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Error Estimates for a Chebyshev Quadrature Method 

By N. K. Basu 

Abstract. Filippi [1] has proposed a quadrature scheme for any function f(x) in [-1, 1], 
based on expanding the integrand in a series of Chebyshev polynomials of the second kind. 
In this paper the error associated with this quadrature method when applied to analytic 
functions has been investigated in detail. 

Introduction. A Chebyshev polynomial of the second kind is U,1(x) (1 /n)T'(x) 
where Tn(x) is the Chebyshev polynomial of the first kind of degree n, defined by 
T,(x) = cos no with x = cos 0. Accordingly, we shall follow Filippi and consider 
the expansion of function in terms of the T'(x) instead of Un(x). 

Let f(x), a function of bounded variation in [-1, 1], be expanded in a series 
of T.(x) as 

(I) f(x) = E a.Tn(x), 
n-i 

where 

(2) a ~ f 2 (1 -x2)1/2Tn(x)f(x) dx 
Urn -I 

In general, the integral in (2) cannot be evaluated explicitly and recourse has to be 
made to approximate methods for evaluating an and then to obtain a suitable poly- 
nomial approximation to f(x). 

Filippi [1], has approximated the function f(x) by a polynomial N,-,l(x) of degree 
N - 1, by collocation with f(x) at the N-points, which are the zeros of TV+1(x) 
and has obtained a quadrature formula for f(x) by integrating N_,6(x). 

In the first section of this paper, the contour integral estimate of error ,N_1(x) = 

f(x) - lN_,(x) is considered in brief and in the subsequent sections the error in the 
Filippi quadrature scheme for analytic functions is discussed. Analogous investigation 
on Clenshaw-Curtis quadrature [2] and Gaussian quadrature have been made by 
Chawla [3], [4] and Chawla and Jain [5]. 

1. Contour Integral Estimate of fNl(x). Following Filippi [1], let f(x) be 
approximated by a polynomial VIN-l(x) of degree N - 1 over the zeros of Tk+1(x), 
so that 

N 

(3) Y N - 1 (X) = E B.,N Tn (X) 
nil 
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The coefficients BnN, are calculated by trigonometric interpolation as in [1]. 
N 

(4) Bn.N = n2(N + 1) (1 - 

where 

(5) xi = cos i = 1(1)N. 

To obtain the contour integral estimate of {N l(x) we consider the function f(z), 
where z = x + iy. By Cauchy's integral formula we can represent f(x) by 

(6) A(X) = 2I f - dz, 

where C is any contour on and within which f(z) is regular. If the contour C is so 
chosen that it contains the interval -1 < x < 1, then selecting the abscissas as 
the zeros of Tk+1(x), the Lagrange interpolation polynomial for f(x) can be written 
using [6, Section 3.6, p. 67] as 

(7) ik1x)=k [z TN+1(z) - TN+1(x)I dz, 
2lri Jc (z - x)T+(z) 

where the error 

(8) {N-l(X) = TkI+ f W f(Z) dz. 27ri ic(Z - x)Tvr+1(z) 

2. Error in the Filippi Quadrature Method. In the Filippi quadrature formula 
we have from (3) 

1l r1 M 

(9) J f(x) dx V j_ , (x) dx = 2 E B2j+lN, 
--0 

where M = (N - 1)/2, if N is odd and M = (N - 2)/2 for even N. Substituting 
for B2i+lN, the expression in (4), (9) becomes 

rl Nw~~~~A 

(10) j f(x) dx 
N 

E Xif(xi), 

where 

(11) ki = Nf + 1 E2(2j + 1)2 T2i+1(xi). 

The error in the quadrature formula follows from (8) as 

(12) EN I =l() dxJ 1i7(X) d J LT'+,(z) 

where we have put 

(13) LN(Z) = I 2 +I() dx. 

Equation (13) defines LN(z) as a single-valued analytic function in the z-plane with 
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the interval [-1, 1] for x deleted. In the following discussion we shall work out an 
error estimate of the quadrature formula but before that we prove a lemma for 
LN(z) for odd N. 

3. Lemma for LN(z). Let us now introduce the mapping 

(14) z= ( + 01) 0= pei, O?? 2Xr. 

This maps the exterior of the unit circle 1 I = 1 conformally onto the z-plane with 
the interval -1 < x < 1 deleted. The circle 1 = p, p > 1, maps onto the ellipse 8, 
with foci at z 1I and semiaxes '(p + p-1) and 1(p - p-1). The lemma stated 
below gives a simple representation of LN(z) on 8,. 

LEMMA. For z E &p 

(15) LA(z)I _ (N+ -1)- 
N 

+ 3+ 1 4(N + 1) for odd N, 

where 
N7+1 

(16) UN.N+3 = 2 E 

Proof. Following Davis [6, Lemma 12.4.6, p. 311] we set x = cos 0 and trans- 
form (13) to the t plane. Then, 

(17) LN(z) = (N + 1)1; 1 - cos + + d 

Now 

co-V sin PO 
1 -2 ' cosO+ t2 sin 0 

The series converges uniformly and absolutely for 0 ?<C 0 <r and for all I I ; p > 1 
Substituting (18) in (17), 

(19) LN(Z) = (N + 1) X 
pal 

where 

Vsin (N + 1)0 sin pG (20) UrN,~ = dO. (20) N.P ,( ~~~~~~sin 0 

From (20) we get 

Np 
= O if N-p is even, 

(21) P 1 

m~2 Np+2m if N-p is odd. 

It can now be easily verified that EP 1 I/(N-p + 2m) assumes its maximum 
value when N - p = -1 for a fixed N. In that case 0fN,.N+1 is the greatest coefficient 
in (19) and the next highest coefficient is 0UN,N+3, where 

(22) aN,N+l = ONN+3 + 4(N + 1) 
2N + 3 
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Now since N is odd, by taking only even values of p (say 2r), we have, from (19) 
and (22) 

(23) LN(z) < (N + 1)FNaN+a 3 E -2r ? 4(N + 1) 

and as p > 1, the lemma is easily established. 

4. Error Estimate for Analytic Functions. To obtain the error estimate for 
analytic functions in [-1, 1], a suitable choice of the contour in (12) is an ellipse 
as defined in (14). Now if f E A[- 1, 1], then for some p > 1, f can be continued 
analytically so as to be regular in the closed ellipse 8,. Also on 8,, both TNf,(z) 
and LN(z) have simple representations. That is, on 8, 

(iN+1 _ c(N+1) 

(24) TN+1(z) = (N + 1) 

and 

(25) . _IckI < 1 (P + P 1)2 Id~j 
I ) 2p N+1 - -(N+1) 

Hence, applying the lemma for LA(z) (N odd), we have the following theorem: 
THEOREM. Let f E A[- 1, 1] and be continuable analytically so as to be regular 

and single valued in the closed ellipse 8p with foci at z = I1 and whose sum of the 
semiaxes is p (p > 1). 

Then, from (12), 

(26) IENl(I = - I I T-(z) I ldz 

(27) < OWfT, IV+ 3 + 1 4(N + 1)1 (p + p- 1)2 MP 
2 1 + +l 2N + 3 1 N+1 -((+1) MGp), 

where M(p) = max, ,,: If(z)l on 8,, (or equivalently on = p). 
Remarks. (1) The above estimate is poor for p very nearly equal to 1 and is 

reasonably good for large p. 
(2) It may be seen that for large N, the contribution from the second term in the 

bracket of (27) is negligible as compared to the first and hence, 

(28) < 
OW, IV +____3 (r._?_p1)2 

(28) |~~~EN-1) I P2 I N+1 P(2N+1) M(p) 

holds approximately. 
(3) To obtain the error estimate of the Clenshaw-Curtis quadrature scheme 

Chawla [41 uses interpolation points, xi = cos ri/N, i = O(1)N (N even), whereas 
in the present estimate for the Filippi quadrature method, the corresponding points 
used are xi = cos ri/N + 1, i = l(l)N (N odd). 

Hence, if the same degree of the approximated polynomial is used for the quad- 
rature problem in both cases, the value of N in the present estimate must exceed 
by one the corresponding value in Chawla's estimate. 

(4) It may be noticed that for large N, the expression 16N2/(4N2 - 1) (which 
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TABLE 1 

N Present estimate N Chawla's estimate 
3 0.0016 6322 2 0.0042 3456 
5 0.0000 4028 4 0.0000 8230 
7 0.0000 0093 6 0.0000 0166 
9 0.0000 00020 8 0.0000 00034 

is slightly greater than 4) in Chawla's estimate [4, (24)] corresponds to 0NN + in 
the present estimate (28), the order for the remaining part being the same in both 
estimates. Also 0fN, N+3 is of the order log N for large N. Hence, if 0N, N+ 3 _ 4, the 
estimate (28) is better than Chawla's. And since the value of N for which the above 
inequality holds is quite large, for practical purposes the estimate (28) can be con- 
veniently used to obtain the error estimate in Filippi's quadrature. 

5. Numerical Example. We now calculate the error estimate (27) for the 
Chebyshev quadrature for the function f(x) = 1 /(x + 4) in [-1, 1] and compare 
the estimates with those obtained by Chawla [4]. We take as in [4, Section 5] p = 7, 
f(z) = 1/(z + 4) on &, and M(p) = 2.33333347. The preceding table represents the 
estimations of error. 
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