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A Note on Trapezoidal Methods for the Solution 
of Initial Value Problems 

By A. R. Gourlay'X 

Abstract. The trapezoidal rule for the numerical integration of first-order ordinary 
differential equations is shown to possess, for a certain type of problem, an undesirable 
property. The removal of this difficulty is shown to be straightforward, resulting in a 
modified trapezoidal rule. Whilst this latent difficulty is slight (and probably rare in practice), 
the fact that the proposed modification involves negligible additional programming effort 
would suggest that it is worthwhile. A corresponding modification for the trapezoidal rule 
for the Goursat problem is also included. 

1. The Trapezoidal Rule. We consider the numerical solution of the initial 
value problem 

(1.1) y f(x, y), y(xO) = yo 

in the region xo < x ? X. The trapezoidal rule for the numerical solution of (1.1) 
is given by 

(1.2) Yn+l - Yn = h [f(Xn+l, Y.+,) + f(x, YA,)], 

where x,+1 = xn + h, h being the mesh length in the x direction. Equation (1.2) 
is a one-step implicit finite-difference method which is frequently employed for the 
numerical solution of (I.1). In fact, it is well known that it is the most accurate A-stable 
multistep method [1]. A method M is said to be A-stable if all solutions of M tend 
to zero as n --+ co when the method is applied with fixed positive h to any differential 
equation of the form 

(1.3) y= -Xy, 

where X is a complex constant with positive real part. 
For such an equation, (1.2) can be seen to reduce to 

01 _ h2X 

=L2_ 

The purpose of this note is simply to point out that there are certain problems, only 
slightly more general than (1.3), whose numerical solution by (1.2) is totally unaccep- 
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table for certain mesh lengths. We then point out that a simple alternative to the 
trapezoidal rule does not possess this undesirable property and, in fact, requires no 
additional computational effort. Since the trapezoidal rule is important with respect 
to the numerical integration of stiff systems, the proposed modification might be 
regarded as a useful safeguard. 

To demonstrate the defect of (1.3) we consider it applied to the equation 

(1.4) y' -X(x)y, X(x) > 0. 

[The restriction of X(x) to be a real function involves no significant loss of generality.] 
For (1.4) the trapezoidal rule reduces to the recurrence 

F h 
I1 - X(x) 

2 ~ Y'n 1 = h Ytt 

L1 + 2 X(X'&+j 

For the recurrence to be acceptable, we require 

1 - k (n) 
(1.5) 2 < 1. 

1 + 2 (x n+l) 

We shall show that, for certain functions X(x), Eq. (1.5) imposes a restriction on 
the mesh length h. 

In fact, condition (1.5) requires 

(1.6) h[X(x.) - X(Xn+l)] < 4. 

Condition (1.6) is certainly satisfied if X(xn) < X(xn+1) but, if X(xn) > X(x,,+1), then 
(1.6) restricts the mesh size to lie in the interval 

(1.7) 0 < h < 4{X(xn) - X(Xn+lW} 

Condition (1.7) is most severe for those functions X(x) which are large and rapidly 
decaying. Therefore, there may be situations where the trapezoidal rule will not be 
satisfactory unless a sufficiently small step size is employed. 

It is easily seen that the above restriction may be removed if Eq. (1.2) is replaced by 

h 
(1.8) -Yn+ Yn [f(xn+I/12, Ynt+) + f(xn+?12, Yn)]. 

Unfortunately, method (1.8) requires twice as many function evaluations as (1.2) to 
carry out the integration of (1.1) over the interval xo ? x < X. To remove this latter 
defect, we suggest that (1.2) be replaced by the method 

(1.9) y -+1 Yn = hf(x+12, 2, (Y. + + y.)), 

which has the same order of accuracy as the normal trapezoidal rule. Method (1.9) 
is not a multistep method but can be regarded as an implicit Runge-Kutta method. 
In addition, it does not suffer from a restriction such as (1.7) and is just as straight- 
forward to implement as (1.2). It is worth noting that for problems of the form (1.3), 
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methods (1-.2) and (1.9) are identical, but for quadrature problems y' - 

method (1.9) reduces to the midpoint rule. 
Since (1.9) involves no extra effort in implementation over (1.2) and does not 

suffer from any restriction on the mesh size, we suggest that it should be used in 
preference to (1.2). Our conclusion is motivated by the fact that (1.4) is a much better 
local model for (1.1) than is (1.3). 

A simple example demonstrating the defect of the normal trapezoidal rule is given 
by the problem 

Y= -X((X), (O) = 1, 

where 
X(X) = -2( _ X) for 0 < x < 

-0, x /. 

The solution to this problem is given by 

y(x) = exp {-_2Xo - x/2)}, 0 < x _ 3, 

= exp I-o2 /2} x > F. 

The condition (1.7) in this case requires h < 2/ae. Computations were undertaken 
for the choice of constants 

a = 10, /3 100 

and for values of h = 0.150, 0.198, 0.200, 0.202, 0.250. In this example, condition (1.7) 
requires that h < 0.2 for 0 < x < ,3, so that the final three runs should produce 
results which demonstrate nondamping of the solution of the trapezoidal rule. In 
this problem, the solution is decaying rapidly to a small quantity. Method (1.9) pro- 
duced computed solutions which decreased in modulus from the starting value. 
Scheme (1.2) produced similar results for the first two values of h, though the rate of 
damping was smaller than that of (1.9). For h = 0.200 the computed solution was 
consistently :i 1 and for h > 0.2 the computed solution increased slowly in modulus 
from the starting value. It follows that the behaviour of (1.2) for h > 0.2 is not 
acceptable. 

Thus, whereas (1.9) will reproduce the behaviour of the solution for problems of 
the form y' = -X(x)y, the normal trapezoidal rule may fail to do so. Moreover, in 
the numerical solution of stiff systems, where (1.4) may be regarded as referring to 
one component of a diagonalized system, the deficiency of the trapezoidal rule will 
be present if any component corresponds to a X(x) which has X(x71) > X(x,+1). In 
such a situation, it would appear to be safer to use (1.9). 

2. Analogon for the Goursat Problem. The close connection between the solu- 
tion of an initial value problem for an ordinary differential equation and the solution 
of the Goursat problem 

u= f(x, y, u, uz, u1) 

(2.1) U(X, 0) = (x), u(0, y) - =(y), T(O) = T(0) 

O< x < a, O y ? b 
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has often been observed (Stetter and T6rnig [4]). The analogon for (2.1) of the trape- 
zoidal rule for (1.1) is given by 

Ui+i,i+1 + ui - U il; -= [4fi+li+l + fi., + fi.i+l + fi+lJ], 

where fi j = f(x,, yj, ui,;, (u.) ,j, (uj),,) with suitable difference replacements for 
(u).i, (uj);,J. Higher order schemes have also been proposed in various papers, in- 
cluding Day [2], Jain and Sharma [3], Stetter and Tornig [4]. 

In this section we propose the analogon of (1.9) for the solution of (2.1). This is 
given by 

(2.2) ui+1,i+, + ui, U-i+i, -iUi,i+i = 2f(X+1/2s Yi+112s la, p, 

where 

4= [ui+i,;+1 + Ui,j + Ui+,j + Us,ii+1I 

(2.3) ? = [Ui+1,i+i - Ui,i+1 + Ui+1,i -Ui,i], 2h 

= [uii,i+l - ui+1,f + U,i+i -Ui,j], 

and the truncation error is of order h4. In fact, (2.2) is implicit and is solved at each 
point by an iterative process which uses the starting values 

g(O) = uk+1.1 + Ui, +l] 

A40) 1 
p = - [ui+,1d Ui,-], 

~(0) 1 
q = [Uij+i -Ui,i] 

and iterates with 

+l:,lJ+l + Ui, Ui - + i-U i , +1 =/2, Yi+1/2 (m) Am) p (m)) 

where 

4) 
= 

Tis+i,+i + Ui,; + Ui+i,i + Ui,i+1], 

and where similar expressions for A'm) 4(") are derived from (2.3). 
It may be shown that the above process is convergent for sufficiently small h and 

in practice the convergence is rapid, occurring after one or two iterations. A com- 
parison was undertaken with the results given in [2]. These experiments showed 
that the above technique was as good as the algorithm of Day and in certain examples 
considerably better. In fact, for the three problems considered in [2], the present 
algorithm produced results whose relative errors were respectively 2, 1/16, 4/5 times 
the errors given in [2]. An additional advantage of the present algorithm is its sim- 
plicity. 

3. Conclusion. A defect of the trapezoidal rule which, though rare in practice, 
actually exists (and indeed may readily exist in strongly stiff problems) has been 
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exhibited. A modified trapezoidal rule has been proposed. An analogous method 
for the Goursat problem has also been given and shown to be simple to use and 
accurate in practice. 
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