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Computing Irreducible Representations of Groups 

By John D. Dixon* 

Abstract. How can you find a complete set of inequivalent irreducible (ordinary) repre- 
sentations of a finite group? The theory is classical but, except when the group was very small 
or had a rather special structure, the actual computations were prohibitive before the advent 
of high-speed computers; and there remain practical difficulties even for groups of relatively 
small orders (< 100). The present paper describes three techniques to help solve this problem. 
These are: the reduction of a reducible unitary representation into its irreducible com- 
ponents; the construction of a complete set of irreducible unitary representations from a 
single faithful representation; and the calculation of the precise values of a group character 
from values which have only been computed approximately. 

1. Introduction. The object of this paper is to describe three techniques which 
should be useful in constructing irreducible representations and the characters of 
finite groups. Unlike some proposed solutions, none of these techniques depends on 
any special structure for the group considered, and combined these techniques 
should produce an efficient means of computing a complete set of irreducible repre- 
sentations. These techniques are: (a) an efficient method of reducing a reducible 
unitary representation (Section 2); (b) a method for constructing a complete set of 
irreducible unitary representations of a group from a single faithful unitary represen- 
tation (Section 3); and (c) a method of obtaining the precise values of a character from 
values calculated only approximately (Section 4). Although we always refer to finite 
groups, it should be noted that many of the results are also valid for unitary represen- 
tations of finitely generated infinite groups. 

Notation. The term representation will always mean a matrix representation over 
the field ( of complex numbers. It is well known that every representation of a finite 
group is equivalent to a representation in unitary matrices (for example, see [6, 
Theorem (3.1)]). Thus there is no loss in generality when we deal exclusively with 
unitary representations. By M(d) we denote the vector space of dimension d2 over e 

consisting of all d X d matrices over C, and U(d) will denote the group of all d X d 
unitary matrices. We also write I for the unit matrix and X* for the complex con- 
jugate transpose of X. 

2. The Reduction of a Unitary Representation. The theory on which our method 
is based may be found in [6, Theorem (1.6)]. Briefly it is as follows. If G is a finite 
subgroup of order g in U(d), then G is irreducible unless for at least one element 
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Er, of the standard basis for M(d) the matrix 

E = - E X*EraX 
g XEG 

is not scalar. Indeed EX = XE for all X E G and when E is not scalar the eigen- 
spaces of E reduce G (compare with our Theorem 2). 

If we tried to apply this theory directly, then we would need to store or compute 
all the elements of the group G. This would be very clumsy unless G is small. However, 
it turns out that E may be computed by an iteration process using only a set of gen- 
erators for G. This is what we now prove in Theorems 1 and 2. 

THEOREM 1. Let S be a finite set consisting of h elements of U(d) and suppose that 
the unit matrix I E S. We define a linear mapping C: M(d) -> M(d) by 

(B) = - E U*BU. 
h ues 

Then for each A,, E M(d) we can define a sequence (An) in M(d) by putting An = P(AJ ) 
for n = 1, 2, * . Then (An) is always convergent in M(d) and its limit, say A, has the 
property AU = UA for all U ? S. 

Proof. We shall use the norm I on M(d) defined by IB 2 = trace B*B. Our 
first step is to prove 

(1) I1of(B)II = IIBII implies that UB = BU for all U E S. 

Indeed, for any B E M(d) the properties of the norm show that 

o(B)Ii = ||h1 E U*BU < h 1 E II U*BUI| 
(2) ues ues 

= h-1 E IIBII = IIBIH 
ues 

because the U are unitary. Moreover, the equality sign holds in (2) exactly when all 
the matrices U*BU (for U E S) lie on the same ray through 0 in M(d). Now I E S 
and so j j(B)II = JIBII implies that there exist real numbers Xu ? 0 such that 
U*BU = XuBforall Ue S. But IIBII = IIU*BUII and so IHIBH = IIXuBII = Xu IIB[ . 
Thus, either B = 0 or else Xu = 1 for all U E S. In either case we conclude that 
UB = BU for all U E S, and so (1) is proved. 

Now consider the sequence (An). It follows from (2) that the sequence (I IAnI I) of 
real numbers is monotonically decreasing, and so we have lim I IAnI I = ,, say. The 
monotonicity of (I IAn II) also shows that the sequence (An) lies in the compact ball 

{ C E M(d) I I IC I I IA,, I }, and so there is some subsequence (A,,,) which converges 
to a limit, say A, in M(d). But 11All1 = ,u = limk-,- IlAnk+l l l = lim llo-(A, ,) I 1, and so 
the continuity of a shows that IIAII = Ila(A)1l. Then (1) shows that AU = UA for 
all U C S, and it remains to prove that (An) converges to A. 

Put Bn = An - A for n = 0, 1, 2, * . . . Since a(A) = A, (2) implies that ( I Bnl I) 
is monotonically decreasing. But lim II B, I = 0 by the definition of A. Therefore 
lim I lB,l I = 0 and so the sequence (An) converges to A. This concludes the proof of 
the theorem. 

Before stating Theorem 2 we introduce a little notation. Let E,., (r, s = 1, , d) 
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be the standard basis for M(d); that is, Er. is the matrix whose (r, s)th entry is 1 and 
whose other entries are all 0. We define a second basis Hr* (r, s = 1, , d) fcr M(d) by 

Hr8 =Err if r = s, 

= Er8 + E8, if r > s, 

= i(E,8 - E8s) if r < s. 

Now, in the notation of Theorem 1, all the limits lin (H ) exist. Moreover, 
because all the Hr. are hermitian matrices, it is easily verified that these linmits will 
also be hermitian. 

THEOREM 2. We keep the notation of Theorem 1. Suppose tJlal S is a reclducible set 
of matrices (or equivalently S generates a reduicible suibgrolup of U(d)). Theiz for at least 
one Hr* the limit lim u'(H,rs) = H, say, is not scalar and we can redluce S into c iilumber 
of not (necessarily irredzucible) comnponents as follows. Since H is hermitiian, we can find 
an orthonormal basis v1, * * *, Vd of the lunderlying d-dimensional lunitary spjace sutch that 
this basis is made up by listing successively orthonormal bases for the eigenspaces for H 
for the diffrrent eigenvalues. Tlhen, if C is the (unitary) m(atrix whose columns are 

* ^ ,. we have 

Uki 

flere the (r, s)th enttry of the matrix on the right-hand side is v* Uv, and this is 0 when 
c r and v. are eigenvectors for diferent eigenvalues of H. 

Proof. S is completely reducible because it is a subset of U(d) and by hypothesis S 
is not irreducible. It is easily proved (for example, see [4, Problem 10.3]) that this 
implies that there exists a nonscalar B E M(d) such that UB = BU for all U E S, 
and so a(B) = B. Since the Hr, form a basis for M(cl) there exist [3rs E Ce such that 
B = I3rgHrs, and so B = lim a '(B) = I3rs limT an(Hr8) because a is linear. Since B 
is not scalar, at least one lim T'(Hr,,) is not scalar. This proves the first part of the 
theorem. 

Now suppose that H = lim a'(Hr3) is not scalar. Then HU -lJH for all 
U E S by Theorem 1, and this implies that for any eigenvalue CXj of H the correspond- 
ing eigenspace is mapped into itself by multiplication by any U E S indeed, if 
Hv - a2v, then H(Uv) U(Hv) = a1(Uv). In particular this shows that v*Uv. is 
zero whenever vr and v. are eigenvectors for H for different eigenvalues. This proves 
the second part of the theorem. 

Note. There should be no trouble in programming the process described in The- 
orem 2. A crucial point in the computation will be the calculation of the eigenvalues 
and eigenvectors of H, and this can be done using efficient iteration methods because 
H is hermitian. It is not hard to prove that the eigenvalues of H always lie in tlle 
interval [-1, 1]. 

3. The Generation of a Full Set of Irreducible Representations. Let G be a 
finite group and let R: G -* U(d) and S: G -* U(d') be two representations of G. 
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Then we define R 0D S: G -> U(dd') by putting (R 0 S)(x) = R(x) 0 S(x) where 
the right-hand side denotes the usual tensor (or Kronecker or direct) product of two 
matrices. It is readily verified that R 0 S is also a representation of G. We shall 
require the following theorem due to Burnside (see [2, Section 226] or [4, Problem 
11.27]). If R is a faithful representation of G, then every irreducible representation 
of G is equivalent to an irreducible component of one of the representations: R, 
R 01 R, R 0 R ) R, * . . . We also make the following observation from the elemen- 
tary properties of the tensor product. If RJ, . .. , Rr and Si, . . *, S. are complete sets 
of inequivalent irreducible components of R and S, respectively, then each irreducible 
component of R (0 S is equivalent to an irreducible component of one of the Ri 0 Si. 

We now ouLtline an algorithm for obtaining all irreducible unitary representations 
of G from a single faithful unitary representation. 

We begin with a faithful representation R: G -*> IJ(d) and a set S of generators 
for G such that the identity 1 ? S, and we read in the data R(u) for all u E S. Next, 
using the method described in Section 2, we reduce R down to its irreducible com- 
ponents and store the components of R(u) as Ri(u), * *, RS(u) (u Ei S). Then, by com- 
paring the characters of these representations, we may choose out of the set R1, * * * , R. 
a set of reresentatives for the different classes of equivalent representations. If these 
inequivalent irreducible representations are S,, . . ., Sm then we store S(u), * * *, SJu) 
(u E S). We now construct the tensor products S, 0 Si, S, 0 S2, - * * and at each 
step reduce the tensor product to its irreducible components and store the representa- 
tives of new classes of irreducible representations as Sml(u), . . . (u E S). This pro- 
cedure is continued until none of the tensor products Si 0 S, yields any new classes of 
representations. Then, by Burnside's Theorem quoted above, S1, S2, * is a complete 
set of irreducible representations for G. 

Notes. 1. When comparing the characters of two representations Ri and R, in 
order to prove that they are equivalent it is not usually enough to check trace Ri(u) = 

trace R2(u) for all u E S; usually it is also necessary to check the traces of certain 
products. However the simpler criterion is certainly sufficient if S contains at least 
one representative from each conjugacy class of G. Perhaps it is worth noting that 
if S is a set which contains at least one element from each conjugacy class of G then 
we automatically have S as a set of generators for G. Indeed, the subgroup H gen- 
erated by S has the property that each element of G is conjugate in G to some element 
of H, and this implies that H = G when G is finite (see [4, Problem 1.10]). 

2. Suppose that S consists of exactly one element from each conjugacy class of G 
(see Note 1). In this case, if we store the sizes of the conjugacy classes of G, then much 
of the computation required in the algorithm described above can be simplified by 
the usual elementary character theoretic arguments. Such arguments will enable us 
to tell whether any tensor product Si 0 Si is irreducible and whether any of its 
irreducible components correspond to new classes of irreducible representations; 
and knowing that G has k conjugacy classes means we can stop as soon as we have 
stored the kth representation Sk. 

3. In many cases we may find it easiest to take R as a representation in permutation 
matrices corresponding to a representation of G as a permutation group. In such 
cases R is clearly unitary. 

4. The most obvious limitation for the application of this algorithm is the diffi- 
culty of reducing representations of large degree. If d is the largest degree of any 
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irreducible representation for G, then we may have to reduce representations of 
degree d2 but no larger. 

4. Finding the Precise Values of a Character from Approximate Values. In a 
previous paper [5] I have described a method of computing the character table of a 
finite group using modular arithmetic. Here I want to point out that one of the tech- 
niques of that paper can be used to obtain precise values of a character (in arithmetic 
or algebraic form) from quite rough estimates of its values. What is involved is essen- 
tially a finite Fourier analysis. The technique could be used to obtain the precise 
character table for a group G from the representations obtained by the method of 
Section 3. 

Let x be the character of a representation R of a finite group G, and let xi and xi 
denote, respectively, the precise value and some approximate value of the character x 
on the conjugacy class Ci of G. Let e > 1 be an integer such that x' = 1 for all 
x E G. Let x E Ci. Then R(x)e = 1 and so all the eigenvalues of R(x) are eth roots 
of unity. Put r = exp (2ri/e) and define mk > 0 as the multiplicity to which *.k 

occurs as an eigenvalue for R(x). Now to each eigenvalue g; for R(x) there corresponds 
an eigenvalue v` for R(x)f. Thus for n = 0, 1, * we have 

e-1 

trace R(x') = trace R(x) = Mk 
k=O 

We now use the identity 

Z ?(k-l-= e if e divides k - 1, 
n=O 

- ;r(k~l)j - 1 = 0 otherwise. 

This gives us 
e-1 0-1 *-I 

(3) ml = e' >3 E Mk vk "l - e1 >j trace R(x)P-ln 
n=Q k=O n=O 

Now for each conjugacy class Ci and each integer n we can define the conjugacy class 
Ci(n) as consisting of all z" with z E Ci. With this notation (3) gives 

e-1 

(4) ml= e1 Xi(n)n 
n=O 

Now suppose that we only know the approximate values xi of X. Then it follows from 
(4) that we can recover ml as the integer closest to e-1 Le=l Un)? provided the 
errors in the values of x are all less than 1/2. Once the "Fourier coefficients" ml are 
known, the value of xi can be computed precisely. 

Note. The only new data needed for these computations are the values of the 
indices i(n) defined above. 
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