits. The Newton iteration was carried out
11 times, yielding 43 - 2!'' = 88064 bits. (See references [8], [11], [22], and [23] for

alternative methods of computing /n. One should note that the Newton iteration
in [20],

Xiv1 = Xu(3/2 — nxi/2),

yields a sequence x, which converges to 1//n. Consideration was given to using a
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method based on the longhand algorithm for computing ,/n, using a word of 43 bits
as an integer.)

The result was squared for verification. It was found that the last two bits were
sometimes inaccurate, owing to truncation. Thus, only 88064 — 2 = 88062 bits are
claimed to be accurate (including the integer part).

2. Change of Base. The following algorithm was used to convert digits in base 2
to digits in base b, not a power of 2. It is efficient to first make a conversion to a
larger base that is a multiple of b. Let A = 243, B = pl431o82/lebl where[ ]denotes
the largest integer. Suppose that the fractional part of \/n is represented by k words
of 43 bits each. Let [, be the pth digit in the fractional part of \/n in base B and d,
be the corresponding digit in base 4. Then

k r
Y diA7 =Y 1B/ + R,
i=1 i

=1

where R < B™". Write

k
I1+ F,=BY dA7,
j=1

where F; < 1 and I, is an integer. F, is, generally, a k-word quantity. Then [, = I,.
Write BF; = I, + F,, where F, < 1 and I, is an integer. Then [, = I,, etc.
The I’s are converted to the digits (base b) of the fractional part of \/n by successive
division by b.

In the algorithm used here, F, is replaced by (or rounded to) F, which is F; with
the final word deleted. Then

BFI =12+F2

and F, is replaced by F, which is F, with the final word deleted, etc.

It can be shown that the number of digits in base b which this procedure yields is
k[43 log 2/log b], with a rounding error of (1 — pl43182/logbl/343)=1p,=k43log 2/logh]
Table 2 gives the values of these quantities for b = 3, 5,6, 7, and 10; k = 2048.

3. Machine Time Requirements. The time required for Maniac II to compute 88064
bits of \/n was 278 seconds. The time required to square 88064 bits of /n to verify
the square root varied from 310 to 325 seconds. Each collection of bits was verified;
the accuracy of the square ranged from 88062 bits to 88068 bits, the latter being
possible because of implicit zeros beyond the last recorded digits in the radical.

IV. Results. The digits of (,/n); have been calculated for various n and bases b,
where [ denotes the number of digits. Table 1 summarizes the extent of these calcula-
tions. The following sections discuss the tests which have been applied to these digits.

1. “Lead” Test (arc sine law for last visit to origin). Let X; (i = 1,2,...) be a set
of independent random variables with prob(X; = 1) = prob(X; = —1) = 1/2. Let
Sap = Z,-zi’l X;. Let 0 < x < 1 be fixed. Then, according to Feller [6], for large p,

prob{S,; # 0,j = p,p — 1,...,[px]} ~ (2/n)arcsin \/x.

This test is applied to the first 88062 bits of \/n for n square-free and 2 < n =< 15.
The results are given in Table 3. The successive bits of \/n are regarded as independ-
ent random variables with X; = 1 — 2¢; where ¢, is the ith bit of \/n. The second
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TABLE 2.
Number of Digits Resulting from Conversion of 2048 43-Bit Words to Base b.

-1

b (43 log 2/1og b] (l -b[h3 log 2/log b]) 2048[ 43 log 2/log b]
3 27 7.6 55296

5 18 1.77 36864

6 16 1.43 32768

7 15 2.15 30720
10 12 1.3 24576

TAaBLE 3.

Results of “Lead” Test for Binary Digits of \/n.

Last visit Length Leading  Excess 2 = .
n to origin(k*) of Lead Digit  at 88062 x=kx/88062 7 8¢ Sin /x
2 28586 59476 0 376 .32 .38
3 658 87h0k 1 182 .0075 .055
5 k7292 ko770 1 142 .5k .53
6 5501k 33048 1 278 .62 .58
7 13906 74156 1 136 .16 .26
10 3134k 56718 0 236 .36 L1
1 28022 60040 0 540 .32 .38
L3 13668 TL 394 0 328 .16 .26
Ll 144 87918 1 582 .0016 .025
L5 31842 56220 1 k62 .36 A1

column denotes the largest k (k < 88062) = k* for which Y f_, X; = 0. The third
column is the length of the lead at k = 88062, namely, 88062 — k*. The fourth col-
umn gives the digit, 0 or 1, which leads at k = 88062. The fifth column gives the excess
of the leading digit at k = 88062, i.e., (number of 0’s in 88062 bits) — (number of 1’s
in 88062 bits) in case 0 leads or the negative of this in case 1 leads. The sixth column
gives x = k*/88062. The seventh column gives the probability that the last return



STATISTICAL STUDY OF DIGITS 461

to the origin for a sequence of 88062 random variables described above would have
had a last visit to origin not later than at k*. None of the probabilities are exceptional,
although the digits for (14)/2 are less than the 5% level.

The results in Table 3 provide illustrations that the probability of such long leads

(see column 3) is greater than one might intuitively expect. _
Applications of the arc sine law for sojourn times are made in Appendix 1 to results

reported by Uhler [23] on 1/,/3 and in Appendix 2 to results reported by Stoneham
[19] on the transcendental “e”.

2. Gap Test. The length of “runs of 1’s” in the binary expansions of these square
roots is examined. By a “run of 1’s” is meant a sequence of 1’s bounded by Os; i.e., it
has the form

e’

(all 1’s)

The length of the run is the number of 1’s in the run. Runs of length 0 are not counted.
The problem of runs has been investigated by von Mises [15, p. 184]. To quote:
“The German philosopher, K. Marbe, tried to develop a system based on the idea

that long runs contradict probability calculus. He investigated painstakingly the
birth records of four cities, each record containing about 50,000 entries, and searched
for sequences of male or female newborn children. The longest run he found con-
sisted of 17 entries of the same sex in a row. He came to the conclusion that there is
something in the popular belief that after 17 girls have been born in succession the
next child must be a boy.”

It might be interesting to note that the largest run of 1’s found in the data below
(10 records of 88062 entries each) is 18.

Denote by Q™ (x) the probability of obtaining x runs of 1’s, each run of length m,
in a sequence of n symmetric Bernoulli trails (equiprobable, binary, independent).
(Note that von Mises in [15] uses Py"(x) to denote the corresponding probability
for the sum of runs of 1’s and runs of 0’s) Then, as von Mises shows,

OU(x) ~ Ylx; n/2m*2) = e-w""t (n/2m+2)%/x!

if n/2™*2 remains finite as n — o0. Y(x; a) is the Poisson distribution.

Table 4 gives the data. m is the size of the run of 1’s. E is the number of runs of
I’s of that size expected in 88062 symmetric Bernoulli trails as calculated from the
Poisson distribution ¥(x; 88062/2™*2). ¢ = (n/2"*?)!/2 is the standard deviation
for . Since for large n/2™* 2, y is approximately normally distributed, one standard
deviation corresponds to a probability of 68.3% for large n/2™*2. The remaining
columns listed the observed counts for \/n. The last column gives the average over
the 10 square roots. The final line gives the totals. It is noted that the data is what one
would expect from a random sequence.

The probability that there are exactly x runs of 1’s (m = 1) in a sequence of n sym-
metric Bernoulli trails is

Lfnt 1
2 ( : ) .

***yon Mises excludes the latter two in his definition of a run.
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TABLE 9.
x> Values of the Cumulative Distribution of the First | Digits of (/10),4.

1 x? Level
19866 28.5 .02
20038 29.1 .02
20210 29.0 .02
20382 30.2 .01
20554 29.5 .02
20726 294 .02
20898 29.3 .02
21070 30.6 01
21242 29.5 .02
21414 28.9 -02
21586 313 .008
21758 30.0 .02
21930 29.6 .02

The referee has kindly supplied a simplified version of our original proof of this:
Punctuate a list of n 0’s and 1’s by putting a comma before and after each run of I’s.
There are n + 1 positions from which to choose 2x commas and thus

n+1
2x
distinct configurations with x runs. Thus the expected value for the total number of
runsis(n + 1)/4.(The original method of proof has been extended to treat the problem

of “clusters” on more general lattices [25].)
Remark. The expected number of runs of 1’s of length m is approximately given by

x=0

hd n

(1) Z XW( 2m+2) = W
In this connection P. Stein (private communication) has made the following observa-
tion. Over the full set of 2" binary words the number of runs of 1’s of length m is given
by (n/2"*%)2"(1 + (3 — m)/n) for 1 Em < n — 1. So, on the average, for each of
the 2" words, the number of runs of 1’s of length m would be given by (n/2™*?)
(1 + (3 — m)/n), which agrees fairly well, for large n and small m, with (1).

3. y2-Test for Frequencies. The x? values of the cumulative frequency distributions
of the first [88062/2%] 2*-ary digits of \/n, 2 < n < 15 for 1 £ k < 4 are examined
(cf. footnote on p. 456). The results are in Tables 5, 6, 7, and 8. In general, significance

levels [3] are not included unless they are of some interest. For example, the rather
small level for (,/10)} ¢ for | ~ 21,586 is noted. Table 9 lists more detail in this instance.
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Tables 10, 11, 12, 13, and 14 give the cumulative x? values for the digit cumulative
frequency counts of (\/n), for n =2, 3, and 5 and b = 3, 5, 6, 7, and 10. The only
thing unusual here is the rather high level of (/5)}, for I > 12,000. Additional detail is
given in Table 15.

TABLE 15
x* Values of the Cumulative Distribution of the First | Digits of the Fractional
Part of (\/5)10-
/ x2 level 1 — (level)

16512 1.078 99923 00077

16608 9607 99952 00048

16704 1.164 .99895 00105

16800 9774 99948 .00052

16896 9306 99958 .00042

16992 1.184 .99888 00112

The data for (,/2),0 s have been checked against those given by Takahashi and
Sibuya in [21] in a few places and exact agreement found. This indicates that the
difficulty they had with several digits given by Uhler [22] was due to a printing error.

APPENDIX 1. Sojourn Time for 4’s in 1//3. Uhler [23] has commented on the
deficiency of 4’s in the decimal representation of 1/,/3. Stoneham [19] has remarked
on the excess of 6’s in the decimal representation of the transcendental “e”. These
matters are discussed here in greater detail with reference to the arc sine law for
sojourn times.

Let X; (i = 1,2,...) be a sequence of random variables with prob(X; = k) = 1/n
for k =1,2,...,n Let myk) be the number of occurrences of k in X, X,,..., X;.
What is the probability that

@) myj > Un |
i) mbyj < 1 )

Le., what is the probability that the digit k either always exceeds its expectation from
s to | or else is always less than its expectation from s to I? It will be shown that the
probability is the same as for the binary game (n = 2) as given by the arc sine law.
First, an n-ary game can be regarded as a binary game with “heads” having proba-
bility p = 1/n and “tails” having probability ¢ = 1 — 1/n. Define a new variable
X with prob{X; = —(p/q)"/*} = q and prob{X; = (¢/p)"/*} = p. Then E{X;} =0
and var{X;} = 1. Let §; = /-, X}. Let mbe the number of X; which are positive.
If §;> 0, then mi(q/p)'”* > (i — m))p/q)*'?, or mjq > (j — m))p, or mj/j > p =
1/n. Similarly, if S; < 0, then m)/j < 1/n.

Now by a theorem of Erdos and Kac [ 5], since the X} have a common distribution
with expectation 0 and.variance 1, one has

forallj=s,s+ 1,...,1?

prob{T; < jx} ~ (2/m)arcsin \/x,

where T is the number of S; (1 < k < j) which are negative (or alternately, which
are positive). Thus the arc sine law for sojourn times can be used in the case of a
binary unsymmetric “game”.

Uhler’s computation [23] of the decimal digits of 1/,/3 shows that the 4’s are
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deficient (less than expected number), except at the 40th decimal where the 4’s are
“even,” out to at least the 1317th decimal. The probability of this is, according to the
arc sine law with j= 1317, T; =1, x = 2/1317: (2/m)arc sin(2/1317)"/? = .025.
This situation deserves further study.

APPENDIX 2. The Transcendental “e”. With respect to the first 60,000 digits of
transcendental “e”, Stoneham [19] states: “A plot for the sixes shows a consistent
excess above pure chance expectation for 97.7% of the 60,000 place sample.” In an-
other place he states: “there appears to be a consistent ‘excess of sixes’ as in the 1938
report of Fisher and Yates [7].” Actually, Fisher and Yates noted that in a sample of
15000 decimal digits, chosen from a table of logarithms, there were (1500 + 113)
sixes, which is not quite the same as the long lead of sixes noted by Stoneham. Stone-
ham’s data together with the list of 2500 decimal digits of “e” given by Reitwiesner
[17] and Metropolis, Reitwiesner, and von Neumann [14] show that for only 881
places in the first 60,000 decimal digits the proportion of 6’s is less than or equal to
its expected value. The probability that this occurs, according to the arc sine law for
sojourn times, given in Appendix 1 is, (2/m)arc sin(881/60000)!/2 = .077.
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