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A Posteriori Bounds in the Numerical Solution of
Mildly Nonlinear Parabolic Equations*

By Alfred Carasso

Abstract. We derive a posteriori bounds for (¥ — V) and its difference quotient (¥ — V).,
where ¥ and ¥ are, respectively, the exact and computed solution of a difference approxi-
mation to a mildly nonlinear parabolic initial boundary problem, with a known steady-
state solution. It is assumed that the computation is over a long interval of time. The
estimates are valid for a class of difference approximations, which includes the Crank-
Nicolson method, and are of the same magnitude for both (¥ — V) and (¥ — 1),.

1. Introduction. Let & be the strip {(x, ?) |0 < x < 1, ¢t > 0} in the (x, 7) plane
and consider the mixed problem

u, = [alx, Ou,], + blx, Hu, — f(x, t, u), x, ) ER,
(1.1) ux, 0) = x(x), 0=x=1,

u(01 t) = ¢](t)’ Il(l, t) = ¢2(t)’ t > 0-

We assume that a(x, 1), b(x, ?) are “smooth” bounded functions on ®, with
a(x, 1) = a, > 0, and that f(x, t, w) is, at least once, continuously differentiable
on RX{— o < w < + =} with df/ow = 0. Moreover, df/dw is to remain bounded
if w stays bounded. The coefficients, data, and f are assumed such as to assure the
existence and uniqueness of a solution u(x, ), four times boundedly differentiable
in ®, and converging to a steady state value u™(x), as t — «. We assume u"(x) is
known and that, by means of asymptotic formulae and the like, one can estimate
|lu(-, ©) — u”||; as a function of ¢, for ¢ sufficiently large. The analytical theory for
such problems is discussed in Friedman [5].

Several finite-difference methods for the numerical computation of (1.1) have
been shown to converge; see for example [4], [6], [8], [10], [3] and their references,
and especially [9] for the linear case.

Because of round-off error, and the fact that one may need to use iterative methods
at each time step to solve the nonlinear difference equations, only an approximation
V* to the exact solution V™ of the difference equations can be computed in general.
In [3], 2 “boundary-value” method for (1.1) was analyzed. This method yields an
a posteriori estimate for ¥ — V by simply computing residuals. In the present note
we make use of some of the results in [2] and [3] to derive such an estimate for a
class of stable “marching” procedures for (1.1). Unlike the situation in [3], however,
the estimate will involve bounds on the derivatives of u. It is interesting that the
estimate is of the same magnitude for both (¥ — V) and its difference quotient
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2. Notation. Let ®, be the rectangle {(x, 7)) |0 < x < 1,0 < t < T} and let
M and N be positive integers. Let Ax = 1/(M + 1), At = T/(N + 1), and introduce
a mesh over ®, by means of the lines x = kAx, k = 0,1, .-+ , M + 1,1 = nAt,

n=20,1,---, N+ 1. Let v} denote v(kAx, nAt). Define V" to be the M-component
vector

@.1) vt = {ol,eh, cee ,0h) T

and let ¥ be the “block™ vector of MN components

2.2) v={v,v,. .., v}

Although we will be dealing with real-valued mesh functions, it is convenient to
define scalar products and norms for complex vectors. For any two M vectors V",
W let

M
(2.3) (v, W™ = Ax > viwh
k=1
and let
(2.4) 7|z = (V" V™).
Let
M n — 2
@.5) 17211 = ax 3 s uil
k=0

where v;, v3,, are defined to be zero.
For block vectors ¥V, W define

(2.6) (V, W) = At ”}é(V", w")
and let

2.7 Hvllz = (v, »,

@.8) V.1 = ar 3 1172,

Finally, for a square matrix 4, define ||4|| in terms of vector norms, i.e., as

2.9 [l4]l = Sup [|4X]],
X =1
the supremum being taken over all complex vectors.

3. Difference Approximations to (1.1). Let U" be the M-vector consisting of
the solution to (1.1) evaluated at the interior mesh points of the line # = nAtf and
let V™ be the corresponding exact solution of the difference equations used to ap-
proximate (1.1). Define E* = V™ — U". We will consider the class of marching schemes
which lead to a priori estimates of the form

@3.1) (IEE + BRI £ KA + Ax™),  nAt £ T,

where r and s are positive integers and K(7') is known. An example of a difference



SOLUTION OF MILDLY NONLINEAR PARABOLIC EQUATIONS 787

scheme for (1.1) satisfying (3.1) with » = s = 1, is the Crank-Nicolson version ana-
lyzed in [8]. In geaeral K(T) will involve bounds on q, b, f, u and their derivatives,
as well as a growth factor. The reason for the latter is that, even if the exact solution
to (1.1) decays asymptotically to a steady state, the exact solution of a stable, con-
sistent, difference approximation may grow exponentially as nAt — «, Af fixed.
Hence, we cannot expect K(7T') to remain bounded as T'— «, in general. We remark,
however, that in [7], Kreiss and Widlund have shown how to construct schemes
(for linear time-dependent problems with periodic boundary conditions) which
preserve the asymptotic behavior of u(x, ¢) provided |b|At/Ax < 1. In the following
we will derive bounds for ||V — V||, and ||V, — V.||, for computations of (1.1)
up to some “large” but fixed time 7. These bounds will depend on K(7).

We begin by deriving new finite-difference equations for the exact solution {¥"}
of a difference scheme used to approximate (1.1). Since V" = U" + E", we have

n+1 n—1 n+1 n—1 n+1 n—1
Uy — Uy _ U, — U + € T €
(3.2) 2At 2At 2At
au n+1 — e‘;:—l At?
= (6t) + oAt + 6 (Ueeedes

where “0” represents a mean value of ¢ called for by Taylor’s theorem. From (1.1)
we have

At ay Uy — Up) — Qp_vyo(Uy — U
(6t> + (utt')k —_ k+'l/2( k+1 k) k 1/2( k k l)

2
(3.3) Ax
oy S tio) s, nav, i) + 72,
where
” At (“tu)k
3.4) SRR T
— Axﬁ{(ua:)k(;lzzz) + (uzx);(axx) + (uzzz)Gk(az) + (a ura:x) + bk(”zzz)}

From (3.2) and (3.3) we have

1 -1 ‘
@O =) Gheap@he — V) — a1/ — Ui_1)

2At Ax®
+ 2Ax flkAx, nAt, uy)
(3.5) I A S C ¥l 00
. 24t ¥ 2Ax
_ {@hi1/2(€her — &) — Gh_v12(€h — €1}

Tn
2 k
Ax !
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with the initial boundary data
x(kAx), k=1,:---, M,

0
Uk

(3.6)
vo = ¢1(nAt),  Uis1 = @p(ndf), n=1,2,---.
With T = (¥ + 1)At we now consider the system formed by equations (3.5) for

n=1,2, .-, N. It is convenient to write this system in matrix-vector notation.
Let L" and B" be the tridiagonal M X M matrices defined by

(a';n/z + 0’1‘/2) _07+1/2 o
no__ _1__ _a7+1/2 . °,
3.7 L" = A . . .
_034—1/2
o —a,z‘u—l/z (a;l+1/2 + a;l—l/z)
0 —b; o
oo L8 '
(3.8) B" = Ax

O ' ¥ 0 —by,
and define the M-vectors 7*, F'(U), and G" by

(3.9) ™= {1 0, Tl
(3.10) F(U) = {fi@), f3@), -+ , fau@)}”,
where

fa(u) = f(kAx, nAt, uy)
and
(3.11)

n 1 n 4 n n
G" = Kx_z {(al+1/2 - %‘Axbl)%(nAt), 0,0, «--,0, (dags1/2 + —%Axb,,,)goz(nAt)}r.

We may then write (3.5), (3.6) as

Va-l-l _ Vu—l

AT = —L"V"— B"V'— F(O)+ "+ G

(3.12)

+1 _ pme1
En——éFEm——I—B"E"-l-L"E", n=1,2,---, N.

..I_
Some further definitions will enable us to write (3.12) in “block” form. Define
the MN X MN block tridiagonal matrix P by (with ¢ = 1/2A%)
L'+ BY - ol ®)

—cl .

(3.13) P

(o) “—el ("4 B o1



SOLUTION OF MILDLY NONLINEAR PARABOLIC EQUATIONS 789

For any real block vector £ define the M X M diagonal matrix C"(§) by
fu(Ax, nAt, &) O
(3.14) e =

O  f.(Ax, nAt, £y)
and let C(%) be the block matrix
c'® o
(3.15) cE) = -
o c'®)
Finally, define the block vectors F, G*, H, and r by
3.16) F= {F', F*, --- , F"}7,

V° VN+1}T
* 1 —_ 2 L. N
B17D G {G +2At’G’ » G oAz ]

2 _ 0 N+1 _ pN-1
(3.18) H = {%—A—tf- + (L + BYE, e e , E-—Z—At—EN— + @+ B”)E"}

(3.19) 7= {7, -, "}
With this notation we have from (3.12)
(3.20) Py = —FU)+ G*+ =+ H.

LeMMA 1. Let D be a diagonal matrix of order MN with nonnegative real entries
and let

T
’

3.21) Q=P+ D.
Let b(x, ©) in (1.1) satisfy
(3.22) g—i] < b < 2am°, V6 E Rg.
Fix ¢ > 050 that agw® — by/2 — € = & > 0. If Ax < (12¢/apn)”?, Q" exists and
_ 1
(3.23) Sup o™ xil. = =
X real, 11X11351 @
Moreover, if QW = Z, where Z is real we have
2w + b,)‘”
< [ T 91
(3.24) W]l = ( s [1Z]ls-
Proof. See [3, Lemma 1].
Remark. 1If
A o)
D= A ,
(0]
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where A is a diagonal M X M matrix with nonnegative real entries, and if a(x, ),
b(x, f) are independent of ¢, Q™" exists and remains bounded for all sufficiently small
Ax independently of hypothesis (3.22). This observation is relevant to the case where
(1.1) is linear with time independent coefficients, i.e., a = a(x), b = bx),
and f(x, t, ¥) = c()u + h(x, t) with ¢(x) = 0. See [1, Lemma 1] and [2, Lemma 4.2].

4. A Posteriori Bounds. Foreachn = 1,2, -+ , N+ 1, let V" be the computed
solution at ¢ = nAt, of the difference equations used to approximate (1.1) and consider
the block vector

4.1) v= (v, v, V"7

Define G* to be the block vector obtained from G* when V**' is replaced by VV*.
Compute the block vector R given by

4.2) R = PV + F(V) — G*.
Subtracting (4.2) from (3.20) we have
P(V — V)= —F(U)+ F(M + G* = 6*) +r+ H—R
4.3) = =AU+ FM) + FP)— KN+ (G* =6+ 1+ H—R
= —CEWU — V)= COV — P)+ (G* — G+ 7+ H — R,

I

for some intermediate real block vectors £ and ¥ on using the mean value theorem.
Hence,

@44 [P+COV— V)=r71+ H~—R+ (G — G~ Ce&U— .

Since f, = 0, C(¥) is a diagonal matrix with nonnegative real entries. By Lemma 1,
we may estimate ||V — V||, ||V. — V.||», provided we can estimate the terms other
than R on the right-hand side of (4.4). We will make use of the a priori estimate (3.1).
Let a*, b* be upper bounds for a(x, £) and |b(x, 7)|, respectively, in Ry.
Since

n 1 n
(L E”)k = xz ay— 1/2(€k - ek-—l) + z ak+1/2(€k — €k41)

we have
n (ék - Ek—x) a* d (€2+ - 6’1:)2}‘/2
et B 2 o f i
ws) IL"E™], = ; + 34 X :
2 S A r+1 .

< T IEL = 2a*Km( — + Ax)-
Similarly,
(4.6) [|B"E"||; < b*K(T)(Ax"*' + A™Y)
and we have

s+1

@ Sl = B s koar + 250,

Hence, we can estimate ||H||, by
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4.8) [|H|l: £ T2 K(T)AF + Ax '“)(b* + = + Alt)
We estimate ||G* — G*||, as follows: First,
“.9) lIG* — G*Il» = 1/2 HPY = v .

If U” is the M-vector consisting of the steady state solution, we have from (3.1)

6% = 6%l = 5z 1P = U7l + 107" = U711}

(4.10)

r+1 s+1
+ RS,

Since we assume U® is known, and that {u(x, 1) — u”(x)} can be estimated as a
function of ¢z, the right-hand side of (4.10) can be estimated.

We may estimate ||C(£)||, by using the a priori estimate (3.1), since £ is an inter-
mediate value, and since f,(x, t, w) is bounded if w is bounded. This means we can
find a constant K; such that

(4.11) [ICE(V — O)ll: £ K K(DT* A + Ax™™).
Finally, we assume a bound is known for the derivatives of u occurring in (3.4) so that
4.12) [I7]ls £ T’ K.(Af® + Ax”), for some constant K,.

Using Lemma 1 and (4.8), (4.10), (4.11) and (4.12) we have
THEOREM Let b(x, 1) in (1.1) satisfy |0b/3x| < b, < 2aer” and fix ¢ > 0 so that
am® — 3b, — € = w > 0. Let

4.13) Ax £ (12‘)
QAo

Let V. = {V"} and V = {V"} be, respectively, the exact and computed solution
of a difference approximation for (1.1) satisfying (3.1). Finally, let R be defined by (4.2).
Then

1 + ® + - R
1V = Pl S 5 1P = 07l + 1107 = 07y} + LBl

T2 K, (AL + AxD)

(4.14) +
w
1/2 A r+l s+1

e ){Kl + om0 +2 }

and
”Vz - Vs”2
2046\ 1 e e R
5( 2;3 ) {mw AP = Ul + U = Tl
(4.15) + IRl + KTV(AF" + Ax") + K(DTV*Ar™ + Ax'™)
1
.(Kl +2(AtT)1/2+b —I--——-I- )}.
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