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Highly Accurate Numerical Solution of Casilinear 
Elliptic Boundary-Value Problems in n Dimensions 

By Victor Pereyra* 

Abstract. The method of Iterated Deferred Corrections, whose theory was developed by 
the author, is applied to the problems of the title. The necessary asymptotic expansions are 
obtained and the way in which the corrections are produced by means of numerical differen- 
tiation is described in detail. Numerical results and comparisons with the variational- 
splines methods are given. 

1. Introduction. In several papers [6], [8], [9] the author has developed the theory 
of the method of Iterated Deferred Corrections (IDC), first introduced and extensively 
used by L. Fox. The most general results apply to nonlinear operator equations 
in Banach spaces and their abstract discretizations. Several important applications 
have been treated in detail [3], [7], [8], [9]. 

In the present publication we shall study the application of IDC to elliptic 
boundary-value problems in n dimensions. Previous work in partial differential 
equations has been restricted generally to the two-dimensional Poisson equation 
(see [8] for an extensive list of references and historical developments). In [8], [9] we 
described in detail the application of a linearized one-correction procedure to mildly 
nonlinear equations of the form Au = f(x, y, u), and gave numerical results. 

In the first sections of this paper we treat the first boundary-value problem for 
a general linear uniformly elliptic operator with variable coefficients in n independent 
variables. This is extended to a casilinear equation, by which we mean an equation 
with a source term nonlinear both in the unknown function and its gradient. 

Asymptotic expansions for the local discretization error are derived and suitable 
conditions are imposed in order that the IDC procedure be rigorously applicable. 
We use as the basic discretization one due to Pucci [10]. 

Finally in Section 7 we present some numerical results and comparisons with 
the high-order methods of Ciarlet et al. [2], as implemented by Herbold [5]. The 
conclusion of this fairly restricted comparison is that IDC is, in this case, about 100 
times faster than the best variational-spline method. Of course, our method only 
gives results at the grid points; however, it is clear that once an accurate solution 
is obtained on some finite grid we can interpolate, or even produce multivariate 
splines in order to have an overall defined approximate solution, if that is desired. 

2. Preliminaries. Let A be an open, bounded set in En, the n-dimensional 
Euclidean space. Let ai3(y) =aj i(y), ai(y) (i, j = 1, * , n), a(y), f(y), be CM functions 
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(M > 0) defined on A; assume that a _< 0 and that for any vector 1,* 

E aij(y)jj ._ >1l 12 on A, 
i,i 

with a > 0. Under these conditions the linear differential operator 

(2.1) Lu(y) = id a11(y) d2u(Y) + A as(y) -- 
+ a(y)u(y) 

is uniformly elliptic. 
For ?(y) E CM+2(A) we shall assume that the Dirichlet problem 

(2.2) Lu(y) = f(y) on A, 

u(y) = 4k(y) on OA, 

has a solution u(y) E C"'(A). 
In what follows we shall use interchangeably: 

a3U a2U aD U 
Ui a dy i s - Di" U3 ayk 

ui=y- ayay 1 

We are interested in discretizing problem (2.2). For this we introduce a uniform 
mesh h, on E: 

(2.3) , =I {x ( E: x = (rih, r2h, * , rzh), rl, * , rn, arbitrary integers, h > O}, 
and also A, = A fs 9h, A, = A fs Q, OA, =A n Q,. 

All the results are valid, with minor changes, if we use instead a mesh with different 
step sizes in each coordinate direction. 

Let hi be a vector in the direction of the positive yi axis and of modulus h. A 
point x E A, is called regular iff x -4? hi i hi G Ah (i, j= 1, * * *, n; i 0 j). From 
now on we shall assume that the region A and the mesh 2h are such that Ah consists 
only of regular points. 

We define now some difference operators: 

Atu(x) = u(x + hi) - u(x) A-u(X) = u(x) - u(x - hi) 
hi h 

(2.4) 6i = I(At + A-), Aii = t 

A-= '(A+A7 + A-At), A+ "(A+At + zA-A). 
ti = 2( it + i sI) i i= (ti+ ) 

It is easy to verify that 

A A7 = AA+ At = A tA i A-, = -L, Aii = A-A+ 

3. The Discretization. We discretize (2.2) in the following form [10]: 

(3.1) Lhu(Y) = E ai (y)A;iu(y) + E ai(y)3iu(y) + a(y)u(y) = f(y), y Ah, 
tij i 

where Aij (i 0 j) is defined as: 

(3.2) hAiu(y) = A+ u(y) if ai.(y) 0, 
= a, u(y) if ai3(y) < 0. 

For the boundary points we have: 
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LhU(Y) uy) = +A(y) y EE OAh. 

If we further assume that 

(3.3) 2aii- la i jl > Uz > 0 on i 
iji 

then for small h's a maximum principle is valid for the operator Lh. That is, if B _ 0 
is such that lI < B on A, and Bh < a, then f < 0 implies that a solution u of 

(3.4) LhU= f on Ah, U = on OAh, 

must satisfy: 

u(x) 2 max {0, min 0(y) x E Ah. 
LSeOA ?h 

As usual, the maximum principle immediately implies that there exists a unique 
solution of the discrete problem (3.4), and also that an a priori bound for this solu- 
tion can be obtained for x E Ah: 

(3.5) lu(x)l < max lk(x)l + K max lf(x)l, 
zEaAk zEih 

where the positive constant K depends only on B and the domain A. For a proof 
of these statements we refer to [10]. 

The estimate (3.5) is in fact valid for any mesh function u(x): 

(3.6) (lu(x)lI < KlILhUl I-, 

and therefore Lh is uniformly stable in the sense of [6, p. 317]. 

4. Asymptotic Expansions. Taking advantage of the differentiability assumptions 
we obtain now an asymptotic expansion in powers of h for Lhu(y), u E CM+2(A). 
This will be valid, in particular, for the solution of (2.2). The expansion is obtained, 
as usual, by using a multiple Taylor formula with M + 1 terms around y, for each 
one of the function values that appear in LhU(y). The remainder term will be of 
order M in h. 

First of all we have: 

h2 ai j(y)Ai ju(y) 
i,j 

= E {E zlaw j(y)l -3aii(y)] u(y) 
(4.1) - f 

+ (2ai(y) - E lai(y)l[u(y + hi) + u(y - hj] 

+! 2 S laii(y)l [u(y + hi + eiih) + u(y - hi-eiihi)] 

where eii = sign (ai3(y)), (sign 0 = 1). 
Expansions for the relevant terms are: 

N 
2 

v 
h2 

+2), u(y+Ihi~) +u(y- hi) =2 (2Di ')! + ( 
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u(y + hi + eijh) + u(y - hi-iihi) 

- 2 E (2 (2v)E-D2wPD~u(y)) h + 0(hM+2), 

where N = (2(M + 1)]. 
Therefore, 

h2 , ai~y)3iju(y) = h' > aj,(y)ui(Y) 
i,j sii 

(4.2) + f {Z 2aii(y)D2'u(Y) 
P-2 i 

+ 2 la I .j') 
N 
D- D2u(y)j j 2! h + O(hM+2). 

Since 
IV P- 2P-12N) 

h&iu(y) = hu (y) + w D-u(y) 1 + O(h2N+ 

we finally get 
h2LhU(y)= h2Lu(y) 

+ ? 2aii(y)D~iwu(y) 
+ -2 i 

(4.3) *, a; y , (ve;i D2" 
- 

AM(y) 
i~i IA-1 A 

2w- h2P 

+ (2v)ai(y)Diw.1u(y) (2v) 

+ 0(hM+2) y E A, 

where the terms in the v-sum are a detailed expression for the local truncation error 
LhU(Y) - Lu(y). 

By taking N = 2 we obtain 

(4.4) Lhu(y) = Lu(y) + 0(h2), 

i.e., the discrete method is consistent of order two. 
By using (3.6) and (4.4) on the mesh function e(y) = v(y) - u(y) where v(y) 

satisfies 
Lhv(y) = f(y), y G A,, v(y) = k(y), y G oAk, 

and u(y) satisfies Lu = f, u = 4, we see that: 

I|e(y)|jI ? K ILhejj = 0(h2), 

and the discrete method is convergent of order h2. 
We finally assume that the global discretization error e(y) satisfies 

N-i 

(4.5) e(y) = e,(y)h2' + 0(hm) 
P-1 

where the e,(y) E CM-2w+2(A) are independent of h. 
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This is, of course, the type of asymptotic expansion that makes also possible the 
use of successive extrapolations to the limit [8]. 

5. Iterated Deferred Corrections (IDC). The results and hypotheses of the 
earlier sections allow the application of deferred corrections in a rigorous manner, 
in order to obtain a stable discrete method of high asymptotic order in h. 

The crucial point now is the construction of sufficiently accurate formulae to 
approximate the segments of the local truncation error (4.3). 

If all the ai+(y) (i $ j) are identically zero, then the problem takes the form: 

(5.1) Mu(y) aii(y) a2Y2 + as(y) ay) + a(y)u(y) = f(y) on A, 

u(y) = q(y) on OA. 

This simplified form, with no cross derivatives, can be dealt with as a Cartesian 
product of one-dimensional problems, i.e. each coordinate direction (or grid line) 
can be treated independently, using one-dimensional techniques. 

The general case (2.1), with the discretization (3.1), does require truly multi- 
dimensional techniques which, due to the order of the equation being considered, 
have only to be two-dimensional since only derivatives in at most two directions are 
present at any time. As this poses new problems, we shall delay its discussion to 
a later paper. At this time we shall only say that fast and accurate techniques for 
multidimensional numerical differentiation are available [4]; they have been tested 
for two and three dimensions and will soon be applied to problem (2.1). 

We concentrate our efforts now on the simplified form (5.1) and its discretization: 

Mhu(y) E[aii(y)Ajiu(y) + ai(y)6iu(y)] + a(y)u(y) = f(Y), y E AA, 
(5.2) 

MAU(Y) U(Y) = qS(y), y E OA,. 

Observe that now the requirement for a point to be regular is less strict: y E A, 
is a regular point iff y hi E A,. 

The asymptotic expansion for the local discretization error reduces to: 
N h~~~~~~~~~~~~~2, 

h2 Mhu(y) = h2Mu(y) + E E {2a i(y)DM'u(y) + 2vai(y)D2'-1u(y)I -- 
(5.3) i-i v- 

+ O(hM+2) y E Ah. 

We further require in what follows that the region A be convex. This is by no 
means indispensable but makes the ensuing developments simpler. 

Let us consider now an arbitrary grid line, say in the direction of the ith coordinate. 
All coordinates but the ith one are fixed, say to the values y, * * * , yi-1,Y.+i, * * . y# 

Let y be the vector that describes the coordinates of a point moving on that line, and let 
YLB, YRB be the coordinates of the intersections of the grid line with the boundary 
dA. If we consider the one-dimensional boundary value problem 

a2Uc.p) _u_5__ aii(p) d (Y) + a i () du = ? 
UL iLB)X U )a= 

U(PLB) = 4{PLB), U(YRB) = ck(URB), 
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and its corresponding discretization 

aii(Y)A/iu(Y) + ai(y)3iu(Y) = 0, 

U(YLB) = 0(YLB), U(YRB) = KYRB) 

then the inner sum in (5.3) is exactly the representation of the local truncation error 
for this problem (setting y _ ). This allows us to use the same technique we employed 
in [7, Sections 2, 3] in order to generate approximations to the segments of the local 
truncation error. At each point y we have just to produce appropriate one-dimensional 
differentiation formulae in each coordinate direction, and then add them all up in 
order to obtain: 

n k h2c+2 
(54) Sku(y) = E {2aji(y)D '+2u(y) + (2v + 2)ai(y)D'2+lu(y)} (2 + 2 
(5.4 

i i 
(2v _2_ 

+ O(h2k+4), k 1 , N - 1. 

Just for the sake of completeness we recall that the one-dimensional algorithm 
consisted essentially of the automatic generation of numerical differentiation formulae 
using linear combinations of ordinates. An improved version of the algorithm used 
in [7] can be found in [1]. 

In the present case we shall have formulae like: 
n Ji 

(5.5) SkU(Y) = EEii(yy) 
i=1 j=1 

where Ji = 2k + 4 or 2k + 3 according to the position of the point y on the grid 
line passing through it and parallel to the ith direction. The value 2k + 3 is used 
for those points that have at least k regular neighbors at each side of them on the 
grid line mentioned above. Counting also the boundary intersections we can center 
on y a 2k + 3 points symmetric formula in the direction i, which has the correct 
order of accuracy. If it is not possible to center such a formula on y, for instance 
when we approach the boundary, then a 2k + 4 points unsymmetric formula is 
necessary. We always use the "most centered formula" possible since that decreases 
the truncation error and the size of the weights as well. 

Once we have assured the construction of SkU, for any grid function U, then 
we can describe the deferred corrections procedure. 

(1) Solve (5.2) in order to obtain U0'?(y), y E A4h. 

(2) Compute S1 U'?'(y), y E A4h. 

(3) Solve 

(5.6)o h2MhA U(y) = S1 U(01(y), y C A4, 

A U(y) = O. Y EE Y Ah. 

(4) Correct U 1"(y) = U('(y) + A U(y) (AU means increment here, not Laplacian). 
Iterate. 
In the kth step we shall have: 

h2MhA U(Y) = Sk( Uck-1(y)) - Sk-l( Uk2) (y)), y GE Ah 

(5.6)k /A U(y) = 0, y E aAh, 

U(k)(Y) = U(k-1)(y) + A U(y), I I U(k) (y) - U(y) 11 = - 0 (2k+2) 
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If we are worried about storage, we can save some by solving directly for a cor- 
rected value rather than for a correction. The interest of correcting as indicated in 
formula (5.6) is that the AU(y) of the kth step is an asymptotic error estimate for 
the error in the (k - 1)th step. This statement is true in the general nonlinear operator 
case and we append a proof at the end of this paper. 

We shall prove here the statement for problem (5.1). If u(y) is the solution of 
(5.1) and we assume that the Sk (k = 1, 2, * *) satisfying (5.4) can be constructed, 
then we have 

(i) h2(Mhu(y) - f(y)) = F,(y) + O(h2k+4), where Fk(y) represents the sum of 
the first k terms of the local truncation error (see (5.3) and (5.4)). 

(ii) From (5.4) and Lemma 3.1 of [6]: 

SkU; Uk(y) = Fk(y) + O(h2k+4). 

Since Uk-l) satisfies 

h2Mh Ulk1 (y) = h2f(y) + Skl U(k-2)(y), 

we have 
h2Mh[u(y) - Ulk--)(y)] Fk(y) - S-1 U(k2)(Y) + O(h 2k+4), 

and by (ii): 
h Mh[u(y) - U(k-l)(y)] = S U -k-l)(y) _ S U01-2)(y) + O(h2k+4). 

From this last expression and the stability of the operator Mh ((3.6)) it follows that: 

jU(y) U(k1)(Y)II = I (h 2Ma) [Sk U(1)(Y) - Sk._ U(k-2)(y)]j I + O(h2k+2). 

Since we already know that Iju(y) - U(k-)(y)Ij is O(h2k), the solution AU(y) of 
(5.6) gives the most significant part of the error. 

6. The Casilinear Case. We extend now the results of Section 5 to the casi- 
linear case, by which we mean a problem of the form: 

(6.1) Lu(y) = E a1i(y) d2(V) + fys U , Vu) = 0, y E A, 

u(y) = +(y), y Ez A, 

where the second order part of L is a uniformly elliptic operator and satisfies (3.3). 
The difference here is, of course, that u and Vu appear nonlinearly on the source 
term. If we further assume that for y E A, all u, z, and a positive constant B: 

(6.1') f(y, u, z) < 0 and jf/2(y, u, z)j < B, 

then an argument similar to that of Bers [11] assures the existence and uniqueness 
of a solution of problem (6.1). 

If we discretize Vu(y) by means of 

Vhu(y) = (61U(Y), * *,U(Y)) 

then we can define 

LOu(y) = E ati(y)Aiiu(y) + f(y, U, VhU) = 0, y E Ah, 
(6.2) 

U(y) = +(y), y E aAh. 
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The linearized form of Lh u(y) is 

L'[u(y)]e(y) = E asj(y)A\ie(y) 
(6.3) 

+ E fpi(y, u, Vhu)be(y) + f(y, u, Vhu)e(y) = 0, 

wherepi =cu/Oyi. 
If we compare (6.3) with (3.1) we see that for a given u, fpi(y, u(y), Vhu(y)) and 

fu(y, u(y), V hu(y)) take the place of ai(y) and a(y) respectively. 
If a is as in (3.3) the constant corresponding to the linear part of Lu(y), then 

Bh < o assures the maximum principle for Ll[u(y)] (uniformly in u). 
In this case the discretization Lhu is uniformly stable and an application of 

Theorem 2.1 of [6] gives us discrete convergence of order 2, as in the linear case. 
Observe that the presence of derivatives in the nonlinear part makes the discreti- 

zation itself nonlinear. This presents some difficulties in the generation of the asymp- 
totic expansions, and in particular we have to require that f(y, u, z) be M times con- 
tinuously differentiable in all its arguments. With this assumption we can proceed 
to analyze the nonlinear part in the following form. Firstly we expand 

2N 
1 

U(Y) 
h 2N) 

(6.4) f(y, U, VhU) = u U, Vu + E D2'+'u(y (2 + 1)! + 0(h 

in a multiple Taylor formula around (y, u, Vu). Here 

D2u(y) - a1 ( ) 2+O u(Y)/ 

If we put 
N-1 ih2 

^ =(^if- ,-1 E(2v + 1)! 
and 

a f(y, U, V U) 
(Va, 6)f(y, U, Vu) - aV) 

s-ii 

then the desired Taylor expansion is 
N-1I 1 

(6.5) f(Y, U, Vhu) = f(y, U, Vu) + I - (V *, a)uf(y, u, Vu) + O(hN), 

where the powers (V,. , 6)" are to be interpreted as operator compositions. The 
problem is that (6.5) is not an explicit expansion in powers of h yet. In order to 
proceed further we introduce the following standard notation: 

.f ~,,, ?i nonnegative integers; 
n n n 

Ioi E S i; - JII hi ; a! = II ci!. 
i-I i-1 i=1 

We first observe that 

I (V,-, 6)"f(y, u, Vu) = 
0 

*U API * P*) * P 
/h. ~ ~ ~ ~~ 'Ioi=i JA 9pI' 4.. 

(6.5') 
= Z V1f(y, u, Vu) - 

Ioi~~~is ola 
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An algebraic manipulation gives 
N-1 

(6.6) = E a 4[u(y)]h2v + O(h2N), 
V= I X I 

where the coefficients ac,[ju(y)], obtained by collecting terms in equal powers of h, 
involve products of D, u(y) and numerical constants, but no h's. 

Now we obtain from (6.5), (6.5'), and (6.6): 

f(y, U, VhU) = f(y, U, Vu) 
N-i N-i 

+ Z E I V(y u, VU) EI a^[u(y)]h2' + O(h2N). 
p=1 I =I. C! -/A 

Or 
f(y, U, VaU) = f(y, U, Vu) 

(6.7) + Z {Z Z + Vf(y, u, Vu)av[u(Y)]}h2P + O(h2N). 
V-1 ,ul oa I-SA . 

Recalling from Section 4 the asymptotic expansion for the discretization of the 
linear part of operator (6.1), and adding to it the corresponding one for the non- 
linear part just derived, we finally obtain the asymptotic expansion for the local 
discretization error in the casilinear case: 

h2LhU(y) = h2Lu(y) 

(6.) + j { + laia(y)l E () iDi DPu-& )] D 

(6.7')1 Vpf(y, u, Vu)a0,, i[u(y)]}h2 

+ O(hM +2), y E Ah. 

This asymptotic expansion in even powers of h, together with the general results 
of [6, Lemma 3.1 and Theorem 3.2] allow us, theoretically at least, to proceed with 
the IDC method in this nonlinear case. However, it is clear from (6.7') that the 
general application of IDC may present insurmountable difficulties. 

There are two simplified cases of interest: (a) when f does not depend upon Vu; 
(b) when Vu enters only linearly in f, i.e. f is of the form 

f(y U, Vu) g(y, U) + E ai(y, U) 
i=1 ' 9y 

g(y, U) + (a(y, u), Vu). 

For (a) no discretization of the nonlinear part is needed, thus the expansion is 
the same as in the linear case. For (b) we have that Vf = 0 for Jul > 1, and 
therefore 

f(Y, U, Vhu) g(y, u) + (a(y, U), Vhu) 

(6.8) = g(y, u) + (a(y, u), VTu) 
N-1 i22 

+ E (a(y, u), D2 +iu(y)) (2v + 1)! + O(h2N). + - 2 
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In this case the nonlinear part of the local truncation error to be approximated is 
fairly simple, and at the step k of our correction process we can replace 

k 2 

Pku(y)- E D21~ u(y) 
V=1 ~(2v + 1)! 

by Tk, an O(h2k+2) approximation using only ordinate values of u(y) (y C Ah). 
Since for any smooth function u, 

(a(y, u), rku(y)) = (a(y, u), Tku(y)) + O(h 2k+2), y E Ah, 

then it follows from Lemma 3.1 of [6] that TkUlk-1) will be adequate for use in the 
IDC procedure. 

7. Numerical Results. We give now some numerical results obtained with a 
computer implementation of the IDC procedure. First we present results for a linear 
problem: 

Au = -2 sin (x + y), (x, y) E D, 

u = sin(x+y), (x,y)C AD, 

where D is the square of side 1. The exact solution of this problem is u(x, y)= 
sin (x + y). 

The basic discretization is the standard five point formula for the Laplacian. 
We used point SOR with parameter co for solving the linear equations at every cor- 
rection step. The results were obtained on the CDC 3600 computer at the University 
of Wisconsin Computing Center, with a FORTRAN 63 program operating in double 
precision mode (-25 decimal digits). 

For I = 1, h = 1/16, co = 1.6735, and k the correction number we obtained the 
results shown in Table I. The column headed ek gives the maximum (exact) relative 
error at the grid points, while ESTk gives the value estimated by using the procedure 
of Section 5. From Section 5 we have that 

ESTk = max I U(k+l)(y) _ U-(k)|II Ufk+1)(y) 
YEA,% 

By using the values ESTk we have implemented an automatic stopping criteria 

TABLE I 

SOR max. 
k Ek ESTk iterat. residual 

0 4.6 (-5) 4.7 (-5) 41 9.0 (-7) 
1 1.3 (-7) 1.3 (-7) 68 8.0 (-15) 
2 5.7(-9) 2.6(-8) 67 3.9(-17) 
3 2.4(-8) 7.1(-8) 73 1.4(-19) 

Automatic stop since EST3 > EST2. 
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for the sequence of corrections. The process is interrupted if at any time 

either ESTk 2 ESTkl or ESTk _ e. 

where e is the maximum relative tolerance supplied by the user. This criteria is seen 
at work in the results of Table I, and it has been equally effective in other problems 
run by the author. 

In Table II we give results for the same problem with I = 0.1, h = 1/160, 1/320. 
Here we have used a fixed number of terms (k = 4) in the corrections and have 
solved the linear equations to full accuracy all the time (max. res. < 1023). The j 
in the first column indicates the correction number. 

Finally we consider a mildly nonlinear equation that has been solved in [5, p. 184] 
by the methods of Ciarlet et al. [2]. The problem is: 

AU = U3 + (-2 + (1 -2)2)(ey(1 - 1 + u) + (-2 + (1 - 2y)2) 

.(ex' - I + u) -(ex"'z) - i)3eYt(1-Y) 
_ 

1)38 in D, 

u(x, y) = 0, in AD, 

where D is the unit square. 
We use Newton's method and point SOR in order to solve the linear equations 

at every Newton step. An adequate strategy is employed in order to terminate the 
several nested iterations producing an overall efficient procedure [8]. 

We compare in Table III the two best methods of Herbold (in terms of computing 
time) with IDC. The result with only one correction was obtained as a part of the 
run with three corrections and therefore the time is only estimated. The time can 
be improved if we want to perform only one correction, since that can be obtained 
with a linearized procedure [8], [9]. 

We are neither claiming nor implying that the IDC procedure should be preferred 
to the variational-spline approach. The only point we would like to make is that 
in this type of problem the numerical results for IDC are quite encouraging. 

Appendix. Using the notation of [6] we shall prove that a posteriori asymptotic 
error estimates can be obtained in the general nonlinear operator case. We recall 
some relevant facts: 

(i) 4Dh((phX*) = VlhFk+l(X*) + O(h (k+2)); 

(ii) Sk+l(PhX*) hFk+l(X*) = O(h ); 

TABLE II 

e(1/160) e(1/320) 

0 5.0 (-9) 1.3 (-9) 
1 1.5 (-II) 9.3 (-13) 
2 5.6(-13) 3.4(-14) 
3 1.1 (-13) 6.5 (-15) 
4 2.7 (-14) 1.6 (-15) 
5 8.0(-15) 4.8(-16) 
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TABLE III 

Maximum 
relative Time in 

Method error seconds Computer 

Herbold- 
Ciarlet ... 5.0 (-5) 3388 UNIVAC 1107t 
Hermite 
HO(WN) 

Same 
Splines 
SV2(7rN) 9.0 (-5) 2450 UNIVAC 1107 

Deferred 
Corrections 2.0 (-5) 200 IBM-360/40 
1 correct. (estimated) 

Same 
3 correct. 5.0 (-7) 327 IBM-360/40 

t The UNIVAC 1107 is about ten times faster than the IBM-360/40. This computation was 
carried out at the Departamento de Computacion, Facultad de Ciencias, Universidad Central de 
Venezuela, Caracas. 

(iii) SkI(&hx*) - Sk+l(U ) = O(hI (k+2); 

(iV) bh(Uk)) = Sk(U(1-1)). 

Combining (i) and (iv) we get 

Dh((PhX) - = th( U')) = phPk+1(X*) - Sk(U k1)) + O(h (k+2)), 

and by (ii), (iii) and the mean value theorem, 

bh( 
P 

(hX* - U(k)) = Sk+l(U(k)) - Sk(U k-1)) + O(h (k+2). 

From this last expression and the stability of 4% we get 

j~phx - -l 
= |I[I(U(k))]f(Sk+l(U(k)) - Sk(U(k-1)))I| + O(hv (k+2) 

The first part of the right-hand side can be computed by solving a linear problem 
after U`k) has been obtained. Since it is already known that I - U1k)XII = 

0(h .(k+l)), this computation gives us the most significant part of the global dis- 
cretization error. 
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