
MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 112, OCTOBER 1970 

Control and Estimation of Computational Errors in the 
Evaluation of Interpolation Formulae 

and Quadrature Rules* 
By Sven-Ake Gustafson 

Abstract. Approximate rules for evaluating linear functionals are often obtained by 
requiring that the rule shall give exact value for a certain linear class of functions. The 
parameters of the rule appear hence as the solution of a system of equations. This can 
generally not be solved exactly but only "numerically." Sometimes large errors occur in the 
parameters defining the rule, but the resultant error in the computed value of the functional 
is small. In the present paper we shall develop efficient methods of computing a strict bound 
for this error in the case when the parameters of the rule are determined from a linear 
system of equations. 

1. Introduction. In this paper we shall analyze mechanical quadrature rules 
and interpolation formulae which have been determined numerically by means of 
solving a linear system of equations. These processes can often not be carried out 
exactly and we want to study the errors in the computed value of the functional 
which thereby arise. 

In Section 2 we give a general formulation of rules which can be found by using 
the method of undetermined coefficients and we outline a computational process 
which delivers a strict bound for the effect of computational errors on the value of 
the functional. 

In the last section we treat so-called Newtonian feasible rules (defined in that 
section), a class of formulae which contains the Lagrangian and Hermitian rules 
as special cases. These rules have the pleasant property that they can be computed 
by a small number of multiplications and divisions. We give a general theoretical 
result on bounds for computational errors by the use of such rules and illustrate 
with examples that it is possible to solve problems in integration and summation 
of series in an efficient fashion by using the algorithms in [2]. 

2. A General Class of Linear Rules. We introduce some notations which will 
be used in this section. Let [a, b] be a closed bounded interval and let f; fi, f12, *. , 
be n + 1 given functions on [a, b]. Further, let L; L1, L,, *. , L be n + 1 given 
linear functionals such that L(f), L,(f). L(f,) are all defined for i = 1, 2, ... n, 
r = 1, 2, ., n. 

Put y, L(f,), r = 1, 2, *.. , n, and let these numbers be known. Sometimes 
we shall call y,, Y2, ... *, y moments with respect to L and the system of functions 
fA, f2, ... , fn. This terminology is motivated by the fact that a wide class of linear 

Received September 10, 1969, revised March 6, 1970. 
AMS 1968 subject classifications. Primary 6580, 6555; Secondary 6520, 6525. 
Key words and phrases. Computational errors, interpolation formulae, quadrature rules, linear 

rules, residuals, divided differences. 
* This research was carried out at Stanford University and also supported by grants from the 

National Science Foundation and the Swedish Board for Technical Development. 

Copyright i 1971, American Mathematical Society 

847 



848 SVEN-AKE GUSTAFSON 

functionals have the representation 
b 

L(X) = f(t) da(t) 

and hence 

= Lb f,(t) da(t), r = 1, 2, , n. 

We want to approximate L by L, a linear combination of L,, L2, *, , L, in such 
a manner that L(f,) L(f,), r = 1, 2, * , n. Thus, 

(2.1) L(j)= mii(), 

where 

(2.2) mi m1Li(fI) = yS, r = 1, 2, * n. 
i-1 

We shall require that the coefficient matrix of the linear system (2.2) is regular. 
In order to clarify the discussion, we distinguish between two sources of error: 
(a) Truncation or discretization error. This is the difference between L(f) and 

L(f), an exactly computed approximation to L(f). 
(b) Computation error. This is the difference between L(f), the quantity given by 

a formula and the quantity which we obtain by evaluating this formula using finite 
precision arithmetic. 

In the present paper we shall study the behaviour of computational errors (and 
not errors of the first kind). 

The formulation (2.1), (2.2) applies for many familiar problems. We give some 
examples. 

Example 2.1. A Lagrangian integration rule: Let xl, x2, .. Xn be n distinct 
numbers and define L1(f) = f (xi), i = 1, 2, * , n, and let [a, b] be a closed bounded 
interval. Put 

b 

L(f) = L f(t) dt. 

Introduce further fI(t) = tr1, r = 1, 2, * * , n. Then 
b 

Y= L tr- dt. 

Example 2.2. An Hermitian quadrature rule: Let now n be an even number and 
put n = 2k. Select k distinct numbers xl, x2, *., x, in the closed bounded inter- 
val [a, b] and put 

L21.1(f) = f(xi), L2i(f) = f'(Xi), i = 1, 2, * * *, k. 

Define L, f, (and Yr) as in the preceding example. 
Example 2.3. A Lagrangian differentiation rule: Let x be a fixed number. Define 

L, and fr as in Example 2.1, but put L(f) = ftx). Then yl = 0 and Yr = (r - l)xr2- 
r> 1. 



CONTROL AND ESTIMATION OF COMPUTATIONAL ERRORS 849 

It is possible to generalize (2.1) and (2.2) further by replacing the interval [a, b] 
by other types of sets. Therefore, the results of this section can be extended to the 
rules treated in [1] and [5]. 

We consider the general task: Let A be a regular matrix, n by n, b, x and d n- 
dimensional vectors. Compute 

(2.3) e= dTX, 

when 

(2.4) Ax = b. 

We observe that (2.1) and (2.2) is subsumed by (2.3), (2.4). We put 'y = L(f), x, = 

m, and di = Li(f), i = 1, 2, ... , n. air = Li(f,), i = 1, 2, * n, r = 12, 2*.. ,n 
and b, = Yr, r = 1, 29 * *, n. 

We prove 
LEMMA 2.1. Let A be a regular matrix, n by n, x, b, d and u n-dimensional vectors. 

If y = dTx when Ax = b then 

(2.5) y= bTu, 

when 

(2.6) d = A TU. 

Proof. From Ax = b follows x = A-'b. Hence,-y = dTx dTA-lb = bT(A-I)Td = 
bTu with ATu = d. 

In analogy to the usage in the theory of linear programming we introduce: 
Definition 2.1. (2.3), (2.4) is called a primal problem; (2.5), (2.6) its dual. Hence, 

the dual of (2.1), (2.2) is 
n 

(2.7) L(f) = CrYr, 
re1 

n 

(2.8) L1(f) = ZCrLi(fr), i = 1,2, * * , n. 
r-1 

We establish easily that the duals of the tasks in Examples 2.1, 2.2 and 2.3 consist 
of the determination of certain interpolating polynomials. Next we prove 

THEOREM 2.1. Let x be an approximate solution vector of (2.4). Define Ax by the 
relation x = x + Ax and let A'y be the error in-y caused by replacing x with x in (2.3). 
Introduce also the residual vector E given by 

(2.9) I= - Ax. 

Let A be regular. Then Ay can be expressed in the following two ways: 

(2.10) A. = dTAx, 

(2.11) 6 = AAx, 

or 

(2.12) A'y = ETU, 

(2.13) d = ATU. 



850 SVEN-AKE GUSTAFSON 

Proof. Since x is assumed to be known, e is computed from (2.9). Hence, the 
assertion is established by application of Lemma 2.1 on the dual problems (2.10), 
(2.11) and (2.12), (2.13). 

The formulation (2.10), (2.11) can be used only if the residual vector e is known 
with good relative accuracy. This often requires that e is evaluated with arithmetic 
operations in a higher precision than that which was used during the solution of the 
main problem (2.3), (2.4). This drawback is eliminated if one uses (2.12), (2.13) for 
estimating a bound for the computational error. 

By direct specialization of Theorem 2.1 we establish the principal result of this 
section: 

THEOREM 2.2. Let (2.2) have a regular coefficient matrix and let fnfl, i = 1, 2, 5.. , 

be an approximate solution of (2.2). Define Ami by mi = fi + Am5 and -let AL be 
the error in L(f) caused by replacing mi with f71j, i = 1, 2, * , n. Introduce the residuals 
e, rr 1, 2 ,n, given by 

n 
Er = Yr - Ei fiL (r), r =1,2, 1 .2 n. 

i-i 

Then AL can be expressed in the following two ways 
n 

AL = E AmjL,(f), 
i -1 

when 
n 

= EAmiLir), r = 1, 2, ... n. 
t-1 

or 
n 

(2.14) AL = CEr, 
re1 

when 
n 

L4(f) = ,crLi(fr), i = 1, 2, n, n. 
r-1 

From (2.14) we get the error bound 

(2.15) JALI ?< fr whereE 2 max 1j4, r = E C Ic 
r-1 

In order to use (2.15) we need only bounds on I.rj and r. The latter quantity 
will later be referred to as the error factor. In the next section we will give a theorem 
which expresses r in terms of the higher derivatives of f if the rule defined by (2.1), 
(2.2) belongs to a certain class. The error analysis can be carried out in an analogous 
manner for the case when (2.7), (2.8) are used instead of (2.1), (2.2). 

3. Newtonian Feasible Rules. 
Definition 3.1. Let fIr be given by fr(t) = trl, r = 1, 2, n., n. The solution of 

(2.2) is then the coefficients of a polynomial Q of degree less than n. (2.1), (2.2) are 



CONTROL AND ESTIMATION OF COMPUTATIONAL ERRORS 851 

said to define a Newtonian feasible rule if we can associate with (2.1), (2.2) n argu- 
ments (not necessarily distinct) in such a manner that Q can be expressed by means 
of Newton's interpolation formula with divided differences. 

Example. 

n- = 6, L(f) = mIl(O) + m2f'(0) + m3f(O) + m40(1) + msf'(1) + m6f"(1). 

This is a Newtonian feasible rule since we can introduce the six arguments: 0, 0, 0, 
1, 1, 1. If f has two continuous derivatives we can express these in the form of confluent 
divided differences. 

Counterexample. 

n = 2, L(f) = mIl(O) + m2f'(1) 

This is not a Newtonian feasible rule since we need the three arguments 0, 1, 1 to 
express f(O) and f'(1) in the form of divided differences but n is only 2. Still, (2.2) has, 
in this case, the unique solution ml- 1, m2 = 1. We now prove the general result. 

THEOREM 3.1. Let f have n continuous derivatives on [a, b] and let (2.1), (2.2) 
define a Newtonian feasible rule. Let, further, the arguments associated with the rule 
be xi, X2 * , x.. Define d1, d2, *. , do by 

d= max If(r-1)(t)I/(r _ 1)!, r = 1, 2, n, 
EEl 

where I is the smallest interval containing x, X2, X. If C1, C2, * , c. is the solution 
of (2.4) then 

nn r-l 

(3.1) IC, 1 x: dr II(1 + Ixix). 
r-e re- i-Il 

Proof. Define Q by 

Q(t) Ec't 
r=1 

Since the rule is Newtonian feasible we can write Q in the form 
n r-1 

Q(t) = A Dr 1l (t -X 0 
r- i-Il 

where D, is a divided difference with the r arguments x1, x2, *.f, xr. Since f has n 
continuous derivatives there is a number i, in I such that 

Dr = f (t,)1(r- 1)!, r = 1, 2, * , n. 

Therefore, the sum of the absolute values of the coefficients of Q is less than the 
sum of coefficients in Q defined by 

n r-1 

0(t) = E dr I (t + Ixi ). 
B-i j-H 

But the sum of coefficients of Q is Q(1). Hence, the assertion follows. 



852 SVEN-AKE GUSTAFSON 

We observe that equality holds in (3.1), e.g., if 

x1 < 0, x1 = x2 = * = x, and flrl,(xl)/(r - 1)! = dr. 

We conclude our analysis by discussing a few numerical examples. All of these 
were run on Stanford's IBM 360/67. Its Algol W compiler represents floating numbers 
in the form z = x'. 16x", where x' is allotted 24 bits in single precision, 56 bits in 
double. Furthermore, x" is (if possible) so selected that 1/16 < Ix'I _ 1. 

In all of our examples we work with Newtonian feasible rules. If one has to 
evaluate an expression in order to get input data such as abscissae and moments 
this is done in double precision. These data are afterwards truncated to single pre- 
cision. This procedure was adopted in order to insure that the abscissae and moments 
were represented in full single precision, independently of the manner in which 
they were obtained. 

The quadrature rules appearing in the examples were computed by means of the 
algorithms given in [2]. The error bounds were estimated according to (2.15). The 
residuals were computed by means of double precision arithmetic. Thus they were 
obtained in full relative precision. 

The accumulations to form the scalar products which give the computed value 
of the functional were done in double precision. During this computation the fact 
was utilized that the product of two single precision numbers is delivered in double 
precision by this particular machine and compiler. It goes without saying that a 
more efficient use (but one more difficult to report) could have been made of the 
available resources. The formula 

n 
AL < E |Crjr I 

r=1 

derived directly from (2.14) would presumably give smaller but still strict error 
bounds. The computed value of the error factor r indicates that the total error is 
bounded by a rather moderate multiple of the largest residual. This could be reduced 
most efficiently by using double precision arithmetic during the evaluation of the 
weights of the pertinent quadrature rule. 

Example 3.1. The integral 

rl 1 
1 +t2dt= 

was evaluated by means of Lagrangian quadrature rules with abscissae xj, i 
1, 2, *. i, n, located in the zeros of the function g defined by g(t) = Tn(2t - 1), 
where TV is the Chebyshev orthogonal polynomial of degree n. That is, 

Xi 1 + cos ((i-05)ir)] 

The integrand f is given by f(t) 1 /(1 + t2) and the moments Yr by 

Yr f tr- dt = 1/r 

In this case the exact values of the weights can be computed by means of the formulae 
in [4, p. 127]. We report the following results. 



CONTROL AND ESTIMATION OF COMPUTATIONAL ERRORS 853 

Absolute 
value of 

Absolute differences 
value of between Absolute 
observed ir/4 and value of Estimated 

Number of maximum error computed largest Error* error 
moments in weight result residual factor bound* 

3 1.2.10-7 9.210-4 1.3. 10-8 1.55 1.9.10-8 
6 3.3. 1l6 4.7. 10-6 2.4 10-7 3.24 7.9* 10-7 

9 1.9.l0-3 2.310-7 1.9.10-6 5.52 1.Ol0-5 

* In this and following examples "error" refers to the error in the computed value of the 
functional caused by the fact that the weights of the rule are determined numerically, not exactly. 

The example illustrates the fact that, although the weights are not very well determined, 
the bound for the contribution to the error in the computed value caused by this may 
be rather small. The circumstance that for 3, 6 moments the observed difference 
between the computed integral and wx/4 is larger than the bound must be ascribed to 
the influence of the truncation error. 

The previous example illustrates a situation where quadrature rules are well 
known and codes which include abscissae and weights exist. The incentive to reframe 
the problem ab initio is lacking. 

Examples of problems for which this is not the case include integrands with 
numerically inconvenient weighting functions. Other examples occur in the sum- 
mation of special series. For example, 

Example 3.2. Evaluate s = >Js (-l)r- l/(r2 + l_"-1. 

This series belongs to the general class of series of the form 
co 

E (-1) r-1a. 
ri- 

where a, admits a representation 

a. = trl da(t), r = 1, 2, .., 

and the integrator a is of bounded variation over [0, 1]. a is not dependent on r. 
This fact can be verified by means of a table of Laplace transforms after making 
the substitution t = e-". Thus, Example 3.2 takes the form: Compute 

J1 +. tda(t), 

when 

A tt- da(t) = 1 

Some further numerical examples are given in [3]. 



854 SVEN-AKE GUSTAFSON 

Royal Institute of Technology 
Department of Numerical Analysis 
Stockholm 70 Sweden 

1. P. J. DAVIS, "A construction of nonnegative approximate quadratures," Math. Comp., v. 21, 
1967, pp. 578-582. MR 36 #5584. 

2 S.-A. GUSTAFSON, Rapid Computation of Interpolation Formulae and Mechanical Quadrature 
Rules, Technical Report, Computer Science Department, Stanford University, August 1969. 
(Submitted to CACM.) 

3. S.-A. GUSTAFSON, Error Propagation by Use of Interpolation Formulae and Quadrature Rules, 
Which are Computed Numerically, Technical Report, Computer Science Department, Stanford 
University, August 1969. 

4. I. P. NATANSON, Constructive Function Theory, Vol III: Interpolation and Approximation 
Quadratures, GITTL, Moscow, 1949; English transl., Ungar, New York, 1965. MR 11, 591; 
MR 33 #4529c. 

5. M. W. WILSON, "A general algorithm for nonnegative quadrature formulas," Math. Comp., 
v. 23, 1969, pp. 253-258. MR 39 #3705. 


	Cit r89_c96: 
	Cit r93_c101: 


