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Asymptotic Properties of Minimal Integration Rules 
By Philip Rabinowitz and Nira Richter 

Abstract. The error of a particular integration rule applied to a Hilbert space of functions 
analytic within an ellipse containing the interval of integration is a bounded linear functional. 
Its norm, which depends on the size of the ellipse, has proved useful in estimating the 
truncation error occurring when the integral of a particular analytic function is approximated 
using the rule in question. It is thus of interest to study rules which minimize this norm, 
namely minimal integration rules. The present paper deals with asymptotic properties of 
such minimal integration rules as the underlying ellipses shrink to the interval of integration. 

1. Introduction. In the numerical integration of analytic functions, it is possible 
to define nonclassical integration rules, called Minimal Integration Rules, having a 
minimizing property relative to a subclass of analytic functions. To define these 
rules, we introduce Hilbert spaces of functions, analytic in simply connected domains 
B in the complex plane, which contain the interval of integration I. The error in any 
integration rule, with abscissae in I, defines a bounded linear functional in each such 
Hilbert space. A rule for which the corresponding error functional is of minimum 
norm, relative to a particular Hilbert space, is called a minimal rule. 

For the standardized interval [-1, 1], various minimal rules have been computed. 
In [8] Valentin dealt with Hilbert spaces of functions, analytic in circles with radius 
R >AL. He proved that, as R -* c, the rules tend to Gaussian rules with the same 
number of points. A similar asymptotic behaviour was found by Barnhill [1], con- 
sidering Hilbert spaces of analytic functions inside ellipses 'E,, with foci at (? 1, 0) 
and semimajor axis a = !(Vp + I//Vp). In this case the minimal rules tend to 
Gaussian rules, as the areas of the ellipses tend to cover the complex plane (p -> cx). 

The proofs given in [1] deal with spaces wit-h an area integral as a scalar product. 
Similar proofs can be carried over for the case of a line integral scalar product [5]. 

In this work we discuss the asymptotic behaviour of minimal rules, as the ellipses 
collapse to the interval I (p -> 1). For the two types of scalar products, the considera- 
tions are along the same lines, but the asymptotic behaviour turns out to be different. 
Using the same technique, we deal as well with minimal rules in the class of rules 
which integrate constants exactly. 

The asymptotic behaviour of the minimal rules was checked numerically by 
computing minimal rules for various values of p, monotonically decreasing to 1. The 
numerical results agree with the theoretical ones, as demonstrated in Section 7. 

In Section 2 we introduce the two families of Hilbert spaces, L2(e,), H2(ep), and 
formulate the two problems we deal with. 

In Section 3 we cite a result which characterizes the minimizing weights in the 
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general case, and prove a theorem, concerning the minimizing weights in the class of 
rules which integrate constants exactly. 

In Section 4 we deal with the asymptotic behaviour of minimal rules, in the one- 
parameter family of spaces L2(e,), as p -> 1. In Section 5 we give the analogous 
results in the family of spaces H2(e,). In Section 6 we give a table which summarizes 
the results of Sections 4, 5. 

In Appendices A, B, we investigate the asymptotic behaviour, for p -+ 1, of some 
infinite sums, the results being used in Sections 4, 5. 

2. Formulation of the Problems. Let ep designate the ellipse with foci at (i 1,0), 
where p = (a + b)2, a is the semimajor axis and b is the semiminor axis, b = (a2 - )1/2. 

Two Hilbert spaces of analytic functions inside ep are considered: 
(a) The collection of all analytic functions which satisfy: 

f(z)1 dxdy < co 

This collection [2, p. 207] constitutes a Hilbert space, L2(ep), with a scalar product 
defined by: 

(f, g) = ff f(z)g(z) dx dy. 

A complete orthonormal set of functions in L2(EP) can be expressed by the Chebyshev 
polynomials of the second kind [2, p. 241]: 

(1) P.(z) = (4(n + l)/w(p"+ - p 

where Un(z) = sin (n + 1)0/sin 0, 0 = arc cos z. 
(b) The collection of analytic functions which satisfy 

i(Z) 2 ii- Z21-1/2 jdZ < 
d6p 

constitutes a Hilbert space, H2(EP), with a line integral scalar product 

(I, g) = J|EP f(Z)g(z) I1 - Z211/2 Idzj 
d6p 

A complete orthonormal set of functions in H2(Ep) can be defined by the Chebyshev 
polynomials of the first kind [2, p. 240]: 

(2) Pn(z) = (2/r(p + p ))12T"(z), n 2 1, 
Po(z)- 1/(2= ) 

where Tn(z) = cos nO, 0 = arc cos z. 
Any bounded linear functional L, in a Hilbert space H, determines by Riesz's 

representation theorem, a unique element I E H, called the representer of L, which 
satisfies: 

L(f) = (t, 1), f E H, JILjI = 11111. 
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The error in a given numerical integration rule, with abscissae within the interval of 
integration [-1, 1], is a bounded linear functional, E, in both L2(EC) and H2(EC) 
(referred to as He). Hence: 

r1 n 
E(f) = f(x) dx- Aif(xi) = (f, r), f E Hp, 

where I x, Ai " are the abscissae and weights of the integration rule, and r(z) is 
the representer of E. Now: 

r(z) = 0(z) - EAjo.(z), 
i-i 

where ?(z), &,1(z), i = 1, * * , n, are the representers of the following functionals: 

f(x) dx = (f,), O f C Hp, 

f(xJ) = (f, IP), f E Hp, i = 1, * ,n. 

Using the complete orthonormal set of functions in H, analytic expressions for the 
above representers can be derived: 

(3) 4O(z) = ES Pm(x) dx Pm(z), 

(4) 43i(z) = E Pm(Xi)Pm(Z) i = 1 * n. m-O 

For a fixed set of n distinct points in [-1, 1], two problems can be formulated: 
Problem a. Determine the weights which minimize the norm on the error func- 

tional of the corresponding integration rule. 
Problem b. Determine the weights which minimize the norm of the error func- 

tional, in the class of rules which integrate constants exactly. This restriction is 
equivalent to the side condition Et_ Ai = 2. 

Having the minimizing weights as functions of the n abscissae, it is possible to 
look for that set of n abscissae, for which the corresponding error functional is of 
minimum norm, relative to any other set of n abscissae in [-1, 1]. This set will be 
referred to as the set of minimizing abscissae, and will lie in (-1, 1) [6]. 

In what follows, we consider, for both problems, the asymptotic behaviour, as 
p 1-> , of the minimizing weights, as functions of the abscissae, and the asymptotic 
behaviour of the minimizing abscissae as p -- 1. 

3. Some Properties of the Minimizing Weights. The minimizing weights, in 
Problem a, satisfy the system of normal equations [2, p. 175]: 

n 
(5) (A), (?) = Ej A3(4, qkxi), i = 1, n. 

j =1 

System (5) possesses a unique solution whenever 4.',(z), . , r,,(z) are linearly 
independent, which is the case when xl, * * *, xn are distinct. 
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The norm of the error functional, with the set of minimizing weights, is given by: 

n 
(6) (r, r) = (4, O) - A iA i (Oj, 4)). 

i, ij1 

For the set of minimizing weights in Problem b (M.W.b), the following theorem is 
proved: 

THEOREM 1. Given a set of n distinct points in (-1, 1), x1, , xn, the set of weights 
which solve the problem: 

min | |- EAi?O2i | 
AI,....,Ani= 

subject to the side condition n Ai = 2, is unique. This set satisfies the following 
linear system of equations: 

n 
(7) ( O) O)- Z Ai(4),, 4 xs) = , i = 1, * * n, 

j=1 

where ,u is determined by the side condition. 
Proof. Let 

n _ ~~~~~~~n 
r = A- E ixi = 4 - 24)x - A Ai(4) , - )Ox) 

i-2 

The solution to the problem min,2, . Ir I is given by the normal equations: 
n 

(8) (4 - 2Ox 4)Oi - 4) ) = E A,(ox - 4XI, 4) - 4) 1) i = 2, , n. 
i-2 

Since the set of n - 1 functions {Oi -_ In_=2 is linearly independent, A2, ... , An 
are uniquely determined, and with A1 = 2 - Eni2 Ai, the set of M.W.b is unique. 

Rearranging the terms in (8) we get: 

n 

(O) ox;) -E Ai(Oxi, 3 Oi) 
1=2 
n n 

= (2 - 
E= 4( , ) + (4), 4)) - E A,(4)S, 4)2) - (2 - E-2 AJ, 

i=2, ** ,n. 

Substitution of A1 for 2 - Ei_2 A;, yields the desired result, namely: 

n _ n 

(4,O i)- E A,(4)j, O)x = (4), ))- E Ai(xi2, O,), i = 2, ** *, n. 
j=l j=l 

COROLLARY 1. The vector of weights A = (A1, , An), which satisfies (7), is given 
by: A = A,- v where 4 is the solution of (5), and v = (v1, , vn) is determined 
by the system: 

n 

S-pi(?>2s, ?>xi) = A 1 ** n. 
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4. The Family of Spaces L2(e,), p > 1. Explicit expressions for the representers 
4(z), 4Oi(z) in L2(e,), can be written, according to (1), (3), (4), in the following way: 

aa 
(9) O(z) = (8/7) E (2m+1 _- )2m-1)-1 U2(Z) 

mr0 

(10) 4 ,(z) = (4/ur) >3 (m + 1)(Pm+l - r-m-)-1 UM(X ) U (z) m=O 
In (9) we used the known result: fL1 Um(x) dx = [1 + (- l)m]/(m + 1). Let 
xl, * * *, x be any set of n distinct points in (-1, 1). For p > 1 the normal equations 
(5) multiplied by (p - 1/p)2 will yield the minimizing weights: 

n 
(ll) S Ai(P- 

_ 
/P)2(q5.i, 0.i) = (p _ I/p)2(o, o.i) i = *** n. 

i 1 

Now: 

(p - 1/p)2(, ',) = (p - I/p)2(8/r) Z (p2m+l - p-2m-1 )-I U2(Xj) 
m=O 

and 

(p - 1/P)2(,, 45.,) = (p - /p)2 (4/ur) E (m + 1)(pM+i _ 1y)- Um(Xi) Un(X) 
m=O 

Since all the coefficients of system (11) are real, the solution of (11) is also real. Using 
the results of Appendix A, the above expressions, as p -* 1, are asymptotically: 

(12) (p - 1/p)24 q) = [2/(1 - X4)1/2 + o(l)](p -/p), 

(p - 1/p)2(oxi f, &) = [7r/( - X2)] aii + o(l). 

Inserting the expressions in (11), we get: 

n 

X [ur6ji/(l -x) + o(l)] Ai = (p - 1/p)[2/(l -2)1/2+ o()], j = 1, n. 
i-i 

To first order in (p - l/p) the solution of the above system is the following: 

(13) Ai = [2(1 - x2)1/2/7r + o(l)](p- l_/p), i 1,.*--, n. 

For this set of weights, (r, r) is given by (6). Inserting (12) into (6), we get for p -* 1: 
n 

(r, r) = (4, 4) - _ [4((1 -x2)(1 - X2))1/2/7r2 + 0(l)][.7r6i/( - X2) + o(1)] 

n 

- (q5,4) O- II 4/wr + o(l) = (,4) -4n/7r + o(1), 
i 1 

where 

(4, 4,) = f 4(x) dx = 2(p - I/pr'[f dx/(l - X2)1/2 + o(l)] 

= [2w + o(l)](p - l/p)-'. 
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These results yield the following theorem: 
TEOREM 2. For any set of n distinct points x1, - , x,, in (-1, 1), the minimizing 

weights converge to zero as p -- 1 according to (13). Each point in (-1, 1) contributes 
asymptotically the same amount to the reduction of (r, r), this amount being asymp- 
totically 4/uX. The ratio of this amount to the value of (0, 4) is [2/1X2 + o(l)](p -1 /p), 
and (r, r) is asymptotically equal to (4, 4), where 

(4, 4) = [2ur + o(l)](p - I/p)1. 

The minimizing weights of Problem b can be expressed, using (13) and Corollary 1, 
in the following way: 

A= [2(1 - )1'2/u + o(l)](p - l/p) -vi, i = 1,- n, 

where vP, * * v,, are the solution of the system: 

E [riil_/(l -X) + O(l)]Pi = (p _ 1/p)2. i = 1, ,n. 
i-i 

p is determined by the condition - Ai = 2, namely: 

[2(1 - ix)1/2/ + o()](p - l/p) - 2 = vi. 
i -1 

Now ' = u[(l -X2)/17 + o(l)](p _ 1/p)2 and so we have: 

y = _[2X/~ E(1 - X) + o(l) (p _ 1/p)-2 

and 

(14) Ai = 2(1 -x2)/Z (1 - ) + o(l). 

This result furnishes the first part of the following theorem: 
THEOREM 3. For any set of n distinct points in (-1, 1), the minimizing weights which 

satisfy 1 Ai = 2, are asymptotically given by (14). The norm of the corresponding 
error functional behaves asymptotically as (7r/E!_1 (1 -_x2))/22(p - l/p)-', and 
the minimizing abscissae tend to the midpoint of I, namely to zero. The corresponding 
minimizing weights tend to be equal, each tending to 2/n. 

Proof. The general form of (r, r) is: 

n In 

(15) (r, r)- (4, 4-2 E Aj(4, ,,j) + Ai Atij(2, +X;). 
i-i t,j-1 

Inserting the asymptotic expressions, (12) for the scalar products, and (14) for the 
weights, we get after some manipulations: 

(r, r)- [4X/ZE(1 -x2) + o(l) (p - l/p)Y2 

From this expression we conclude that the minimizing abscissae tend to maximize 
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the sum - (1 - x2), namely xi -+ 0, i 1, *.., n. By (14) the corresponding 
minimizing weights tend to be equal: 

Ai = 2(1 - X () 1 - + o(l) ->2/n. 

5. The Family of Spaces H2(Ec), p > 1. The representers p(z), 4x,(z) in H2(e,) 
are expressed, using (2), (3), (4), in the following way: 

co 

(16) 0(z) = (4/7r) El [(1 - 4m2)(p2m + p-2m)]-lT() 
m-0 

(17) j'(z) = (2/7r) l' (pt + pm)lTm(XJ)Tm(Z)' 
m-0 

where the prime indicates that the term for m = 0 is to be halved. In (16) we used 
the known result: 

f Tm(X) dx 
2 

1 + (-1Y'i/(1 - m2), 1 

-0, m-1. 

Let xl, -.. , xn be a set of n distinct points in (-1, 1). For p > 1 the normal equa- 
tions (5) multiplied by (p - l/p) yield the minimizing weights: 

(18) Ai(p - l/p)(Oxi, fx,) = (p - l/p)(c, Ox,), i = 1, * n. 
i-1 

Now: 

(p I/p)(qkx,, xs,) = (p - l/p)(2/ir) ,' (pm + p-m)-lT (xi)T (x) 
m-O 

and 

(p - l/p)(4), cfrx,) = (p - l/p)(4/ir) [(p2lf + p-2m)(1 - 
4M2)]--T2m(Xi) 

m-0 

Since all the coefficients of system (18) are real, the solution of (18) is real as well. 
Applying the results of Appendix B, the above expressions, as p -+ 1, are asymp- 
totically: 

(19) (p - l/p)(4xf, s)= 25ii + o(l), 

(p - 1/p)(40 4O,) = [1(1 - Xj)1/2 + o(l)](p- lip). 

Inserting these expressions in (18), we get: 
n 

(20) [I (;i5 + o(l)]Ai = (p - l/p)[-(l -x2)1/2 + o(l)], j 1, 
i-i 

The solution of (20) to first order in (p - l/p) is: 

(21) As= [(1- X!)112 + o(l)](p - l/p), i- 1, **,n. 
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For these weights, (r, r) can be written by (6) and (19) in the following way: 

n 
(r, r) = (), O))- (p - l/p) X, [((1 - x2)(1 - x2))1/2 + o(1)][25is + o(l)] 

i, jal 

- (+, ) (P /P)[2E (1 X2) + o(l )] 

where 

(4), 4)) = f 4)(x) dx = 
X 

f (1 -X2)1/2 dx + o(1) = 7r/4 + o(1). 

Thus the minimizing abscissae tend to maximize n (1 -x2), so that x, 0, 
i = 1, , n. 

These results are formulated in the following theorem: 
THEOREM 4. For any set of n distinct points x1, * * , Xn in (-1, 1), the minimizing 

weights tend to zero as p -* 1, according to (21). The norm of the error functional, 
for this set of weights tends to V1 i = V7r/2, and the amount by which any point xi, 
reduces (r, r) is asymptotically 2(1 -X2)(p - l/p). The minimizing abscissae tend to 
zero, as p -* 1, and the corresponding minimizing weights turn out to be equal. 

The minimizing weights of Problem b, by (21) and Corollary 1, are: 

A. = [(1 - X2)1/2 + o(l)](p - l/p) - vi, i = 1, n, 

where vl, * , vn are the solution of the system: 

n 

E [26ii + o(l)](p - l/p)vi = Y, i = 1, *,n, 
i =1 

and , is determined by the condition: 

n n 

vi = 2 - (p - l/p)[Z (1 - x,)1/ + o(1) 

Now: 

vi = [2,u + o(l)](p -lp), 

,u = [-1/n + o(l)](p I/p) 

and 

Ai = 2/n +o(l), i =1, * n. 

Inserting this result in (15) and using (19), we get after some manipulations: 

(r, r) = [2/n + o(l)](p - 1/p)-1. 

These results are summarized in the following theorem: 
THEOREM 5. For any set of n distinct points in (-1, 1), the minimizing weights, in 
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the class of weights which satisfy E" _ Ai = 2, are asymptotically equal, each tend- 
ing to 2/n as p - 1. The norm of the corresponding error functional increases as 
(2/n)y/2(p- l/p)-"/2. Each point in (-1, 1) is "equally good", with respect to the 
asymptotic contribution to the reduction of (r, r). 

6. Summary of Results. 

L2(ep) H2ep) 

Minimal Rules 

Minimizing 
Weights Ai (2/ir)(1 - x4)12(p -1 lp) Ai - (1 - x4)"(p - l/p) 
for Fixed 2frj '2r(p - 1/p)-112 7jrj ' 'r/4 
Abscissae 

Rules with xi not known Xi 0 
Minimizing A, (2/7r)(1- x2Y"2(p - llp) Ai (p - llp) 
Abscissae I Irl I - (2ir/(p -1 /p))1/2 irl I - 7r/4 

L2(ep) p) 

Minimal Rules with E Ai = 2 

n 
Minimizing Ai , 2(1 - xi)/ (1-4) A 2n 
Weights i-1 

for Fixed / n 1/2 

Abscissae lit - 2(7r/E (1- )) (p -1 /p) l Ijrl I -(2/n)'12(p -1 /p)-"2 

Rules with xi 0 xi - not known 

Minimizing Ai ' 2/n Ai - 2/n 
Abscissae r I r- 2(7r/n)12(p - 1 /p)-' I Irl I - (2/n)"2(p - 1 /p)-12 

7. Tables. The following four tables demonstrate the asymptotic behaviour, as 
p -+ 1, of minimal rules with 2, 3, 4 abscissae. 

Since all the rules turned out to be symmetric, the given abscissae are all non- 
negative. 

In Table 1 the rules are unconstrained minimal rules in L2(cp), while in Table 2 
the rules are minimal rules with E Ai = 2. Tables 3, 4 are the analogous tables 
for H2(c ). 

Remark. In Table 1 the minimizing abscissae are inaccurate, since any point in 
(-1, 1) is "equally good" in this case, and the function (r, r) is very "flat". However, 
by inspection, we conjecture that the minimizing abscissae converge, as p - 1, to 
the roots of Ut(x), namely: xi -> cos ilr/(n + 1), i = 1, - * * , n. This behaviour cannot 
be proved by our methods, since it depends on higher orders of (p - l/p). 
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TABLE 1 

Minimal Rules in L2(E,) 

a 2 3 4 

xI A1 xI A1 x2 A2 xl A1 x2 A2 

1.01 .5179 .3078 .7288 .2462 0.0 .3596 .8303 .1994 .3208 .3389 
1.005 .5127 .2185 .7225 .1760 0.0 .2546 .8243 .1441 .3174 .2413 
1.001 .4972 .0988 .7180 .0793 0.0 .1138 .8271 .0640 .3420 .1070 
1.0005 .4954 .0699 .6940 .0580 0.0 .0806 - - 

1.0001 .4936 .0313 .6916 .0260 0.0 .0360 .8192 .0207 .3395 .0339 

TABLE 2 

Constrained Minimal Rules in L2(EP).(, A, = 2) 

n 

a 2 3 4 

x1 A1 X1 A1 x2 A2 XI A1 x2 A2 

1.01 .2471 1.0 .4485 .6323 0.0 .7354 .6211 .4311 .2140 .5689 
1.005 .1911 1.0 .3480 .6457 0.0 .7086 .4849 .4590 .1625 .5481 
1.001 .1040 1.0 .1914 .6600 0.0 .6800 .2695 .4869 .0883 .5131 
1.0005 .0795 1.0 .1470 .6627 0.0 .6746 .2077 .4921 .0679 .5079 
1.0001 .0419 1.0 .0782 .6655 0.0 .6690 - - 

TABLE 3 

Minimal Rules in H2(EP) 

n 

a 2 3 4 

X1 A1 X1 A1 X2 A2 X1 A1 X2 A2 

1.01 .3240 .6195 .5266 .4958 0.0 .5374 .6605 .3977 .2281 .4560 
1.005 .2698 .4930 .4525 .4187 0.0 .4418 .5829 .3547 .1974 .3888 
1.001 .1629 .2586 .2879 .2403 0.0 .2450 .3895 .2225 .1282 .2301 
1.0005 .1279 .1898 .2294 .1803 0.0 .1826 .3148 .1709 .1030 .1746 
1.0001 .0703 .0891 .1292 .0872 0.0 .0876 .1812 .0853 .0590 .0859 
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TABLE 4 

Constrained Minimal Rules in HI(Ep).(j Ai = 2) 

n 

a 2 3 4 

X1 A1 xi A1 X2 A2 xI A1 x2 A2 

1.01 .3566 1.0 .5572 .6505 0.0 .6990 .6832 .4678 .2374 .5322 
1.005 .3054 1.0 .4919 .6570 0.0 .6860 .6169 .4800 .2107 .5200 
1.001 .1956 1.0 .3342 .6644 0.0 .6712 .4403 .4947 .1463 .5053. 
1.0005 .1569 1.0 .2732 .6655 0.0 .6690 .3659 .4973 .1209 .5027 
1.0001 .0898 1.0 .1614 .6665 0.0 .6670 .2223 .4995 .0730 .5005 

In Table 4 we observe a slow convergence of the minimizing abscissae to zero, a 
behaviour which cannot be predicted by the theory. 

The minimization of (r, r) as a function of the abscissae and weights, was per- 
formed by the method of Fletcher and Powell [3]. 

APPENDIX A 

The first two results are cited from [7, Chapter 1]. 
Result l (Abel). If b f > b2 > > b > ... > 0 and if m a, + a, + + 

an < M for all values of n, then: 

b,m < alb, + a2b2 + + anbn < b1M, for all values of n. 

Result 2 (Abel). Let EZ.O anq/n(x) be uniformly convergent in any closed interval 
contained in (a, A). If Eno an < co, and if 0 < Aln(x) < 1 for x E (a, ), and 

1, then En= an,Vn(X) iS uniformly convergent in a < x ? I1 <fA, and 

lim , an,46(x) = > an. 
x-a n.=O n-O 

In what follows Un(x) denotes the Chebyshev polynomial of the second kind, Un(x)= 
sin (n + 1)0/sin 0, with 0 = arc cos x. 

LEMMA 1. For -I < X 1, 

lim ( - 1/) E 2(2m+1l - -2m-1)-1 U2m(x) ir/2(1 2)1/2 
p0-l + m-0 

Proof. Substitution of 0 = arc cos x in the left-hand side of the above expression 
yields: 

2(p -/p)(sin 0)1 E (p2m+l _ p-2-l)-l sin (2m + 1)0 
,in0 

= (2/(1 - X2)2) 
W (p2m + 2m-2 

+ 
+ 

l-2n)-l sin (2m + 1)0 
m-0 

= (2/(1 - x2)/2) E brn(p)am(0), m=O 
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where 

bm(p) = (2rm + 1)/(p2m + ... + p-2), 

and 

am(O) = sin (2m + 1)0/(2m + 1). 

Now 0 < bm(p) < 1 for any p > 1 and bm(l) = 1. By [4, p. 38] 

E a,,(0) = 7r/4. 
m=0 

The sum E _0 bm(p)am(O) is uniformly convergent for any p > p* > 1. Applying 
Result 2 we get: 

lim E bm(p)am(O) = E a,(O) = 7r/4, 
p-1 mO m=O 

and the desired result follows. 
LEMMA 2. For -1 < xi, xi < 1, xi xi, 

lim (p _ 1/p)2 E (m + 1)(pm+1 - Pm-l)-1 Um(Xi) Um(X) O. 
p 1+l + m=O 

Proof. 

(p - l/p) ? (m + 1)(pml - p Um(Xi) Um(Xj) 
m-O 

- [(1 - x, - x- x2)f1/2 E bm(p)amt(Oi, 0j), 
m-O 

where 

bm(p) = (m + l)/(pm + ... + pmf), 

am(Oi, 0j) = sin (m + 1)0j sin (m + 1)02 

with Oi = arc cos xi, Oi = arc cos xi, and 0 < Oi, O0 < -r. 

Now am(0i, 0,) = 1[cos (m + 1)a - cos (m + 1)3] where a = 0 - 0 # 0, and 
= Oi + Oi < 27r. For any p > 1, 0 < bm(p) < 1 and bm+i(p) < bm(p). This is true 

since with p = ex, x > 0, 

bm = (m + 1) sinh x/sinh (m + 1)x 

and 

9m = sinh x cosh (m + 1)x[tanh (m + 1)x - (m + 1)x]/sinh2 (m + 1)x, d3m 

but tanh y - y < 0 for y > 0, and thus Obm/O1m < 0. Using the identity [4, p. 30]: 

nx . (n + l)x x (1) ~~~~~cos kx= Cos-ysin 2 cosec - 
k-02O 2 
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we get 

n-1 _ 1 na . (n + 1)a a no. (n + 1)# # 
E am cos - sin cosec -- cos *sin cosec-(, m-0 2 2 2 2 2 2 2j 

and for any value of N,-M < EN=, am < M, where M = l[cosec a/2 + cosec //2]. 
Applying Result 1, we get: 

-Mbo < E?. b,,bn < Mbo, 
m-0 

and since bo = 1, we have for p > 1: 

co 

(p _l/p)2 F (M + 1)(Prn+1 -m-)-l U(Xi) U (X) 

< (p - l/p)M/((l -_x2)(1 -X2))1'2. 

This relation yields the desired result when p -* 1+. 
LEMMA 3. For O < 0 < 7r, 

r ~~~~~~co 
lim (p- 1/p)2 E m(pm - p-)-i sin2 mO 

- (p - 1/p)2(1/2) x m(pm - -")"4 0. 
m=- 

Proof. For any p > 1 we have: 

co co 

1/ - llp) E m(p' - mY' sin2 m 
m-1 m 1 

co co 

(P -1/ ) E m(pm p-1f)-1(2 sin2 mO- 1) E bm(p)a.(O), 
m=1 m-1 

where a.(O) = 2 sin2 mo - 1 and bm(p) = m(p - l/p)(pm - p-f)-l. Applying the 

known result [4, p. 30]: 

N 
2 M 

N cos (N + 1)0 sin NO 

we get the relation: -l1/sin 0 _ 1 am(O) ? 1/sin 0 Since 0 < bm+i r b, as 
proved in Lemma 2, it is possible to apply Result 1 and get for any value of N the fol- 
lowing inequality: 

N 

E a.b.. < I /s in 09. m=0 

Hence for any p > 1: 

(P - /p)2 E (pm _ pm-)-1(2 sin2 mO - 1) ? (p - 1/p)/sin 0 
m-1 

and as p -1 I+ the above expression tends to zero. 
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LEMMA 4.* 

lim (p - 1/p)2 E m(p _ -1 = r2/2y 
P.41+ m=1 

Proof, The substitution p = e', x > 0 yields: 

(p - 1/p)2 (pl l = 2 sinh2 x 3 m 
m~~~1 m=1 sinhnhmx 

2 sinh2 x si mx2 
= 2 mX sinh mx 

Now 

mx2 < y dy < (m - 1)X2 
sinh mx -J ,,-)x sinh y = sinh (m - 1)x 

since y/sinh y is monotonically decreasing for y > 0. Hence 

00 d 0 2 00 

y dy < mx < y dy 
sinh y sinh mx J sinh y' 

and in the limit x -o 0' (p -* 1+) we get: 

2 sinh X mx2 2 y dy 
-4+ x2 msinh mx 2 sinh y 2 

An immediate consequence of Lemmas 3, 4 is: 
COROLLARY 1. For -I < x < 1 

urn (p 1/p)2 E (m + 1)(pm+l - p -m )-1 UMx(X) 7r2 /4(1 X 2). 
p_l + m=O 

A summary of the results, which are referred to in Section 4, is given below: 
For p - I+ and -1 <xi, x1 < I: 

2(2m+l - p-2m-1)-1 2 (Xi) = r/2(1 - x)1/2 + o(l), 
m=O 

0n- 

E ( ~~M+1 -m-1 -1 U.(Xi) Um(Xi) = Ir2bi 2/( ) + (. (2) (p - 1/p)2 (m + l)(p+ P- PmyUXU(X)=i2j/4(1 _ 4) + () 
m=o 

APPENDIX B 

In what follows T,(x) denotes the Chebyshev polynomial of the first kind, Tn(x) = 

cos n(arc cos x). 
LEMMA 1. For-l < x < 1 

lim El (1 - 4m2)-l(p2m + p-2m)-lT2(X) (r/8)(1 -X2)12 
p41+ m=O 

* This lemma was proved by Dr. H. Dym. 
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Proof. The sum above converges uniformly for any p ? p* > 1. Since 

' (1 - 4m2)1 cos 2mG = x sin 0/4, 
m-O 

for 0 < 0 < ir [4, p. 39], and since 1 < p2m + p2m, for p > 1, it follows from Result 
2 of Appendix A, that ma (1 _ 4m2)-1(p2m + p-2m)T2m(x) is uniformly convergent 
for p ? 1, and that this sum equals r(l - x2)1"2/8 when p 1. 

LEMMA 2. For -l < xi, x; < 1, xi 5 xi 

lim (p - lIp) >' (ptm + p-m)-lTm(Xi)T.(X) 0. 
pl.#I+ m-O 

Proof Let xi = cos O , xj = cos oi, 0 < Oi, 0i < r, then the above sum has 
the form 

(p - l/p) Z' (pm + p-m) cos mO, cos m02 = (p - l/p) X3' b,.(p)a.(0j, 0h), 
m=O m=O 

where bm(p) = (pm + p ) and 

am(.0i, j) = cos mO, cos mOi = [cos moa + cos m,]/2, 

witha= 0, - 0ij 4 0,/ ? = .i + Oi < r 

Using identity (1) of Appendix A, we get: 

-- [cosec + cosec 
< 

_ [cosec ? cosec2} 2 2 2- m=? 2 22 

For p > 1, 0 < b,,+1 < bi. Hence by Result I of Appendix A 

-boM < E bm(p)a.(0i, 0j) < bo M, 
m=O 

where M = - [cosec a/2 + cosec j/2] and bo = 2. Now 
03 2 

E bm(p)am(0i, Oj) E b.(p)am(0, 0ij - 

mO m=o 

and we have the following relation: 

(P - l/P) >' (ptm + pt) [ Cos mO, cos mOi ? (p - l/p)( - + 

which yields the desired result. 
LEMMA 3. For -I < x < 1, 

rn~ {(P - >lp):' (pn + p-m)-1T.2(x) - (p - l/p) E [2(p + p ) 0. 
p-0 + m0 m=o 

Proof. For any p > I the above left-hand side can be written as: 

(1)(p- l/p) >2 (pt + p-')(2 COs mO - 1) = 3(p- l/p) E a,(0)bn(p), 
m=1 m=1 
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where am(0) = 2 Cos2 mO - 1 and bm(p) = (pm + p-m)1. Using the identity [4, p. 31] 

N 
2 N cos(N+ 1)0 sin NO 

rn-i 2 2 sin 0 

we get the following relation: 
N 

E am(0) < cosec 0. 
m-1 

By Result 1 of Appendix A we have for any p > 1: 
cn 

E am,(O)bn(p) _ b,M) 
m-1 

where b, = (p + l/p)-1 and M = cosec 0. Hence: 

(p - l/p) El (pm + p-m)- T2(x) - (p - l/p) E [2(pm + pm)]f 
m-0 m=20 

9 M(p - l/p)(p + l/p) 

and in the limit p -* 1+, the left-hand side tends to zero. 
LEMMA 4. 

lim (p - l/p) S (pt + p-m)-i = 7/2. 
p 1 I+ "tm-0 

Proof. By the substitution p = ex, x > 0, it remains to prove that 

sinh x x _r 

x-O X m.O cosh mx 2 
Now: 

x o 1 j(m+ )X dy < x 
cosh (m + l)x-Jm cosh y cosh mx' 

since 1 /cosh y is monotonically decreasing for y > 0. Hence: 

fX dy < ohx f dy 
JO cosh y = m0 cosh mx J cosh y 

and in the limit x -+ 0+ (p -> 1+) we get: 
x ,co h x 0coh 

li sinh x x_ dy 7r 

Xc 0+ X n -0 cosh mx JOcosh y 2 

An immediate consequence of Lemmas 3, 4 is: 
COROLLARY 1. For-I < x < 1 

lim (p - l/p) E' (pm + p-m)-lT2(x) = /4. 
p 1+ m0O 

The results, which are referred to in Section 5, are summarized below: 
For p-+ 1+ and-I <xi, xi < 1: 

(1) Et (1 - 4 M2)-l(p2m + p-2m)-lT2m(Xi) = 7r(1 - X)1/2 /8 + o(1). 
m=0 
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(2) (p - l/p) ' (pm + p-)-lTm(xi)Tm(xi) = 2ri5/4 + o(l). 
m-O 
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