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A Procedure for Conformal Maps of Simply Connected 
Domains by Using the Bergman Function 

By J. Burbea* 

Abstract. Conformal maps of simply connected domains onto the unit circle are computed 
by means of the Bergman function of the domain. Ellipses and squares are mapped by this 
method. Further various parameters of the Schwarz-Christoffel formula are computed in 
terms of the Bergman function. 

1. Introduction. Conformal maps of simply connected domains onto the unit 
circle are computed by means of the Bergman kernel function of the domain. As an 
example of this method we map ellipses and squares and compare numerical results 
to known results. We also compute various parameters of the Schwarz-Christoffel 
formula in terms of the kernel function. The computation is programmed in Fortran 
and run on the Golem-1 and CDC 1604 at the Weizmann Institute of 
Science, Rehovot, Israel. In general the method gives good accuracy. For two- 
four- and eightfold symmetric domains the method can be simplified to decrease 
the amount of computation needed to achieve the same accuracy as would be achieved 
by the method for the general case. 

2. General Theory. Let D be a bounded simply connected domain in the z-plane 
with the boundary C. Consider the separable Hilbert space ?2H(D), which consists 
of all square integrable analytic functions in D. Let {I op(z) l Z be any orthonormal 
basis of ?2H(D). As is well known, the Bergman kernel function 

co 

(2.1) KD(Z, I) - jP (z)(Pv(t) 
J/1 

is independent of the choice of the orthonormal basis and belongs to ?2H(D) as a 
function of z or t. The kernel function is also uniquely characterized by its reproducing 
property, namely, for each f E ?2H(D) we have 

(2.2) f(t) = ff f(z)K(z, 7) dx dy = (a, K(z, 7)), 

where (f, g) denotes the scalar product in ?2H(D), i.e., for f, g E ?2H(D) we have 

(2.3) (f, g) = fff(z)g(z) dx dy. 
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Here we have 

(2.4) ((P, = GP 

The kernel function is relative invariant, that is, if w = f(z) maps D conformally 
onto D*, then 

(2.5) KD(Z, 1) = KD*(W, Vf'(z)f'(O, V = f(t). 

If D* is the unit circle, then the mapping function w = f(z)A which satisfies 

(2.6) f(t) = 0, f'(t) > 0, 

where t is a given point in D, is given by 

7r 1/2 p 

(2.7) f(z) = (tor ) j K(t, 7) dt, K(t, 7) = KD(t, 7) 

As is well known, if the complement of D is a closed domain, then the set {zI 
forms a complete set in ?2H(D). By applying the Gram-Schmidt procedure, we 
obtain the sequence of the orthonormal polynomials { P(z) ' 0 given by 

(2.8) P.(z) a i k s n = 0, 1, 2, * 
ka-o 

The {ank} are determined recursively by 
/n n \1/2 

(2.9) ak = C%*/ E E cnieni(zi Zi)) 

where 
n-1 i\ 

(2.10) C..s = 1; Cnb = -E aii(z) , k = 0, 1, 2, n- 1. 
i-; i-Ot 

The computational procedure is as follows. The domain D is given by its boundary 
C which is described by a set of N complex numbers zk = xk + iyk, k = 1, 2, -.. , N. 
Using these numbers, we determine the values of the functions 1, z, , zn along 
the boundary. They are represented by the N-dimensional complex valued vector 
of its values at the points zk, k = 1, * , N. 

We use the Green formula to evaluate the moments 

(2.11) (Zngz") = 7, dxdy = I 1) z+d 
JJD ~~2i(n +1)JcZ dz 

Numerically the moments are approximated by the Gaussian quadrature rule (48 
points) (see [3]), that is, 

N 

(2.12) (Zs Z ) i +1 WkZ kzk 

Here, wk are the positive weights as given in [3] for 48 points. Then using (2.9) and 
(2.10), we obtain {Pk(z)}._O, see (2.8), whence, after determining the point t, we 
form the sum 

n 
(2.13) Kn(Z, 7) = E Pk(z)Pk(t). 

k=O 
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After formal integration of the polynomials {P,(Z)}(_) we obtain the coefficients 
of the approximated mapping function fn(z). The quality of the approximation and 
the rate of convergence can be determined by the evaluation of fn(z) at the points 
JZkj}*k to see how close they are to the unit circle. 

Following Rabinowitz [6], the notation used is as follows. N is the number of 
points on the boundary of D; n is the number of functions used, and we define 

(2.14) max 3(fj) = max I1 -fn(Zk)1, 
k.1, * * *,N 

(2.15) min 8(f) = min jI - f(Zk)I 
k-i, ***,N 

We write o for values greater than 10i, nmax is the value of n up to which orthonormal 
polynomials { P,(z) } n_ were computed. nmi, is the smallest n for which fn is computed. 
n0,, is that value of n among nmin and nm.X for which fn was computed and for which 
max5 was a minimum (nmin < nopt < nmax) 

3. Normalized Ellipses. 
Example 1. Let D be the ellipse 

(3.1) D = {(x, y): b2x2 + a2y2 < a2b2} z = x + ly, 

where 

(3.2) a2 - b2 = 1, 

i.e., the foci of D are located at z = t 1. As is known (see [5, p. 260D, the mapping 
function f(z) which maps D onto the unit circle such that 

(3.3) f(0) = 0, f'(0) > 0 

is given by 

(~ )(-)) cos (2n + 1)w 
(3.4) f(z) = 2a ,~2n+1 -2n-1 

(3.5) ax2 E 2n+ I 2n1, p = (a + b)2, 

n-0 P P 

(3.6) W = Cos' Z. 

In the first quadrant of the ellipse we have 

(3.7) w = cos z = -i log (z + (z2 - 1)1/2). 

We choose a = 2(0.2)3 and compare the results obtained by using (3.3)-(3.7) with 
those obtained by the method described in Section 2. Here, 

(3.8) Zk = Xk + IY, Xk = a cos Ok, A = b sin Ok, = (k - 1)/90, 

(3.9) Wk = Uk + iVk = Re {f(zk)} + i Im {f(Zk)} = f(zk), k = 1, 2, , 46. 

The number of terms in the sums (3.4) and (3.5) will be determined by the criterion 
that the ratio of the additional term over the new sum is less than e = 10-12. Table 1 
describes the results obtained due to (3.3)-(3.7) for a = 2.6 and b = 2.4, and Table 2 
describes the results obtained from the method described in Section 2 for the same 
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TABLE 1 

Ok Xk Yk Uk Vk XJI(k)| 

01 2.600 .000 1.000 2.35910-12 1.000 
05 2.575 3.340.10' 9.930.10' 1.182*10' 1.000 
016 2.252 1.200 8.979*10-' 4.402*10' 1.000 
020 2.049 1.478 8.329.10-' 5.535*10' 1.000 
031 1.300 2.078 5.598*10' 8.286.10' 1.000 
046 3.450.10-6 2.400 1.548 10' 1.000 1.000 

a and b but n ? 7. Note the fast convergence of this mapping. This is mostly due 
to the fact that a >? 1, here, a = 2.6 and hence, b = (a2 - 1)1/2 = 2.4; thus. b is 
of the same order of magnitude of a. Therefore, the ellipses are in this case close 
to circles. Thus, the Gram determinant is far away from zero and the powers of z 
are almost orthogonal. We will return to the ellipses in the next section. 

4. Fourfold Symmetric Domains. Let D be a simply connected fourfold sym- 
metric domain around the origin. Let us seek the mapping function which maps D 
onto the unit circle such that the origin is mapped onto the origin. Here, the boundary 
C is composed of four symmetrical parts 

4 

(4.1) C =UC*.. 
k-i 

The moments (zm, z') are given by 

(0, m-nO0 (mod 2), 

(4.2) WI, z) 2 
t ~~~~~~~~itZ12m IM [2nf-tnl dZ] m n (md2 + 

m ~~~~r- n 0 (mod 2). 

The orthonormal polynomials {Pn(z)}' are given as in (2.8)-(2.10); however, 

(4.3) amn = imn; Cmn = Zmn f n < m, 

(4.4) amn = Cmn = 0, m - n 0 (mod 2). 

TABLE 2 

0k Xk Yk Uk Vk f(Zk)I 

01 2.600 .000 1.000 .000 1.000 
0,5 2.575 3.340.101 9.930*10' 1.181.10-1 1.000 
016 2.252 1.200 8.979*10-1 4.402*10-1 1.000 
020 2.049 1.478 8.329.101 5.535.101 1.000 
0231 1.300 2.078 5.598.101 8.286.101 1.000 
046 3.450.10-6 2.400 1.548.10-6 1.000 1.000 
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Therefore, P.(z) = P.(2) and further 
m m 

(4.5) P2m(Z) = Ea2..2kZ ; P2m+l(Z) >. a2m+1.,2k+1z 
k-o kao 

Here, 
co co 

(4.6) K(z, 0) = E P2m(Z)P2m(0) = E a2m,0P2m(z). 
m=O m-0 

Let w f(z) be the mapping function from D onto the unit circle such that 

(4.7) A(O) = 0, fN(o) > 0. 

Then 
co 2n+ 1 (O as o 

(4.8) A~Z) = SE 2n 
Z 

I t a2A;.oa27,,2nf 
,-O 2n+ I k-n 

c2) 

where 

(4.9) S co 2 

EnA=0 a2., 0 

We have the following significant simplification. First the odd powers of z do not 
appear in the kernel function, as is seen in (4.2). Therefore, only orthonormalization 
of the even powers of z is needed. Further the nonvanishing moments are given by 

__ I j~n1 2 1 
(4.10) (zmI z) = 1 Im [Zmn-+l] dx + Re [Zm2n+l] dy. 

Numerically we use the trapezoidal rule or the Gaussian quadrature rule, but instead 
of N we actually take 

(4.11) N1 = N/4 + 1. 

Example 2. For the sake of comparison, see [6, Example 2, Table 3], we let 
D be the ellipse 

(4.12) D {(X' Y): + Y2 < 

(4.13) N = 180, Ok (k- 1)7r/90, k 1, 2, ,N1. 

TABLE 3 

a nmi. max 6 nmax max 6 nopt max 6 min a 

1.25 7 .000002 19 .000004 7 .000002 .000000 
2.50 4 .023 19 620 10 .000061 .000000 
5.00 4 .16 13 159 9 .015 .0005 

10.0 4 .41 13 o 7 .20 .01 
20.00 4 .65 13 o 7 .45 .003 
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Table 3 describes the results of Rabinowitz, while Table 4 describes the results of 
our method. In these tables max8 is computed for nmiD, nmaz and n0pe, respectively. 
For large a the roundoff error is very large in the case of Table 3. The influence 
of the roundoff on the mapping function for large a in the Rabinowitz case is ex- 
plained in [6] as follows. For large a the ellipses are so thin as to have the properties 
of line segments and that orthonormalizing the power of z on a line segment is 
equivalent to inverting a Hilbert matrix which is nearly singular. 

Integration in the case of Rabinowitz is over the boundary of the domain, and 
hence, he exploits the Szeg6 kernel function. However, as is seen from Table 4, we 
do not have in our method this ill-conditioned problem. This is due to the fact that 
in our case integration is over the domain D, and hence, though the ellipses are 
very thin, they still possess a finite area which ensures the Gram determinant to 
be far away from zero. Therefore, adding of functions to the system of functions 
needed for the orthonormalization (up to a certain number of functions) improves 
the approximation and does not spoil it. For a = 1.25, 2.50 it should be understood 
that n > n01t gives the same result in Table 4. In general, we have nopt _ nmlmx, even 
for a 20 and n 24 we still have maxb = .611. However, n01t between 4 and 13 
is not 13 but n01t = 11. After this number the roundoff error is larger. The reason 
for this is that for large n, zk = (a cos Ok + ib sin 0,)G, a >> b, is almost equal to z47'. 
Hence, the Gram determinant is very near to zero, which spoils the orthonormaliz- 
ation. For a = 30 the roundoff error is very bad, as is seen from Table 5. Here ok, 

Xk, Yk, U, V, If(zk)I are given as in (3.8), (3.9), but a = 30, b = 1 and n = 18. Table 5 
is computed according to the method described in Section 2. 

5. Eightfold Symmetric Domains. For domains with eightfold symmetry 
around the origin we obtain twice the simplification obtained for fourfold symmetric 
domains around the origin. Analogously to Section 4 we have 

8 

(5.1) C= U C. 
k-1 

The moments are given via 

i0, m-n n 0 (mod4), 
(5.2) (zm, z ) = 

11+ 1 fc |Z12m Im 
[2n-m+l 

dz], m- 0 (mod 4). 

The orthonormal polynomials are given by 

TABLE 4 

a nmin max a nmaz max nopt max a min 

1.25 4 .0002 19 .0000 5 .0000 .0000 
2.50 4 .0385 19 .0000 11 .0000 .0000 
5.00 4 .1950 13 .0122 13 .0122 .0010 

10.00 4 .5360 13 .0964 13 .0964 .0012 
20.00 4 1.1040 13 .2920 11 .2240 .0068 
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TABLE 5 

Oa Xk Ok Uk f(zk)| 

01 30.00 .000 1.391 .000 1.391 
0r5 29.71 1.392.101 6.902.10'1 7.565. 10-2 6.943*10-' 
016 25.98 .500*10-1 8.821*10-1 -2.523.10-1 9.175*10' 
020 23.64 6.157*10-1 1.288 2.465.10-1 1.312 
031 15.00 8.660.10-1 4.933*10-1 7.059. 10-2 4.983.10' 
046 3.98*10-5 1.000 3.521 10-5 8.007*10-1 8.007*10- 

in 
(5.3) P4m+ (Z) = a4m+l,4k+1Z 

4 
1 = 0, 1, 2, 3. 

kio 

Further, 
co 

(5.4) K(z, 0) = j a4moP4m(Z). 
m-0 

The mapping function from the eightfold symmetric domain D onto the unit circle 
satisfying (4.7) is given by 

co 4n+1 co 

(5.5) fRZ) = S Z Z 1 a4koa4k 4J ) 
n-o fl+ 'k-n 

where 

(5.6) S = o 
En-o a4n, 0 

Numerically, we use the Gaussian quadrature rule for 48 points, where we actually 
need 

(5.7) N1 = N/8 + 1. 

The only powers of z which appear in the kernel function are those which are multiples 
of 4. Hence, we only orthonormalize those powers of z. 

Example 3. Let D be the square with the boundary 

(5.8) C = {(x, y): jxj = a. jyj < a or jyj = a, jxj ! a}. 

Here, 

(5.9) Cl={(x, y): x = a, 0 < y <a}. 

The moments are given by (for m - n 0 0 (mod 4)) 

(5.10) (zm zn) = + a + j+2 (x2 + 1)"' Im [(x + i)n"m+l] dx. 

The first five orthonormal polynomials are given by 

(5.11) Po(z) = 1/2a; Pj(z) = (1/2a 2.(3/2)"/2)z; P2(z) = (3/4a3(5/7)1/2)z2 

P3(z) = (l/a4(35/96)1/2)z3; P5(z) = (1/a5(7/19456)"/2)(30z4 + 8a4). 
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TABLE 6 

k Xk Yk Uk k If(Zk)| 

1 .7 .0 9.847.10-1 .0 9.847-10- 
6 .7 1.750.10-1 9.493.10-1 2.957.10-1 9.942.10- 

11 .7 3.500.10-1 8.566.10-1 5.381-10-1 1.012 
16 .7 5.250.10-1 7.479.10-1 6.810.101 1.012 
21 .7 7.000O10-1 6.918.10-1 6.918.10-1 9.784.10- 

Numerically, we take 

(5.12) xk = a; yk = (k - 1); k = 1, 2, ,21. 

Table 6 describes the results for a = .7, n = 5 for 48 points of the Gaussian quad- 
rature rule. Note that the results of Table 6 could also be obtained if integration 
was done analytically as in (5.11) since the 48 points Gaussian quadrature is an 
exact integration for each polynomial of degree ?2.48 - 1 = 95. As is shown in 
Table 6, the corners of the square give poor results. 

Example 4. Let D be the square with the boundary 

(5.13) C = {(x,y): IxI = 1, jylI < 1 or jyI = 1, IxI ; 1. 

By the Schwarz-Christoffel formula the mapping function of D onto the unit circle 
is given by 

(5.14) f( az + 
1 

+ ?-z9 + 1a z'3 + 
10 1f20 15600 

where 

(5.15) a! = f 4t4 1/2 = .92703734 

(see [4, p. 159]). From (2.7) and (5.6) we also have 

TABLE 7 

Term Exact Value n = 4 n = 7 

a 9.270373386507 10-' 9.270373343435 10-1 9.270373386522 10-1 
5 

a 6.846776221877* 10-2 6.846682430405a 10-2 6.846776221888a 10-2 
10 

9 

a 4.213992852820*10-3 4.207708065293*10-3 4.21399285282710-3 
120 

I la 2.633492188752* 1O- 2.53460527343. 10- 2.633492188653-1O- 
15600 
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(5.16) a f'(0) = SK(O, 0) = a4n) 
n-0 

Further, comparing (5.5) with (5.14) we obtain relations expressing the powers 
of a in terms of the coefficients which appear in the algorithm of the orthogonalization 
in (2.8)-(2.10). As an example we have 

5 I co 

(5.17) S- E a4S,0a4k,4 I10 2k-i 

and so on. We compute these coefficients by the method of the Bergman kernel 
function. For the orthonormalization we start with four functions and end with 
eleven functions. In Table 7 we compare the computed results of our method with the 
known values. It should be noted that from n > 7 we have similar results for n = 11. 

Mathematics Department 
Stanford University 
Stanford, California 94305 

1. S. BERGMAN, The Kernel Function and Conformal Mapping, Math. Surveys, no. 5, Amer. 
Math. Soc., Providence, R. I., 1950. MR 12, 402. 

2. S. BERGMAN & B. CHALMERS, "A procedure of conformal mapping of triply-connected 
domains," Math. Comp., v. 21, 1967, pp. 527-542. MR 37 #14243a. 

3. P. DAVIS & P. RABINOWITZ, "Abscissas and weights for Gaussian quadratures of high order," 
J. Res. Nat. Bur. Standards Sect. B, v. 56, 1965, pp. 35-37. 

4. D. GAIER, Konstruktive Methoden der konformen Abbildung, Springer Tracts in Natural 
Philosophy, vol. 3, Springer-Verlag, Berlin, 1964. MR 33 p7507. 

5. Z. NEHARI, Conformal Mapping, McGraw-Hill, New York, 1952. MR 13, 640. 
6. P. RABINOWITZ, "Numerical experiments in conformal mapping by the method of ortho- 

normal polynomials," J. Assoc. Comput. Mach., v. 13, 1966, pp. 296-303. 


