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Lower Bounds for the Disk Packing Constant 
By David W. Boyd* 

Abstract. An osculatory packing of a disk, U, is an infinite sequence of disjoint disks, f Un }, 
contained in U, chosen so that, for n _ 2, U,, has the largest possible radius, r,,, of all disks 
fitting in U\(U1 U ... U U.-1). The exponent of the packing, S, is the least upper bound of 
numbers, t, such that E r = 0. Here, we present a number of methods for obtaining lower 
bounds for S, based on obtaining weighted averages of the curvatures of the U,,. We are 
able to prove that S > 1.28467. We use a number of well-known results from the analytic 
theory of matrices. 

A packing of a circular disk, U, is a sequence of disjoint disks, U1, U2, ... , con- 
tained in U, and whose total area equals that of U. An osculatory packing is one in 
which the disks are chosen so that U1 is internally tangent to U, and U2, U3, *-- 
are chosen recursively to have the largest possible radius at each step. If r, denotes 
the radius of U,,, then the exponent of the packing, C = { U,t}, was defined by Melzak 
[6] to be 

(1) S = e(C) = sup{t: ? = t}CO 

It was shown in [6] that, for osculatory packings, the following bounds hold: 

(2) 1.035 < S < 1.999971. 

In [9], the lower bound was improved to 1.059. Numerical evidence [7] suggests that 
S 1.306951. 

Here, we present a method for obtaining lower bounds for S. Given any weiglhted 
average of the curvatures of the disks in the packing, we obtain such a lower bound. 
By using a variety of techniques for obtaining these averages, we obtain, successively, 
the lower bounds, 1.18096, 1.25055, 1.26154, and 1.28467. We have no corresponding 
method, as yet, for upper bounds, but, by using a result of Hirst, we can improve the 
upper bound in (2) to 1.93113, and, hence, can replace (2) by 

(3) 1.28467 < S < 1.93113. 

Notation. In this section, we explain a notation used by Hirst [4] for describing 
the packing of a curvilinear triangle. 

Let T(a, b, c) denote the curvilinear triangle formed by three externally tangent 
circles with curvatures a, b, c where a ? b ? c. We carry out the following pro- 
cedure: In T(a, b, c), inscribe a circle with curvature, s. In the figure so formed, there 
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are three curvilinear triangles called the first generation of triangles, and, in each of 
these, we inscribe a circle, calling the three new circles the first generation of circles. 
Continuing the process in the obvious way, at the nth step, we inscribe 3" circles (the 
nth generation) in 3n curvilinear triangles. 

For notation, let Gn { 1, 2, 3},n sp Gn is the set of the 3" n-tuples with com- 
ponents 1, 2, or 3. A typical disk in the nth generation will be indexed by a E G,,. 
With the disk, U(a), are associated the numbers, a(a), b(a), c(a), which are the curva- 
tures of the triangle, T(a), in which U(a) is inscribed, and the number, s(a), which is 
the curvature of U(a). Descartes's formula (see [1]) relates a, b, c with s by 

(4) s = a + b + c + 2(ab + bc + ca) 2. 

The other circle tangent to the circles with curvatures a, b, c has curvature s' given by 

(5) s-a + b + c- 2(ab + bc + ca)l2. 

In formulas (4) and (5), we must use the convention that, if a circle is externally tangent 
to the others, its curvature is taken with a negative sign. 

We have, thus, the following rules for proceeding from the nth to the (n + I)st 
generation. If a =(i, * , in), write (a, i) = (il .* .. , in, i). Then 

(a, b, c)(oa, 1) = (a, b, s)(a), 

(6) (a, b, c)(oa, 2) (a, c, s)(a), 

(a, b, c)(a, 3) = (b, c, s)(a). 

Equation (6) makes sense, even for n - 0, if we employ the convention that Go 
consists of a single element which is a vector with no components. So, for a E Go, 
we have a(a) = a, b(a) = b, etc. We shall write G = ULJ: Gn. 

Now, instead of computing s(a, i) from the formula (4), and the values of a(a, i), 
b(a, i), c(a, i) in (6), we may compute s(a, i) as follows: 

s(a, 1) = 2(a(a) + b(a) + s(a)) -c(), 

(7) s(a, 2) = 2(a(a) + c(a) + s(a)) -b(a) 

s(a, 3) = 2(b(a) + c(a) + s(a)) -a(o). 

To verify the first equation in (7), for example, note that the two circles tangent to 
the circles with curvatures a(a), b(a), and s(a), have curvatures c(a) and s(a, 1), and, 
hence, formulas (4) and (5) imply (7). (See also [2, p. 111].) 

Summarizing, if g(a) is the row vector with components a(a), b(a), c(a), s(a), then 

(8) g(a, i) = g(a)Pi (i = 1, 2, 3), 

where the Pi are matrices given by 

1 0 0 2 fi 0 0 2 0 0 o -1 

(9) P1 = O 1 0 2 , 2 O 0 0 -1 1 0 0 2 

0 0 0 -1 0 1 0 2 0 1 0 2 

O 0 1 2 WO 0 1 2j LO 01 2, 
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Given a (ia , = *, Ii) C G., we shall write 

(10) P(ae) = P... 

and then g(a) = gP(a). 
Note that, by the way the indices are assigned, a(a) < b(a) < c(a) < s(a), for all a, 

and that s(a, 1) _ s(a, 2) < s(a, 3), for all a. Hence, the smallest curvature in the nth 
generation is s(l, 1, - - *, 1), and the largest is s(3, 3, - - *, 3). 

Lower Bounds. In an osculatory packing of a disk U of the type described in the 
introduction, once U1, U2, and U3 have been placed, the figure, U - (U1 U U2 U U3), 
contains a curvilinear triangle, T(a, b, c), with 0 < a ? b < c. Hence, as far as ob- 
taining lower bounds for c, as defined in (1), we can restrict ourselves to those disks 
in the packing of T(a, b, c), since the addition of disks to a packing can only raise S. 
Hence, we wish to investigate the set of real numbers, t, such that 

(11) E (y)t =O 
aEG 

Suppose that { w(a): a E G} is a set of nonnegative reals which satisfy the following 
two conditions for some p with 0 < p < 1: 

(12) E w(a)Y = o and , w(a)s(a) < . 
aEG aEG 

Then, by H6lder's inequality [3, p. 24], we have 

(13) { w(a} < { w(a (a) sa r)-1t 
aEG aEG aEG 

where t = p7(1 - p). Hence, (12) and (13) imply (11). 
The remainder of the paper is devoted to obtaining weights, w(a), for which the 

conditions of (12) hold. The theoretical results are contained in Theorems 1 and 2, 
and the applications of these to obtain explicit lower bounds follow the respective 
theorems. We shall use a number of well-known results from the analytic theory of 
matrices for which we refer the reader to [5] and [8]. 

THEOREM 1. Let P1, P2, P3, and P(a) be defined as in (9) and (10). Let m be a positive 
integer and let x(a) (a C Gm) be any 3m positive real numbers. Let 

(13) A = E x(a)P(a). 
a EGm 

Then the matrix A has a positive eigenvalue p which strictly dominates all other eigen- 
values and is a simple root of the characteristic equation of A. The following equation 
has a solution p with 0 < p < 1 

(14) E x(aY)= p= , 
aEGm 

and if t = p7(1 - p), then t ? S, where S is defined by (1). 
Proof. Let Q be the matrix with zeros below the main diagonal and ones above 

and on the main diagonal. For i = 1, 2, 3, let R1 = QPiQ-'. Then 

1 0 0 4 1 0 0 4 1 0 0 4 

(15) Rl - 1 0 2 , 0 1 0 2 R= 1 0 0 5. (15) RI= 0 0 R 0 R 1 05 
0 0 1 0 0 1 0 3 0 1 0 3 

.9 0 1 1) .O 0 1 ti O 0 1 1 
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Thus, Ri is nonnegative for each i, and R3 is irreducible [5, p. 48]. Hence, A is similar 
to a nonnegative irreducible matrix and, thus, by the Perron-Frobenius theorem 
[5, p. 49], has its spectral radius p as a simple eigenvalue. Furthermore, R > 0 
for v ? 3, so R.3 is primitive and, hence, QAQ-' is primitive [5, p. 59, Exercises 17 
and 21]. Thus, p is strictly greater in absolute value than all other eigenvalues. 

Next, note that if h is the column vector with all components equal to 1, then, for 
i = 1, 2, 3, Rih > h, with strict inequality, if i = 2 or 3. Hence, Ri, ... Rimh > h, 
unless i = i23 = = 4,, 1. Using this fact, we see that QAQ-' has row sums 
all strictly greater than aCGGm x(a), so that p > 2 a Em x(a) [5, p. 49]. 

To show that (14) has a solutionp with 0 < p < 1, consider the following function: 

f(p) = E (x(a)/pY'. 
aEGm 

The function f is strictly decreasing and continuous. Also, f(o) = 3', and f(l) < I 
by the above paragraph, so the existence of p satisfying f(p) = 1 follows. 

Finally, we show that S > pl(1 - p). Given any e > 0, let T = (p + e)-1A. 
Then T has spectral radius p(p + E)-' < 1, so the series ,nW. T' converges [5, p. 54]. 

We examine the individual terms r in this series. Let t(c) = x(a) - (p + E)-', 
and we see that 

/ \~~~~n 
E = ( i (a)P(a)) = E w(3)P(3), 

CY GGm PsGnm 

where for E Gnm, if ,B = (ill, ^ * * 2,il 1* * j,,,, * **, * *i *, 4,inn), write a, = 

(4i, ... * i4,), and then w(B) = t(al) ... *(aj.) In general, if 'y E GnM+k with 0 < 
k m-1, writey = (ill, - - - ilm ... in, 4 ... * inml, * ... I jh), and ca = (4*, ik,). 

Then, define 

(16) w('y) = t(al1) ... 

and we have 
\fm-1 co m-1 

(17) T E E P(a)= E E E E w)P)P(a) = > w(y)P(T). 
t=O k 0 akGk n=l kO 8eGmnn aEGk 7yeG 

Hence, since col r converges, we see from (17) that 
f,,EG w(y)P(y) converges, 

and a fortiori that >2-YEG w(-y)s(-y) converges. 
We can obtain an expression for >EyE w(Gy)v by noting that w(-y) is defined multi- 

plicatively in terms of the t(a). 
Hence, replacing t(ax) by t(a)v, and retracing the derivation of (17) with P1, P2, P3 

replaced by the number one, we see that 
ao \~~n 

m-1 
(18) z (E2 t(a)" .E 3A) = > w(7v. 

n-0 aE-Gm k-0 Zt fG 

Thus, if p = p(E) is chosen so that 

(19) E I(a)' = 1 
aEGm 

then E w(y)yY') diverges, and, hence, by our earlier remarks, E s(y)t e diverges, 
where t(e) = p(E)/(l - p(E)). But p(e), as defined by (19), is a strictly increasing 
function with a strictly increasing inverse for e in some neighbourhood of e = 0. Thus, 
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p(e) is continuous at 0, and so, S > t(e) for e > 0 implies S ? t(O) = p(0)/(1 -p(0)) 
which is what is what we wanted to prove. 

Explicit Bounds. 1. First, take m = x(l) = x(2) = x(3) = 1 in Theorem 1. Then 
the eigenvalues of A = P1 + P2 + P3 may be explicitly calculated as 0, 1, 4 - (13)1'2, 
4 + (13)"/2, respectively, so p 4 + (13)1/2. The equation for p reduces to 3 = 

(4 + (13)1/2),, so we obtain 

S _ log 3/log ((4 + (13)1/2)/3) = 1.18096 *. 

We can think of this use of Theorem 1 as estimating j s(a)-' by replacing s(a) for 
a C Gn by 

(20) 3 - s(a) (4 + (13)1) 
aEGn 3 K 

(The legitimacy of this replacement follows from (13).) This can be compared with 
Melzak's lower bound 1.035, which is obtained by replacing s(a) for a E G" by the 
maximum curvature in Gn, which is s(3, 3, - - *, 3). 

2. A better choice for x(l), x(2), x(3), with m 1, can be heuristically justified 
by noting that the dominant eigenvalues of P1, P2, P3 are 1, r2 = 2.6180 * , and 
r + V/r = 2.89005 - - *, respectively. (Here, r = (V5 + 1)/2.) Thus, it would seem 
natural to weight P1, P2, P3, roughly in the proportions 1: T 2: T - v/r. We 
resorted, at this point, to numerical techniques. One notes that A is similar to a non- 
negative irreducible matrix, so that if g is any vector of the form hQ with hi > 0, 
(i.e. gl < g2 < g3 < g4), and, if we define g') = g(''-1A, and 

(3, = max (gi)/g(Pl)) a, min (g(.'/g(Yl)) 
1SiS4 1SiE4 

then O!1 _ CX2 < * * * < 0gy _ * * * < p < 
, 

_ * (see [5, p. 60D] and 
B3,, a, -* p, since p strictly dominates the other eigenvalues of A. 

Thus, improved upper and lower bounds can be obtained for p by simple iteration, 
and these will converge to p. We used this procedure for a number of choices of x, y, z, 
starting from the above guess, determining p as the unique solution of xP + yD + 
zP = p2 by the method of regula falsi. We found that the choice (x(l), x(2), x(3))= 
(.63, .21, .16) gave p = 2.213092 and t = 1.250556, so that S > 1.25055. 

3. When mn = 2, we are dealing with 9 weights. However, we can immediately 
do as well as in our last example by taking x(i, j) = x(i), x(j), where x(i), i = 1, 2, 3, 
are .63, .21, .16, respectively. Starting with this choice, we eventually settled on the 
values: 

(x(1, 1), x(l, 2), x(l, 3), * * *, x(3,3 ))=(1.10, .17, .15, .17, .09, .08, .15, .06, .05), 

which gave p = 8.9443431 and t = 1.2615451, so now S ? 1.26154. 
An Improved Method. The following method, which apparently gives better 

bounds than that of Theorem 1, was motivated by considering the defects of the 
weighting scheme in Theorem 1. We observe that P1 has all eigenvalues equal to 1, 
and its canonical form has one block of size 3 X 3, the other of size 1 X 1. Hence, a 
typical vector of the form gPn grows like n2. On the other hand, P2 and P3 have 
simple strictly dominant eigenvalues so typical vectors gPa, gP3 grow geometrically 
like r2", (r + Vr)". The weighting scheme of Theorem 1, however, weights higher 
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powers of P1 as if they grew geometrically, and so the weights w(i, i2, *. in) are 
unlike the ideal weights, s(ii2, i2, . i. . , which would give equality in (13). 

Theorem 2 uses a method of weighting which can partially remedy this defect. 
THEOREM 2. Let {x(n): n = 1, 2, } be a sequence of nonnegative reals for which 

the following three series converge: 
co co a:> 

(21) f E x(n), f' = E n.x(n), f" = E n(n- 1)x(n). 
n=l n=1 n-1 

Let F be the following matrix: 

f 0 2f" 4f' 

(22) F- 0 1 f" 2f. 
0 0 f 0 

0 0 f' fi 

Let y and z be positive reals, and let T be the matrix T = yR2 + zR3, where R2 and 
P3 are given in (15). 

Then, the matrix M = T(I + F) has a strictly dominant eigenvalue p > 0. The 
following equation has a solution p with 0 < p < I 

(23) (y + zP)(1 + >: x(n)') =P 

and, if t = p/(l - p), then S > t, where S is given in (1). 
Proof. The matrix F of (22) is precisely the matrix Enco x(n)Rn, where R1 is 

given in (15). This can be seen by reduction to canonical form or directly, first estab- 
lishing the form of Rn by induction. The conditions that the series f I', f" converge 
ensure that the series E x(n)Rn converges. 

Thus, the matrix M is 

(24) M = (yR2 + zR3).(I + E x(n)R1) 
n30 

The matrix M is nonnegative (obviously), irreducible, since M > zR,, and primitive 
for the same reason. Thus, M has a strictly dominant eigenvalue p. Evaluating row 
sums as in Theorem 1, we see that, if h = (1, 1, 1, l)T, then (I + F)h ? (1 + f)h, 
and so Mh > (yR2 + zR3)(I + f)h > 2(y + z)(I + f)h, so that p > 2(y + z)(l+f). 
The same argument as in Theorem 1 now shows that Eq. (23) has a solution p with 
O<p< 1. 

Now, given E > 0, let N = (p + E)-'M, so that the series E- O Nn converges, 
and, equally, the series 2'n-co0 (Q-'NQ)' converges, where Q is as in the proof of 
Theorem 1. If X = y(p + e)-1, r z(p + e), we have 

(25) Q1NQ = (fP2 + rP3) I + E x(n)P'). 
n-1 

Thus, 

(26) (Q'NQ)' - E w(a)P(a), 
aEsnwi 

where H.' consists of vectors (il, *-8i,) with r arbitrary, but with exactly n com- 
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ponents chosen from the set 12, 31, and with i C {12, 31. (The weights w(ca) will be, 
discussed later.) 

If we now let HnI consist of vectors (i1, * 4 i,), with exactly n components chosen 
from 12, 3 1, without the restriction i, E{ 12, 3 1, then 

( w(o)P(a) = I + x(k)Pco )(QNQ) 
(27) a EHn k-l 

= (I + Q-'FQ)(Q-'NQ)n. 

Clearly, G = UnO Hn, where the union is a disjoint union, and, hence, from (27) 
we obtain 

(28) ? w(a)P(a) = (I + Q'FQ) E (Q'NQ)n. 
atEG ncO 

This proves that ? w(a)P(a), and, hence, E w(ae)s(ae) converges. 
The weights w(oa) are defined through the Eqs. (25), (26), (27), and can be seen to be 

products of various x(k)'s, X and P. More precisely, to obtain w(a) from a, we replace 
each block of k consecutive l's by x(k) (whlere k is chosen maximally), then replace 
each 2 by 77, and each 3 by ?, and compute the product of these numbers. 

As in the proof of Theorem 1, we may obtain Ej w(a)P by replacing each P, in (25) 
by the number 1, and , ?, x(n) by xP, , x(n)', and substituting in (28) to obtain 

co co n+ 1 

(29) E W(0) = E ( + Z X(k)p (P + tP)n 
a GEG n=O k-1 

The series in (29) diverges if p = p(E) is chosen to satisfy 

{1 + E x(k)( + zl) (p + c-f. 
k=l 

Again, p is strictly increasing with e and has a strictly increasing inverse in a neighbor- 
hood of e = 0, so that p is continuous in e. From the divergence of (29) and the con- 
vergence of (28), we have S > p(E)/(l - p(E)), for e > 0, and, by continuity of p, we 
have S > p(O)/( - p(O)) = t. 

Explicit BoundAs. 4. For our first application of Theorem 2, we chose x(n) = xv n-8, 
where x and s are real parameters. Because of homogeneity in y and z, it sufficed to 
take y + z = 1. The series (21) were, then, f = xr(s), f' = xr(s - 1), f"i = 
x((s - 2) - P(s - 1)). Starting with the guess x 2, s = 4.6, y = z = .5, we 
systematically improved the lower bound until for x = .25, s = 3.4, y = .55, z = .45, 
we obtained the eigenvalue 4.968321, and the lower bound S > 1.26671. The zeta 
function was computed using nine terms of the series and four terms of the Euler- 
Maclaurin remainder. 

5. Next, we chose x(n) = xFn-8, for n - P, P + 1, *., Q, and x(n) = 0 
otherwise. This led to a considerable improvement of the above and the choice, 
x = .18, s = 2.7, y = .55, z = .45, P = 1, Q = 20, gave the eigenvalue 4.944790 
and the lower bound S _ 1.28467. It, perhaps, should be noted here that we have 
discarded all those ae which have more than 20 consecutive components equal to 1. 

Upper Bounds. As we mentioned earlier, we have not yet been able to obtain good 
upper bounds on S by a similar technique. We should mention an improvement of 
(2) which can be obtained from a result of Hirst [4]. Let r(a) denote the radius of the 
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circumscribed circle to the triangle T(a(a), b(ac), c(a)). Then, obviously, we have 
r(a) > s(a)-'. The following inequality is due to Hirst [4, p. 285]: 

(30) Z r(a)' < (ab + bc + ca) 

where x = log 3/log (1 + 2V3) = 1.43113 . 

Denoting the constant in the right member of (30) by K, we thus have 

(31) E s(a)x < E r(a)x < K. 
aEGn aEGn 

We know that for a EE Gn, s(a) > s(l, * * *, 1) = tn, say. By Lemma 4 of [6], t = 

(a + b)(n + 1)2 + 2(n + 1)[ac + bc + ab]l"2 + c, so that s(a) > (a + b)(n + 1)2. 
Hence, if a > 1/2, 

(32) > s(aY)' < (a + b)-s(n + 1)-28 E s(a)-x ? K'(n + 1)2_ 

and, thus, Sda<^ s(ay5-- < K' 
EnO 

(n + 1)2" converges. Since this holds for any 
a > 1/2, we have S < x + .5 = 1.93113.**. 

Final Remarks. We should perhaps point out that having the matrices similar 
to nonnegative matrices is not entirely essential to the success of the method de- 
scribed here, since, in Theorems 1 and 2, we could simply replace p by I pI if the dom- 
inant eigenvalue were not positive. It is rather useful, however, to know that the 
spectral radius is a strictly dominant eigenvalue, since then we can obtain p to arbi- 
trary accuracy by simple iteration. 

It seems quite certain that better results can be obtained from Theorem 2 by a 
different choice of the sequence { x(n) }. 

All the computations involved were performed on the California Institute of 
Technology time-sharing system, using the Citran language. This on-line system was 
well adapted to our problem, since it allowed a heuristic search for large lower 
bounds from each method without employing unnecessarily sophisticated techniques. 

California Institute of Technology 
Pasadena, California 91109 
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