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A New Method for Computing Toroidal Harmonics 

By Henry E. Fettis 

Abstract. A method for computing Legendre functions of integer order and half-odd 
degree is presented. The method is based on the theory of quadratic transformation of the 
argument, and is a generalization of Gauss' or Landen's transformation for computing 
elliptic integrals. 

Legendre functions of integral order and half-odd degree are sometimes referred 
to as "Toroidal Harmonics." The latter name originates from the fact that these 
functions arise in the solution of Laplace's equation in toroidal coordinates {, 7, 0 
Separation of variables in this coordinate system leads, for the determination of one 
of the components, to the differential equation 

(1) (1 -s) - - 2s Y+ 2 1 =S0 (s = cosh 0, 

while the remaining components have simple expressions of the form e"', ei, where 
p and v must be integers in order to obtain single-valued solutions. The solution 
of Eq. (1) can be given in terms of Legendre functions: 

(2) y = AP.112(s) + BQ-112(s). 

The functions P',,12(s) have the property that they are finite as s 1 but increase 
with increasing v, while the functions Q_X112(s) are singular for s 1 but tend to 
zero as v -> c. Thus, in an exterior problem, it is customary to use the Q.X1/2 with 
fixed , and increasing v. 

For v = 0 and 1, Q_1/2(s) can be expressed in terms of complete elliptic integrals, 
and hence higher degrees could, in theory, be computed by the known recurrence 
relation for these functions. However, as is well known, this recurrence relation is 
unstable, and poor or even meaningless values will be obtained for the higher degrees. 
This phenomenon also occurs in computing Bessel functions of higher order, and, 
as an alternative, J. C. P. Miller devised a scheme whereby the recurrence relation 
was employed in the backward direction (in which case no loss of accuracy is in- 
curred), starting with values of the higher orders determined by some other means. 
Miller's algorithm was proposed by Rotenberg [1] as a means of computing toroidal 
harmonics, and used by Wright and Peterson [2] in preparing a brief table of these 
functions. The general theory behind this process has been the subject recently of 
some more detailed study by Gautschi [3] and Wimp [4]. A modification of the 
method used by the present author [5] employs a continued fraction to obtain the 
ratio of higher-degree terms. 

The method described above has the disadvantage that all of the significant 
higher-degree functions must be computed first even if only a few of lower degree 
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are needed. For s near 1, the convergence is very slow. As an example, when s .01, 
over 100 terms of the continued fraction and functions up to degree 200 are required 
to be assured of 10-figure accuracy. 

The present method is one which permits the functions to be computed directly 
starting with those of lowest degree and continuing as far as is desired. It is based 
on the theory of quadratic transformation, and is entirely analogous to the well- 
known Gauss or Landen transformation for elliptic integrals. Functions with argu- 
ments s are expressed in terms of those with argument s1 where s, > s, and the 
transformation is repeated until an argument is obtained which is sufficiently large 
to allow the functions to be expressed by elementary functions. From these last 
results, those with the original argument can be calculated. The procedure can be 
applied with relatively no loss in accuracy. 

The required transformation can be obtained from the two representations 
([7, formula 3.671(2)], [8, Chapter IV, Section 5]). 

1)=c/2 A cos o dO 
(3) Qn = 1 k2(s) (1 - k2 cos2 0)1/2 

(4) k1 f71~~~~'r2 cos 2nG dO 
(4) Qn- 112(sl) k-1 

O- k co CO20)1/2 

where 

(5) s = (1 + k2)/2k 

and 

s1 = k2- 1. 

By using the relationship 

(6) 22n-1 COS2n = 2( + Ei (2 -) cos 2iO 

we obtain 

(7) Qn1=2( ) 
[S + 

22nl [(- n)Qn + 2 2) (n i) )Qi12(Sl] 

with 

(8) sl = [s + (s2 _ 1)1/2][s + 3(S2 - 1)/2] 

For n = 0 and 1 the above gives 

Q-112(S) = 2[s + (s2 -1)1] 112(Sl), 

(9) 1 
Q112(S) = [s + (s2 - 1)/21Q/2 + Q1]2(1) 

which, as can be easily verified, are equivalent to Gauss' transformation for elliptic 
integrals, upon making use of the relations 



A METHOD FOR COMPUTING TOROIDAL HARMONICS 669 

(10) Q-1,2(s) = 2[s + (S2 - 1)1/2-1/2FK[s - (S2 - 1)/2], 

Q112(S) = 2[s + (S2 _ 
1)1/2]1/21 K[s - (S2 _ 

1)1/2] - E(s - (s2 _ 1)1/2)1 

It is clear that s1 > s and that, by repeating the transformation, Sm will ultimately 
be sufficiently large for the function Qn- /2(Sm) to be approximated from the formula 

(11) Qn-112(sm) _ r(n + 1) [Sm + (S _ 
1)- ]n1 

which is accurate to within a relative error of the order of (11/2sm)2. 
Having found Qn- I 2(Sm), Eq. (7) may then be used to find Qn I/2(Sm.-), continuing 

until the required values of Qn.112(s) are obtained. 
Finally functions of higher order can be obtained recursively from those of zero 

order by means of the formula 

(12) (s - 1) Qv+1,2(s) = (v- ,u + 2)sQ'+1,2(s) - (v + y + 2)Q'-1/2(S) 

for v = 0, 1, 2,** and from 

(s - 1) 1Q_j2(s) = (2 - ,u)Ql/2(s)- (2 + A.)sQA1,2(s), 

for v =-1. 

Numerical Example. To calculate Qn11/2(s) for s = 1.01 and n = 0, 1, 2, 3, 4, 5. 
We start by computing s; according to Eq. (8); until a value is obtained which is 
sufficiently large for Eq. (11) to apply: 

i Si 
0 1.01 
1 1.65316 88539 02 
2 1.66369 41381 96 X 10 
3 2.20930 07386 65 X 103 
4 3.90480 73030 93 X 107 
5 1.21980 16059 43 X 1016 

The values of Qn 1/2(s5) as given by Eq. (11) will now be accurate to better than 30 
figures: 

n Qn_1/2(sr) 
0 2.01136 21555 09 X 10-8 
1 4.12231 41240 83 X 10-25 
2 
3 
4 
5 

(Note that functions for n ? 2 are of no significance, since their magnitude relative 
to Q 1/2 is negligible.) 
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Equation (7) is now used to compute Qn 1/2(si) for the remaining values of the si: 

n Qn- 1/ 2(S4) Qn- 1/ 2(S3) 

0 3.55496 28891 00 X 10-4 4.72614 96885 28 X 10-2 
1 2.27601 68512 56 X 10-12 5.34801 56392 27 X 10-6 
2 2.18578 34535 01 X 10-20 9.07755 98659 40 X 10-1o 
3 1.71199 72588 50 X 10-13 
4 - 3.39020 77090 78 X 10-17 

5 6.90532 31240 82 X 10-21 

n Qn-1/2(S2) Qn- 1/ 2(5 1) 

0 5.44995 36858 06 X 10-1 1.87832 66753 09 
1 8.19787 45943 47 X 10-3 3.21017 38150 62 X 10'1 
2 1.84955 91684 76 X 10-4 8.14856 90453 27 X 10-2 

3 4.63643 83364 18 X 10-6 2.29243 39889 94 X 10-2 

4 1.22035 66435 80 X 10-7 6.76530 09967 33 X 10-3 

5 3.30386 17771 74 X 10-9 2.05248 65657 25 X 10-3 

Finally we get: 
n Qn 1/ 2(5) 

0 4.03166 87796 89 
1 2.04931 84514 62 
2 1.41585 92547 73 
3 1.05843 74848 35 
4 8.21280 86319 17 X 10' 
5 6.51426 26170 33 X 10'1 

As noted earlier, over 200 terms would have been required to obtain comparable 
accuracy by either of the two methods described earlier in the paper. 

Aerospace Research Laboratories 
Office of Aerospace Research 
United States Air Force 
Wright-Patterson Air Force Base, Ohio 45433 

1. A. ROTENBERG, "Calculation of toroidal harmonics," Math. Comp., v. 14, 1960, pp. 
274-276. MR 22 #6066. 

2. E. B. WRIGHT & P. I. PETERSON, Brief Table of Ring Functions, NRL Memorandum 
Report 1969, U. S. Naval Research Laboratory, March 1966. 

3. W. GAuTscHI, "Computational aspects of three-term recurrence relations," SIAM Rev., 
v. 9, 1967, pp. 24-82. MR 35 #3927. 

4. J. WIMP, Recent Developments in Recursive Computation, ARL 69-0104, Aerospace 
Research Laboratories, July 1969. 

5. HENRY E. FETTIS, Calculation of Toroidal Harmonics without Recourse to Elliptic 
Integrals, Blanch Anniversary Volume, Aerospace Research Lab., U. S. Air Force, Washing- 
ton, D.C., 1967, pp. 21-34. MR 35 #2460. 

6. HENRY E. FETTIS & J. C. CASLIN, Tables of Toroidal Harmonics, ARL 69-0025, 
Aerospace Research Laboratories, February 1969. MR 39 #6481. 

7. I. S. GRADSHTEYN & I. M. RYZHIK, Table of Integrals, Series, and Products, Fizmatgiz, 
Moscow, 1963; English transl., Academic Press, New York, 1965. MR 28 #5198; MR 33 
#5952. 

8. W. MAGNUS & F. OBERHETTINGER, Formeln und Sitze far die Speziellen Funktionen der 
Mathematischen Physik, 2nd ed., Springer, Berlin, 1948; English transl., Chelsea, New York, 
1949. MR 10, 38; MR 10, 532. 


