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Error Bounds for Polynomial Spline Interpolation* 

By Martin H. Schultz 

Abstract. New upper and lower bounds for the L2 and L- norms of derivatives of the error 
in polynomial spline interpolation are derived. These results improve corresponding results 
of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5]. 

1. Introduction. In this paper, we derive new bounds for the L2 and LX norms 
of derivatives of the error in polynomial spline interpolation. These bounds improve 
and generalize the known error bounds, cf. [1] and [5], in the following important 
ways: (1) these bounds can be explicitly calculated and are not merely asymptotic 
error bounds such as those given in [1] and [5]; (2) explicit lower bounds are given 
for the error for a class of functions; (3) the degree of regularity required of the func- 
tion, f, being interpolated is extended, i.e., in L1] and [5] we demand that the mth or 
2mth derivative of f be in L2, if we are interpolating by splines of degree 2m - 1, while 
here we demand only that some pth derivative of f, where m ? p ? 2m, be in L2; 
and (4) bounds are given for high-order derivatives of the interpolation errors. 

2. Notations. Let - o < a < b < o and for each positive integer, m, let 
Km[a, b] denote the collection of all real-valued functions u(x) defined on [a, b] such 
that u E Cm'-[a, b] and such that Dm-lu is absolutely continuous, with Dmu E L2 [a, b], 
where Du _ du/dx denotes the derivative of u. For each nonnegative integer, M, 
let (iPM(a, b) denote the set of all partitions, A, of La, b] of the form 

(2.1) A: a =xO xl < x * * < xM < xM? I= b. 

Moreover, let P(a, b) = UM_ (9P1(a, b). 
If A E IPM(a, b), m is a positive integer and z is an integer such that m 1 < 

z < 2m - 2, we define the spline space, S(2m - 1, A, z), to be the set of all real-valued 
functions s(x) E CZ[a, b] such that on each subinterval (xi, xi,,), 0 _ i _ M, s(x) is 
a polynomial of degree 2m - 1. We remark that our definition is identical with the 
definition of deficient splines of [1]. For generalizations of this concept of spline 
subspace, the reader is referred to [5]. In particular, it is easy to verify that all the 
results of this paper remain essentially unchanged if one allows the number z to 
depend on the partition points, xi, 1 < i < M, in such a way that m - 1 _ z(xi) ! 
2m - 2 for all 1 < i < M. The details are left to the reader. 

Following [1] we define the interpolation mapping in: C"-'[a, b] - S(2m - 1, A, z) 
by gm(f)-s, where 

(2.2) D s(xi)- Dkf (xi), ? k ? m-21, 1 0 and M 
O k _m -1, i = O and M + I1. 
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We remark that the preceding interpolation mapping corresponds to the Type I 
interpolation of [1]. It is easy to modify the results of this paper for the cases in which 
the interpolation mapping corresponds to Types II, III, and IV interpolation of [1]. 
The details are left to the reader. 

3. Basic L2-Error Bounds. In this section, we obtain explicit upper and lower 
bounds for the quantities A(m, p, z, j), I < m, m ? p < 2m, m - I < z ? 2m - 2, 
and 0 < j ? m, defined by 

(3.1) A(m, p, z, j) Sup I |D1(f -9f)|IL-[.,b]/IID I L2[a.b] 

I f C Kp[a, b], IIDpfIIL2[a,b 0 O} 

First, we recall some basic results from [1] and [5] and introduce some additional 
notation. 

THEOREM 3.1. The interpolation mapping given by (2.2) is well defined for all 
A CE ((a, b), 1 < m, and m - 1 ? z < 2m - 2. 

THEOREM 3.2 (FIRST INTEGRAL RELATION). If f C K n[a, b], 1 < m, A E 1P(a, b), 
and m - 1 ? z < 2m - 2, 

(3.2) 
IIDmfID122.b 

= ||Dm(f - gmf)|L22[a,bl + 
IIDmg.f112[ 

THEOREM 3.3 (SECOND INTEGRAL RELATION). If f E K [a, b], 1 < m, A E 6(a, b), 
and m - 1 < z ? 2m -2, 

b 

(3.3) |I|IDm(f - ?mft)II |I2[a,b] = (f - gmf)D2mf dx. 

Finally, following Kolmogorov, cf. [4, p. 146], if t and d are positive integers, let 
Xd(t) denote the dth eigenvalue of the boundary value problem, 

(3.4) (~1)t D2ty(x) = Xy(x), a < x < b, 

(3.5) Dky(a) = Dky(b) = 0, t ? k ? 2t- 1, 

where the Xd are arranged in order of increasing magnitude and repeated according 
to their multiplicity. We remark that the problem (3.4)-(3.5) has a countably infinite 
number of eigenvalues, all of which are nonnegative and it may be shown that 

Xd = (7r/(b - a))2t d2t[1 + O(d-')], as t < d -* c. 

Using the bootstrapping technique of [1, p. 92], and letting 

A- max (xi+- xi) and A- min (xi+l -xi), 
O5i<M O<i<M 

for all A C PM(a, b), we have the following generalization of Theorem 7 of [5]. 
THEOREM 3.4. 

(3.6) X12(m - j) < A(m, m, z, j) _ K 

where 

(3.7) d (M+ 1)(2 n-z+ 1)+z-j+ 2 
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and 

Krn,rnz,j = 1 if m - 1 < z < 2mn - 2, 1 = m, 

= (I/ir)>'8 !, if m - 1 =z, 0 < m - 1, 

_(z + 2 n0ii! (3.8) - - if m - 1 z? 2mn - 2, 0 < i < 2n - 2-z, 

_(z + 2 - 0 = (z + 2- n1)! if Zi- 1?< z < 2m -2, 2m-2 - 
?z 

< j < m 1, 

for all < m, 0 <_ M, A m(a, b),m- 1 ? z ? 2m - 2, and0 < j ? m. 
Proof. First, we prove the right-hand inequality of (3.6). If m - 1 ? z ? 2m - 2 

and j = m, the result follows directly from Theorem 3.2. 
Otherwise, D'(f - 4mf)(xi) = 0, 1 < i < M, 0 < j ? 2m - 2 - z, and by 

the Rayleigh-Ritz inequality, cf. [3, p. 184], 

/X \ 9 Xi+1 

(39 j (D_(f -4sf)(x))2 dx < -) j| (DI+l(f - gf)(X))2 dX, 

O < j _ 2m - 2 - z. Summinig both sides of (3.9) with respect to i from 0 to M, 
we obtain 

(3.10) 1 | DI(f - nf)I!L21a,b1 < - jD +1(f - 4Jmf)IIL2la,bl i 

0 ? j < 2m - 2 - z. Using (3.10) repeatedly we obtain 

a\ 2m-l-z-; 
-I-( 

(3.11) j|D3(f - 9mf)|L[a.b] < ( |ID g(f - f) IL2taa.bJ 

Hence, if 2m - 1 - z = m, i.e., z = m - 1, then 

(3.12) 11Di(f &rnf)JI1L7a.bI 
< - (A) iIDmfIIL,ib] 

which is the required result for this special case. 
Otherwise, since m < z, applying Rolle's Theorem to D2,i-2-z(f - 41) & 

Cz-n+l [a, b], which vanishes at every mesh point, we have that for each 0 < j < 

z - mn + 1, there exist points j"' }IM'-i in [a, b] such that 

(3.1 3) D22 - gzf)(i+ ) 0, 0 ? j ? m 1 (2n - 2 -z), 

z - m + 1, 0 < 1 < M + 1 -j, 

(3.14) a = i < t ..< . < M8-1-j 
= b, 0 ? < z - in + 1, 

(3.15) t()< t(+)< t() for all 0 _ I M+ I -j, O _ i _ z- mn +1 

and 

(3.16) choose +() - < (0 M -,j, O < j ? z+- n1 + 1, 

i.e., choose ~(') =xl, 0 _ I _ M + 1. 
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Thus, applying the Rayleigh-Ritz inequality, we have 
+te (i) 

(3.17)(f - gmf)(x))2 dx 
(3.17) 

+ 1 2 
(2m-2-x+(i+l)(f _ g" y))2dx < D IIJ ~j) X 

for all 0 < 1 _ M - j, 0 ? j < z - m + 1. Summing (3.17) with respect to I from 
o to M-j, we have 

(3.18) ||D 2mi2(f - 4m)IL2ta,b] 5 (i + 1)2I |ID2m-2-+(f+t)(f - 4mf)IIL[a.bI, 

0 ? j ? z - m + 1. Using (3.18) repeatedly along with (3.2) we have 

IID2m-1(f-z 9.j)jjL2[a,bI < (z + 2 - m)! )-zm1 mD(f | | D (f Jnzf)l |21a,bl < z-m+l (9 |D .f- f)| |L-ja,bl 

(3.19) 
(Z + 2 - m)! (Az-ml f||S ab 

Combining (3.11) with (3.19), we have that 

(3.20) IID'(f I- 4mf)IIL-[a,bJ < (z+2-m- n)! ( I )miDmf 1IL- bI 

if 0 ? j < 2m - 2 - z. Otherwise, it follows from (3.18) that 

(3.21) 1JD3(f- m1f)|JL'[a,bl< 
(z + 2 m- )! | D f JIL-ta,b] = !~m IIDIII9[abi 

Finally, we prove the left-hand inequality of (3.6). This inequality follows directly 
from a fundamental result of Kolmogorov, cf. [4, p. 146], which states that 

(3.22) X-L,2(m - j) _ A(m, m, z, j), 

where t dimension D'(S(2m - 1, A, z)), for all 1 < m, 0 < M, A G 61,(a, b), 
m - 1 < z < 2m - 2, and 0 < j < m. But the space D'(S(2m - 1, A, z)) has 
dimension t - (2m-j)(M+1) - (z+l-j)M = (M+l)(2m-z+l) + z-j+l. 
Q.E.D. 

We remark that in this case it is easy to verify that there exists a positive constant, 
K, such that 

b1/2 b a\m 1 1 1 
'd = 7 (M + l)M-i S- ' 1 + Ks-1(M + 1)-1 

> 
I I I (\)- 

= rm-i sm-i 1 + Ks-N(M + 1) 

where s e (2m - z + 1 + (z - j + 2)/(M + 1)), and thus that splines are "quasi- 
optimal". 

The next result generalizes Theorem 9 of [5]. 
THEOREM 3.5. 

(3.23) d"1-2(2 m- j) < A(m, 2m, z, j) :5 m K .. 
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where 

(3.24) d - (M + 1)(2m-z + 1) + z-j + 2 

and 

(3.25) Km,2m,z&, (Km.m,z,)(Km,m,,o), for all 1 < m, 0 ? M, A E (PA,(a, b), 

m- I < z ? 2m-2, and O < j ? m. 

Proof. Applying the Cauchy-Schwarz inequality to the Second Integral Relation 
yields the inequality 

(3.26) ||Dm(t - D m gf)[ab -< J IID 2fIIIL|L[b l -j gmf L[2a,bl- 

Applying the proof of Theorem 3.4, we have 

(3.27) IID (f- 9mf)jIL(a,.bj < Km,n.JijjDm(f - f)jjL-[,,b](2i) 

Using (3.27) for the special case of j = 0 in (3.26) yields 

(3.28) IIDm(f - 9mf)j|L2[a.bj <_ |D 2mfIIL2.a,bIKm,m,,,O(A)m 

Using (3.28) to bound the right-hand side of (3.27) gives us the right-hand inequality 
of (3.23). The left-hand inequality of (3.23) follows as in Theorem 3.4. Q.E.D. 

We now recall a fundamental inequality of E. Schmidt which will be used several 
times in the remainder of this paper. 

LEMMA 3.1. If PN(X) is a polynomial of degree N, 

(3.29) ||DPNIIL-4,b< b < A IPNI IL-[,.bl, 

where EN (N + 1)2 \/2. 
Proof. Cf. [2]. Q E.D. 
THEOREM 3.6. 

(3.30) X-1/2(p - j) _ A(m, p,z, j) < 

where 

(3.31) ds (M+ 1)(2m -z+ 1)+z - j+2 

and 

_ | (l/2)(2m-p) r F 12a2mp 
(3.32) Km,gV.jS. i Kv.V,2m-li + K2f sP.2( 1/2) (2m- ( /) | 

2p- 2m)!J(1.) 
for all 1 < m, 0 < M, A EE GM(a, b), m < p < 2m, 4m - 2p-1 < z ? 2m - 2, 
and 0 ? i < m. 

Proof. Consider S(2p - 1, A, 2m - 1) C K2m[a, b]. This space is well defined 
since 2p - 2 ? 2(m + 1) - 2 = 2m. Moreover, if 9m denotes the interpolation 
mapping of Cm'-[a, b] into S(2m - 1, A, z) and i, denotes the interpolation mapping 
of C`1[a, b] into S(2p - 1, A, 2m - 1), then 9J..(6jf) = ,mf for all f e C`'[a, b]. 
In fact, DgpJf interpolates Dkf at xi, 1 < i _ M, for all 0 ? k ? 2p - (2m - 1) - 
2 = 2p- 2m - 1, while Dkg;mf interpolates Dkf at xi, 1 < i _ M, for all 0 ? k ? 
2m - z - 2 ? 2m - (4m - 2p- 1) - 2 = 2p- 2m - 1. 
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Thus, 

(3.33) ffD (f - 9mf)ILt[a,bJ < 1 -(f -4vf)IIL[,bl 

+ |D.(4Jf - gm(9pf))||Lsja,b1, ? j - m 

By Theorem 3.4, 

(3.34) jjD'(f- 4vf)!jL1[a,bJ < Kp,p,2=-l,i() ||D filL-[.,b] 

and by Theorem 3.5 

(3.35) IID'(4vf - 4m(4p1))IIL2[a,b1 - Km,2m,z,i(a)2m |ID 2mIpf IL2a.,bl 

But by Schmidt's inequality and the First Integral Relation, since spf is a piece- 
wise polynomial of degree 2p - I with p > m, we have 

2m-p 

(II E2p-2m-1+i) 11D I IL-[,b3 

(3.36) (A)2m-p 

< (2t_m-p)/2_ P_2 IID fIIL ta,bJ ? 
L(2p + 2m)!] (A)2'R-- 

The required result now follows from (3.33), (3.34), (3.35), and (3.36). Q.E.D. 

4. L2-Error Bounds for Higher Order Derivatives. In this section we give 
explicit upper bounds for the quantities A(m, p, z, j) in the special cases of m < p < 2m 
and m < j ? p. Since smf is not necessarily in KI[a, b] if z + 1 < j < p, it is neces- 
sary to modify the definition of A(m, p, z, j) given in (3.1). The new definition is 
given by 

A(m, p, Z, i) Sup j|D'(f - gmf)||L2x,xj+, I I DD IL|[a bl 

(4.1) - )1/ 

|f (- K [a, b], I I Dpf IL"J.,bl 1= ?} 

The main result of this section is 
THEOREM 4.1. 

(4.2) A(mn, p, z, j) _ K,P,Z,( 

where 

(4.3) Km,Y Dz, i [K2 ) v i + (Km, p, z m + Kp,p,p,mtn)2( [ (2p - J)!] AQ\) ] 

for all I < m O <0 M, A C WPM(a, b), m < p < 2m, 4m - 2p-1 < z < 2m - 2, 
and m < j < p. 

Proof. By Theorem 3.6, 

(4.4) IlDm(f - IJmf)L2[ ab1 _ K.,$ t tM(A I 

and by Theorem 3.4, 

(4.5) ID k(f - 4pt)lILtaa,bj -< Kp,pp,k(A)pk, 0 < k ? p. 
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Combining (4.4) and (4.5), we obtain 

(4.6) IIDG D(mf - gpf)IIL2 a,b _ (Kn, , z, m + Kp, P, Pm)(A)P. 

Using the Schmidt inequality in (4.6), we obtain 

E(2p-l,_ - i) 

| | D'(mf - 
9pf)||L2[a.6 (4) _b_ I D(gpf - Vpf)IIL2Ia,b] 

(4.7)_ 

_ (Km,p,z,m + Kp,p,m)H E2 P-i 

The required result follows from (4.5), (4.7), and 

(4.8) ||D(f - 4nf)jIL9a.,b ?_ 1ID3(f - vf)IIL[a,b] + IID (9f - gmf)jlLs[a,bJ 

Q.E.D. 

We remark that in those cases in which 9mf E K'[a, b], lower bounds of the 
form introduced -in Section 3 can be given for A(m, p, z, j). 

5. Lw-Error Bounds. In this section, we give explicit upper bounds for the quan- 
tities A'(m, p, z, j), 1 < m, m < p ? 2m, m - 1 < z ? 2m - 2, and O < j < p, 
defined by 

A'(m, p, z, j) = Sup 4 max (I I D'(f- 4?n)l I D-f I lab 
(5.1) Os5is5M 

If E Kp[a, b], IID'ftIL21a,bl < 0 

We obtain the following results as corollaries of the results of Section 3 and Section 4. 
As an improvement of Theorem 6 of [5], we have 

THEOREM 5. 1. 

(5.2) A'(m, m, z, j) < mm (/)-12 

Where 

Km,,n, z -Km,rn,z,j+i, if m - 1 = z, 0 < ] < m - 1, 

( Km,m,z,j+i, if m - 1< z < 2m - 2, 0 2 j 2 m - 2-z, 

_U 2m +?3? 3 Kn+ Z),/2 z,i,m if rn-i < z 2m - 2, 

2m -2 - z < j < m- 1, 

for all 1 < m, 0 < M, A & IPM(a, b), m - 1 ? z < 2m - 2, and0 < j < m- 1 
Proof. We give the proof in the special case of m - 1 z, 0 _ j _ m - 1, as 

the proof in the other cases is analogous. Given any x & [a, b], there exists a point 
y & [a, b] such that D'(f - gmf)(y) = 0 and Ix -y I < ? . Hence, D3(f - YmXX) = 

fJ D+1(f - lmf)(t) dt and 

IID'(f - 4.f)|L-[a,b] < (U)/1 |ID' 1(f - gmf)IIL2la,b). 

The result now follows from applying Theorem 3.4 to the right-hand side of the pre- 
ceding inequality. Q.E.D. 
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As in Theorem 5.1, we have as an improvement of Theorem 8 of [5]. 
THEOREM 5.2. 

(5.4) A'(m, 2m, z, j) _ K:,2m.z.j (A)2m--1/2 

where 

K.,2m,z,j+1 Km.2m,z,j+i, if m - 1 = z, 0 < j _ m - 1, 

(5_5) Km,2m,zji+l, if m- 1 < z < 2m-2, 0 _ j _ 2m-2-z, 

(J - 2m + 3 + Z)1Km,2m.z,i+], if m - 1 < z _ 2m - 2, 

2m - 2 - z < ? m- 1, 

for all 1 <n m, 0 < M, A E G6(a, b), m - 1 $ z ? 2m - 2, andO ? j m -1. 
As in Theorem 3.6, we have 
THEOREM 5.3. 

(5.6) A'(m, p, z, j) _ Km p i(ay-$-1/2 

where 

(5.7) Km7j {KP. .2mii ? K:2m..2(2 m [(2p - 2m)!] (A)m }' 

for all 1 < m, 0 < MA (e 6(a, b), m <p < 2m, 4m - 2p - 1 ? z ? 2m - 2, 
and0 ? j ? m- 1. 

Finally, to give a result analogous to Theorem 4.1, we need an inequality due to 
A. A. Markov. 

LEMMA 5.1. If PN(X) is a polynomial of degree N, then 

(5.8) |IDPNIIL-DG,b] < A / I IPNI a L-I.,b) 

where MN - 2N2. 
Proof. Cf. [6]. Q.E.D. 
As an extension of Theorem 10 of [5], we prove 
THEOREM 5.4. 

(5.9) Am(m, p, z, i) _ K' =,V, X.$i 

where 

(5.1 0) K,-,,,v {K7V.Vi + (K,V,X,,i + K,p ,.1)2 (+l(2p-J-;!)2(S) } 

for all 1 ?m, O<M, A&6'M(a, b), m<p$2m, 4m-2p- 1 <z<2m-2 
andm ? ? p< - 1. 

Proof. From Theorem 5.1, we have that 

(5.11) IIDk(f - Pf)IIL-[.b) < KPo,,v,b(/)v l/2IIDvfIIL,[a.b], 0 < k ? p - 1, 

and from Theorem 5.3 

(5.12) ID | 1 (f - gmf)IILc| .bl,bJ - K,p,S,m-1i() vm+1/2I I DIf I IL[a.bl. 
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Combining (5.11) and (5.12), we have 

(5.13) |ID (m1n- -f 4vI)IILco[,,b3 ? (Kpm i + K,P V.k)(z)m |+1/21DPfI|L .bIl 

But, 

V M2p_1-ji+$ 

IID'(gnf - 4pf)IfLz'1a,b)< (A.m-1 ||D (1mI - 9vf)IIL',(,.bI 

(5.14) ? -m+1 (2p- m)!) (2 
_2 

(2p - j I- ID1) - 

* ||D'n (.4f - 
9pf)I|L-,&la,b], 

where 

I11IIiSIpa b1- max I IIILxZi.xi+,1.] 

The required result follows directly from (5.11), (5.13), (5.14), and the observation that 

11D1(f - 9 n)|LI,&a,b I _ |ID'(f - 9f)jL-,a,b1 + jID'(gvf - Jmf)L-AI4,b). 

Q.E.D. 
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