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Error Bounds for Polynomial Spline Interpolation*

By Martin H. Schultz

Abstract. New upper and lower bounds for the L2 and L* norms of derivatives of the error
in polynomial spline interpolation are derived. These results improve corresponding results
of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5].

1. Introduction. In this paper, we derive new bounds for the L* and L® norms
of derivatives of the error in polynomial spline interpolation. These bounds improve
and generalize the known error bounds, cf. [1] and [5], in the following important
ways: (1) these bounds can be explicitly calculated and are not merely asymptotic
error bounds such as those given in [1] and [5]; (2) explicit lower bounds are given
for the error for a class of functions; (3) the degree of regularity required of the func-
tion, f, being interpolated is extended, i.e., in [1] and [5] we demand that the mth or
2mth derivative of f be in L?, if we are interpolating by splines of degree 2m — 1, while
here we demand only that some pth derivative of f, where m < p < 2m, be in L%;
and (4) bounds are given for high-order derivatives of the interpolation errors.

2. Notations. Let —o < a < b < « aund for each positive integer, m, let
K"[a, b] denote the collection of all real-valued functions u(x) defined on [a, b] such
that 4 € C™'[a, b] and such that D™ 'y is absolutely continuous, with D™u & L*[a, b],
where Du = du/dx denotes the derivative of u. For each nonnegative integer, M,
let ®y(a, b) denote the set of all partitions, A, of [a, b] of the form
2.1) Ara = x <% < o <xy < Xyyq = b.

Moreover, let ®(a, b) = \UJ%., ®ula, b).

If A € ®u(a, b), m is a positive integer and z is an integer such that m — 1 =<
z < 2m — 2, we define the spline space, SCm — 1, A, z), to be the set of all real-valued
functions s(x) € C’[a, b] such that on each subinterval (x;, x;,,),0 < i £ M, s(x) is
a polynomial of degree 2m — 1. We remark that our definition is identical with the
definition of deficient splines of [1]. For generalizations of this concept of spline
subspace, the reader is referred to [5]. In particular, it is easy to verify that all the
results of this paper remain essentially unchanged if one allows the number z to
depend on the partition points, x;, 1 < i < M, insuchawaythatm — 1 < z(x,) =
2m — 2 for all 1 < i = M. The details are left to the reader.

Following [1] we define the interpolation mapping 9,,: C" '[a, b] — S@m — 1, A, 2)
by 4.(f) = s, where

0<k=m-—1, i=0and M+ 1.
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We remark that the preceding interpolation mapping corresponds to the Type I
interpolation of [1]. It is easy to modify the results of this paper for the cases in which
the interpolation mapping corresponds to Types II, III, and IV interpolation of [1].
The details are left to the reader.

3. Basic L’-Error Bounds. In this section, we obtain explicit upper and lower
bounds for the quantities A(m, p, z, ), l S mm<p<2mm— 1=z = 2m — 2,
and 0 £ j £ m, defined by

A(m’ D, z, .1) = Sup {I'D’(f - 'gmf)lIL’lﬂ'b]/llDﬂfllL’lﬂ-bl
IfE Kp[a) b]’ ”va”L’[a.b] # 0}

First, we recall some basic results from [1] and [5] and introduce some additional
notation.

THEOREM 3.1. The interpolation mapping given by (2.2) is well defined for all
Ae ®@a,b),l =mandm— 12z £ 2m — 2.

THEOREM 3.2 (FIRST INTEGRAL RELATION). If f € K™[a, b], | < m, A € ®(a, b),
andm — 1 £ z £ 2m — 2,

(3.2) UD™f||Zter = [ID™(f — 9uDl|Zotass + [ D"Infl|Z21a,01-

THEOREM 3.3 (SECOND INTEGRAL RELATION). If f € K*"[a, b], 1 < m, A € ®(a, b),
andm — 1 £ z £ 2m — 2,

3.1

(3.3 19" = 9uDlliriw = [ G = 90D ax.

Finally, following Kolmogorov, cf. [4, p. 146], if ¢ and d are positive integers, let
N(f) denote the dth eigenvalue of the boundary value problem,

3.4 (—1)' D™ y(x) = I\y(x), a<x <b,
3.5) D*y(a) = D*y(b) = o0, tS k<2t — 1,

where the A, are arranged in order of increasing magnitude and repeated according
to their multiplicity. We remark that the problem (3.4)~(3.5) has a countably infinite
number of eigenvalues, all of which are nonnegative and it may be shown that

A= @/(b— a) &'l + 0], ast<d— .
Using the bootstrapping technique of [1, p. 92], and letting

A= max (x;y; —x;) and A= min (x;4: — x,),
0ZisM 0sisM

for all A € ®u(a, b), we have the following generalization of Theorem 7 of [5].
THEOREM 3.4.

(3.6) ANPm — )= A, myz, ) S Ka ;AT
where

3.7 d=WM+1D2m —z4+ D)+z—j+ 2
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and
Km.m.z.i=15 ifm-l§z§2m—-2,j=m,
= (I/m)"", ifm—1=2,0=2;j=<m—1,
2 — m)
(3.8) =(—Z-i;——'1’—)— ifm—1<z<2m—2,05;<2m—2—z,
- !
=£Z—7:,—2r—_i"i ifm—1<z<2m—2,2m—2—z<j<m~—1,

foralll <m0 = M,AE ®y(a,b),m—1=2z=2m—2,and0 £ j < m.
Proof. First, we prove the right-hand inequality of (3.6). If m — 1 £ z < 2m — 2
and j = m, the result follows directly from Theorem 3.2.
Otherwise, D'(f — 9,.)(x;) = 0,1 £ i < M,0 < j < 2m — 2 — z, and by
the Rayleigh-Ritz inequality, cf. [3, p. 184],

a9 [ 0= apena = (B [ @ - spe ax,

T i

0 £ j=2m — 2 — z Summing both sides of (3.9) with respect to i from 0 to M,

(3.10) 1D°G = $uhllivtomn S 2 11D7G = 8l lzstemns

0 = j = 2m — 2 — z Using (3.10) repeatedly we obtain

. Z 2m—1=—z—7f
(3.11) D'(f = IuDllLeany = <;) ND*™ 7 — 9uDllLeta-
Hence, if 2m — 1 — z = m, ie., z = m — 1, then

] 1 m A\m—1 m
(3.12) HD'(f — 9uDllzstan = (;) @YD"z tar

which is the required result for this special case.

Otherwise, since m =< z, applying Rolle’s Theorem to D" *7*(f — 4.f) €
C*"™"'[a, b], which vanishes at every mesh point, we have that for each 0 < j =
z — m + 1, there exist points {£"}M%" in [a, b] such that

DR — g NET) = 0, 0sj=m—1-—Qm-—2—2),

=z—m++ 1, 0 I M+1—,
z—m-+1,

(3.13)

lIA
IIA

IIA

G4 a=&" <& < <Eoy=b, 0

IIA

J
(3.15) &P £V <P, toral0 SIS M4+ 1—j,02j<z—m+ 1
and

(3.16) A —H =G+ DA, 02 I=SM-—-j,0=jsz—m+1,

ie., choose ¢% = x, 0 = I = M+ 1.
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Thus, applying the Rayleigh-Ritz inequality, we have

Eia (D)
j; (D™ — 9.N)) dx

. A 12 pEaen @
é [(J + I)A:l f( (Dzm—2—1+(i+l)(f _ gmf))z dx
3

T ()

3.17)

foral0 = /=M — j,0=j<z— m++ 1. Summing (3.17) with respect to / from
0 to M — j, we have

(3.18) -||D2m—2—l+i(f — gmf)”L’[a.b] é gj_—l_;_r_l_)_A. ||D2m—-2—a+(l+l)(f — gmf)”l:'la.b]’

0 = j= z— m+ 1. Using (3.18) repeatedly along with (3.2) we have
m—l-z 2 — ! A)z—m+ m
107G = gullamrem S EEZ ™ @YD" — 8ufllaeteun
(3.19)

z4+ 2 —m) . ™
= EE2 M Gy D

Combining (3.11) with (3.19), we have that

3200 DG = Suhllzrien S EEETTE @ Dl geianr,

if0 = j < 2m — 2 — 2z Otherwise, it follows from (3.18) that

G20 1D = gDl S EE 2 1D g

Finally, we prove the left-hand inequality of (3.6). This inequality follows directly
from a fundamental result of Kolmogorov, cf. [4, p. 146], which states that

(3.22) Ai(m — §) £ A(m, m, z, j),
where ¢t = dimension D'(S2m — 1, A, 2)), forall 1 £ m, 0 £ M, A € ®x(a, b),

m—1=2z=2m— 2,and 0 £ j < m. But the sp_ace D'(S@m — 1, A, 2)) has
dimension ¢ = Qm—j)(M+1) — (z+1—-)M = (M+1)2m—z+1) + z—j+1.
Q.E.D.

We remark that in this case it is easy to verify that there exists a positive constant,

K, such that
AV S (b — a)"'" 1 1 1
¢ =\ r M+ D" ™1+ K (M4 1))
. 1 1 1
= m—3j m—j -1 sy
T S 14+ Ks (M -+ 1)
wheres = 2m — z 4+ 1 + (z — j + 2)/(M + 1)), and thus that splines are “quasi-
optimal”.
The next result generalizes Theorem 9 of [5].
THEOREM 3.5.

(3.23) MNV2@m = ) S A(m, 2m, 2, ) £ Kpoamee i(BY™

1 (é) —i)
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where

(3.24) d=WM+1)Cm—z+1)+z—j+2

and

325 Kmomsi = Knms. ) Komea)s forall 1 S m, 05 M, AE Cula, b),
m—1=z=2m—2,and0 = j =< m.

Proof. Applying the Cauchy-Schwarz inequality to the Second Integral Relation
yields the inequality

(3.26) D™ — IaDllistaes = |ID*"f||zstamr|lf = Imfllzotaim-
Applying the proof of Theorem 3.4, we have

G2 ID( = uDllzrtes £ Koo il D" — InDlzora,n B)" .
Using (3.27) for the special case of j = 0 in (3.26) yields

(3°28) ”Dm(f - gmf)”.l’:’la.bl é “D2mf||L’[a.b] Km.m.s.O(Z)"'

Using (3.28) to bound the right-hand side of (3.27) gives us the right-hand inequality
of (3.23). The left-hand inequality of (3.23) follows as in Theorem 3.4. Q.E.D.

We now recall a fundamental inequality of E. Schmidt which will be used several
times in the remainder of this paper.

LemMA 3.1. If pa(x) is a polynomial of degree N,

E
(3.29) {| DonllLsta,er = b — p [low]|zota.015

where Ey = (N + 1) v/2.
Proof. Cf. [2]. QE.D.

THEOREM 3.6.
(3.30) NV — ) S Amy D,z ) S Ko i(BY 7,
where
(3.3D d=WM+D2m—z+1)+z—j+4+2
and

2
(332)  Knpei = {Km, + Knome,i 2200 [(2—,,—5’7,,7] (Z\/é)“"”}
foralll £m, 0= M,AE Pula,b),m<p<2md4m—2p—1=2z=2m—2
and 0 = j = m.

Proof. Consider SQp — 1, A, 2m — 1) C K*"[a, b]. This space is well defined
since 2p — 2 = 2(m + 1) — 2 = 2m. Moreover, if 4,, denotes the interpolation
mapping of C"'[a, b] into S(2m — 1, A, z) and 4, denotes the interpolation mapping
of C*[a, b] into S2p — 1, A, 2m — 1), then 9,,(9,f) = 9,f for all f & C*[a, b].
In fact, D*J,f interpolates D*fat x;,, 1 £ i< M,foral0 S k<2p — Q2m — 1) —
2 = 2p — 2m — 1, while D*g,,f interpolates D*f at x;,, 1 < i < M, forall0 £ k <
2am—z—2=2m—(4m—-2p—-1)—-2=2p —2m — 1.
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Thus,
(3.33) “Di(f - gmf)Hu[a.b] = “D’(f " 5uf)HL=[a.bl
+ ”D’(gpf - gm(gvf))”L‘(n.b]’ 0 é j é m.
By Theorem 3.4,
(3.34) D' = 9Dl lestams = Kpipiom-1.:(B) || D Latanr)
and by Theorem 3.5
(3.35) ID'@f — 9n(@o)|zotas) £ Kumoom,o.i(B)Y™ || D*"9of| 12101

But by Schmidt’s inequality and the First Integral Relation, since 4,f is a piece-
wise polynomial of degree 2p — 1 with p > m, we have

2m-~p
(II E2p—2m—l+1') ”DﬂfHL’[a,b]

D9 of| | Letasy S —

(3.36) @
< 2(zm~p>/2|: p! :r [1D*f]2 0.1
= 2p + 2m)! @y

The required result now follows from (3.33), (3.34), (3.35), and (3.36). Q.E.D.

4. L’-Error Bounds for Higher Order Derivatives. In this section we give
explicit upper bounds for the quantities A(m, p, z, j) in the special cases of m < p £ 2m
and m < j < p. Since 4,.f is not necessarily in K'[a, b]if z 4+ 1 < j £ p, it is neces-
sary to modify the definition of A(mn, p, z, j) given in (3.1). The new definition is
given by

M 1/2
fx(m’ D, z, ]) = Sup {(Z IlDy(f - gmf)”i’[z‘.zii»:]) /”Dp”lL’[a,bl
4.1) =0

’f E Kp[aa b]’ “DprL’[a.b] # 0}

The main result of this section is

THEOREM 4.1.
4.2) A(m, p,z, j) = Km‘p""_(ﬁ)p—i,
where
o= (i=m)/2 M:Iz(é)f—m]
(4.3) Km"’"-’ N [Kp'p'p'i + (K"'-P.z.m + Kp.pm.m)2 [(2P - j)! é s

foralll =m0 M,AE Cyla,b),m<p<2mdm—2p—1=z=2m-—2,
and m < j £ p.
Proof. By Theorem 3.6,
(4'4) “Dm(f - gmf)”L’[a,b] é Km.p,z.m(z)p‘my
and by Theorem 3.4,

(4.5) DG — 9Dllirtan) S Koo AP ™*, 0=k = p.
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Combining (4.4) and (4.5), we obtain
(4-6) IIDm(gmf - gﬂf)“L’[a.b] é (Km,p,z,m + Km,r,r,m)(a)ﬂ_m-
Using the Schmidt inequality in (4.6), we obtain

(H E(21z—l)—i+:>

D Gnf = 9,D25 100y £ — 5w [ID™(Inf — 9P| L2100
4.7 ()

(Kmm.z.m + Kp.pm.m)(H E2v—1—i+i)(z)ﬁ—i(5/é)i-m°

1=1

lIA

The required result follows from (4.5), (4.7), and

“4.8) 1D — $uPllrrtens = 11D — SN leetamr + 1 DGof = 9u)llnetars-
Q.E.D.

We remark that in those cases in which 4,,f € K'[a, b], lower bounds of the
form introduced in Section 3 can be given for A(m, p, z, j).

5. L®-Error Bounds. In this section, we give explicit upper bounds for the quan-
tities A(m, p, z, ), 1l Emm = p<2mm—-1=z=2m—2,and0 = j < p,
defined by '

A%(m, p,z, )) = Sup { max (|[D(f = $uDle=(ziz0400)/ |1 Dl 22010
(5.1) 0<isM
lf e K’)[aa b], HDpf”L’la.bl ;ﬁ 0}'

We obtain the following results as corollaries of the results of Section 3 and Section 4.
As an improvement of Theorem 6 of [5], we have

THEOREM 5.1.
(5.2) A(m, m,z, ) £ Koo (B,
where
K::,m.:,i = Km,m,z,i+15 if m — 1 = z, 0 é j é m — 1,
(5.3) = Knmizyivrs if m—1<z=2m—2,0=5j=2m—2—z,

= (j — 2m + 3 +z)1/2Km.m,z,f+l7 if m— 1 <Z é 2m — 2’
2m — 2 -z < j=Em—1,
foralll =m 0= M,A€ ®y(a,b),m — 1 =z =2m — 2, and0<_1 m— 1
Proof We give the proof in the special case of m — 1 = 2,0 £ j < m — 1, as
the proof in the other cases is analogous. Given any x € [a, b], there exists a point
y € [a, b] such that D'(f — 4,./)(») = 0 and |x — y| < A. Hence, D'(f — 9,.f)}(x) =
[z D'""'(f — 4,.f)(?) dt and

D¢ = guDllr=tass S @I D"'( — uhllLstans-

The result now follows from applying Theorem 3.4 to the right-hand side of the pre-
ceding inequality. Q.E.D.
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As in Theorem 5.1, we have as an improvement of Theorem 8 of [5].
THEOREM 5.2.

(5.9 A(m, 2m, 2, )) £ K om,s (BT,

where
K:.2m.:.i+1 = Knomz,iv1, f m—1=2,0<j=m—1,

= Knpomzi+t1s ifm—1<z=22m—2,02j=2m— 2 —z,

(j — 2m + 3 + z)l/sz.2m.a.i+h lf m—1<z S 2m 2’

5.5)

2m — 2 —z< j=m-—1,

forall <m0 = M,AE Cu(a,b)ym—1=z=2m—2,and0 L j<m— 1.
As in Theorem 3.6, we have

THEOREM 5.3.
(5.6) A(m, p,z, ) S Kiopas@BY 77,
where
e R T I
Joralll Em 0= M, AE ®Cua,b),m<p<2mdm—2p—1=2z=2m— 2,

and 0 £ j=m— 1.

Finally, to give a result analogous to Theorem 4.1, we need an inequality due to
A. A. Markov.

Lemma 5.1, If py(x) is a polynomial of degree N, then

M,
(5.8) [|DPy||Lotar S b——vz [lowllL=ta,15

where My = 2N°.
Proof. Cf. [6]. Q.E.D.
As an extension of Theorem 10 of [5], we prove
THEOREM 5.4.

5.9) A™(m, p,z, J) £ Km.p.e iRV 77,

where

- - - - m (2p___ m)! 2 5 i—-m+1
(5.10) Kop,ss = {Kv,p.p.i + (Km,p,e.s + Kp.p.p.i)zl H(m) (Z)

for all 1 <m, 0S M, AE®y(a, b), m<p=2m,dm—2p—1=<z=<2m—2
andm = j<p— 1.
Proof. From Theorem 5.1, we have that

G611 ID*G = EDllotens S Koo @Y T D || irta, 0OS kS p— 1,
and from Theorem 5.3
(5'12) ”Dm—l(f - gmf)”L“Ia.bl § K:.p.t.m—l(z)p_m+l/2lIDpf”L’[a.b]'
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Combining (5.11) and (5.12), we have
(5.13)  [|D"7'@nf — 9D||zotars = (Kmpieme1 + Koot BY || Df||La 10t -

But,
j—m+1
< H M2zr—l—i+x'>
i=m]1

”D’(gmf - 'gpf)“L'”Alu.b] g (A)i-m+l “Dm_l(gmf - gpf)IleA[".b]
(5.19) B 2i-m+1( Cp — m) )z 1
=2\ —i- ) &

D" G mf = 9D |zwpta.ers

where
” : ||L°°Ala.bl = max ” . ”Lmlthzﬁ-x] .
0sism
The required result follows directly from (5.11), (5.13), (5.14), and the observation that

D'(f — uPlloptanr S DG — 8D e2gt001 + D' Gof = InDllLosta,m-
Q.E.D.
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