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Trigonometric Interpolation and Curve-Fitting 
By A. C. R. Newbery 

Abstract. Some algorithms are introduced, whereby a function defined on an arbitrarily 
spaced set of abscissas may be interpolated or approximated by trigonometric or hyperbolic 
polynomials. The interpolation may be ordinary or osculatory. Least squares approximation 
is included; the approximant may be a pure sine series or a cosine series or a balanced 
trigonometric or hyperbolic polynomial. An application to a periodicity-search is 
described. 

An extensive set of algorithms is available for functional approximation and 
interpolation in terms of polynomials. The present article develops some corresponding 
algorithms for nonpolynomial approximants. The classes of approximant (interpolant) 
considered are sine polynomial, cosine polynomial, balanced trigonometric poly- 
nomial and their analogs in terms of hyperbolic functions. The classes of approxi- 
mation considered are interpolation on ordinates, osculatory and hyperosculatory 
interpolation, weighted least-squares approximation, weighted least-squares ap- 
proximation subject to some ordinate and derivative constraints. 

Trigonometric Analogs of Lagrange and Hermite Interpolation. Lagrangian and 
Hermitian interpolation in terms of sine polynomials were dealt with in [1], and the 
adaptation to cosine polynomials is straightforward. For Lagrangian interpolation 
in terms of balanced trigonometric polynomials there is a classical algorithm [2, p. 38], 
but we wish to develop an alternative which has some advantages with respect to 
economy and ease of generalization. 

Let there be N points (xi, fi), i = 1, * N; let all the abscissas xi be distinct 
and strictly within an interval I. It is required to construct a function 

2) a 

y(x) 3 s, sin rOX + E c, cos ro.x 
r-1 r-O 

such that y(xi) = fi, p + q + 1 = N and p - qI ? 1. (The latter condition defines 
a "balanced" trigonometric polynomial.) The parameter co determines the frequency 
of the interpolant; there may be some restriction on values assigned to it. Let 0 
denote &,x, let 0i = cxi, and let Ljk(0) denote a function of degree (j, k), i.e., a function 
of the form A' -1 s' sin rO + E _. c' cos rO, such that Li,(0i) = fi for i < j + k + 1. 
Let I' be the range of 0 induced by the requirement x E I and let II i(O) be a function 
of degree (j, j) such that Iljl(O,) = 0 for i ? 2j; moreover, these 2j zeros are the 
only zeros of H1ji in I'. For consecutive j we can now construct the functions lij, 
which are unique to within a normalization factor. Starting with lloo(0) 1, we 
may define forj = 0,1 ..II(+,j+1=gi()IIi,whereg1(O) = a sin0 + p cos 0 - . 
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The coefficients of g, are chosen so that g,(0) shall be zero at 02i+1, 02i+2 and nowhere 
else in I'. It may be verified that g1(0) has the required zeros if 

(1) a,;C COS 2j+2 - COS 021+1, pi = sin 02i+1 - sin 02i+2, 

7i = Sin (02i+1 - 02j+2). 

We can also guarantee that g7(O) has no other zeros in I' provided the width of I' is 
less than 27r. This can be seen by noting that alternate zeros of g,(0) (which are real 
by construction) occur at intervals of 27r. An interval of less than 27r can, therefore, 
not contain more than two zeros of gj(0). Having shown that the functions lij(6) 
are constructible, we now construct for j = 0, 1, ... the functions Ljj(0) such that 
L. (0j) = fi for i < 2j + 1. These functions may be constructed by the recursion 

(2) Loo = fl, Lj+1,j+1 = Lij + gl(0)IIi(0), 
where g*(O) a* sin 0 + OBJ cos 0 - y 

From the definitions of Lij, HI j it follows that L+1, j+l as defined in (2) must pass 
through the points (0,, fi) for i < 2j + 3. The coefficients a*, I*., y must, therefore, 
be chosen so that Li+,, j+1 will interpolate correctly at subscripts i = 2j + 1, 2j + 2, 
2j + 3. This is equivalent to 

Sin 02f+1 COS 02i+1 -I ak 

(3) sin02i+2 COS 02i+2 -1 V_ [f2i+2- Lii(02i+2)I/ii(02i+2) ] 

0sin62i+3 COS 02i+3 -1 Y i- [1f2+3- L3i(02i+3)]/IH(02i+3)_ 

It can be shown [3, p. 85] that the determinant of the system is 

4sin (02i+2 - 02f+1) * (62f+3 - 02+0s)in (02i+3 - 02j+2) 

2 2 2 

The system, therefore, has to be solvable under our assumptions that the abscissas OI 
are distinct and within an interval of length <27r. In these circumstances the re- 
cursion (2) enables us to produce the required trigonometric interpolant, provided 
the number of points N is odd. If N is even, let N' = (N - 2)/2, let LN',N' be the 
interpolant at 2N' + 1 = N - 1 points and construct 11N' N, which has zeros at 
all abscissas subscripted 1 through 2N' = N - 2. We now attempt to define LN'+lN' - 
LN'NX + g* (O)NN',N'(0). The linear equations defining the coefficients of g*t resemble 
(3) in the first two rows with N' replacing j; however, the third constraint is the one 
which implies thatg*HN',N' should have no term involving cos (N' + 1)0. Let HN',N' = 

SN' sin N'0 + cN' cos N'0 + terms of lower frequency. The third constraint is then 
seen to be -a*,SN, + McB*C' = 0. When we examine the matrix which defines ac*,, 

N, 'Yr, we know already that the first two rows are independent under our hy- 
potheses. Singularity could, therefore, occur if and only if the third row is a linear 
combination of the first two, or equivalently 

-sN, /(sin 0y - sin 0N-1) = CN' /(COS ON - cos N-,1). 

In this event, LN'+IN' will generally not be constructible. The same applies to LN'.N'+1 

in the event that CN'/(sin ON - sin ON-1) = s'/(cos ON - cos N-1). In any case, it 
can be seen that at least one of the interpolants LN'+1.N', LN',N'+1 is constructible. 
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Osculatory interpolation on N points is a confluent case of ordinate interpolation 
on 2N points. By defining 0N+r = 0, for r = 1, * * *, N, we can construct i~jl by the 
same recursion as before for j = 1, * * *, N - 1. For the earlier j-values (j ? [N/2]), 
lij will satisfy homogeneous ordinate constraints as before; for later j-values i~jl 
will satisfy at least one repeated homogeneous ordinate constraint, i.e., it will satisfy 
a homogeneous derivative constraint. Thus, the algorithmic construction of IlI; is 
essentially unchanged from the previous paragraph, but the properties of the resulting 
function are modified. The Eqs. (3) will still hold if we add the proviso that any 
subscript in the range [N + 1, 2N] shall have N subtracted from it. Moreover, when 
this occurs on the right side of (3) the quantity is replaced by its derivative. For 
example, if 2j + 2 > N, then the second equation of (3) would read: 

a, sin 02i+2-N + j* cos 02j+2-N - 'Y* = [Ifi+2-N - Laj(02j+2-N)]/0li(02i+2-N) 

The extension to hyperosculatory interpolation follows the same principle, although 
the details become harder to specify. We still generate a sequence of functions {IIj3(0)} 
satisfying 2j homogeneous conditions; for low values of j the conditions imply 
zeros of the function i~jl at specified nodes; when these conditions are all met, the 
subsequent conditions imply zero derivatives at a subset of these nodes; thereafter, 
they imply zero second derivatives at a subsubset of the nodes, etc. It is essential 
that the successive higher derivative constraints be built on in increasing order. 
For instance, one can construct Ill1(0) to vanish at any two assigned points 01, 02 in I' 
or to vanish with its derivative at 01, but it is generally impossible to construct a llI 
of proper degree such that Hllf(0) vanishes at 01, 02. 

Least-Squares Approximation by Sine and Cosine Polynomials. The problem 
of determining a cosine polynomial which, in a weighted least-squares sense, best 
approximates a discrete function defined on arbitrarily spaced abscissas has been 
discussed by Oliveira-Pinto [4]. He showed that the problem could be reduced to 
the analogous problem for algebraic polynomials and solved by Forsythe's method [5]. 
We would like to observe that this problem and the corresponding sine series problem 
can also be treated by a direct method without any need for conversion into and 
out of algebraic form. 

Let N points (xi, fi) and positive weights Wi be specified. Let 0 = Cox 
as before, and let {4r(0)} be a set of orthogonal sine polynomials such that 
(4er, ?P8) Zai r(0i)4+8(0i)Wi 0 for r 0 s. These polynomials can be generated 
by the following recursion: 

p1 = sin 0, 42 = (2 cos 0-aj)> , 

(4) O k+ 1 = (2 cos 0 - ak)qbk - bk4k-1, where 

bk = 2(cos 0c1, 4k71-)/(c0k-1, ck-,), and 

ah = 2(cos 04k, 0f0)/(c0k, c1). 

The only event which could cause a stoppage is that for some k (0p, 'Pk) = 0. This in 
turn would imply that, for all i, cp1(Ot) = 0, so that q5, must be orthogonal to all func- 
tions with respect to our inner product. Although the function 'P1(0) is nontrivial by 
construction, it may generate a trivial N-vector on evaluation at the N arguments Oi. 



872 A. C. R. NEWBERY 

In this case, we will call the function "degenerate". It follows from the method of 
construction that, if ckk is degenerate, then all subsequent functions are also degenerate. 
It may be noted that pN+1 is necessarily degenerate, because the contrary assumption 
would imply that there existed N + 1 nontrivial vectors of dimension N all mutually 
orthogonal with respect to our inner product. We now examine the question of 
whether and when "premature degeneration" can occur, i.e., in what circumstances 
can it happen that, for some k < N + 1, Ok is degenerate? We note that 'kk(O) can 
be written in the form (1- z2)1"2Pkl(z), where z = cos 0 and Pk-1 is an algebraic 
polynomial of degree k - 1. There are at most k + 1 z-values z1 of magnitude ? 1 
for which (1 - z2)12Pkl(z) vanishes. Corresponding to each zi there may be several 
0, such that cos Oi = zi; however, the following observations may be made: 

I. If 1' is a range over which cos 0 is monotonic, then pk(0) vanishes at most k 
times in 1'. Consequently, degeneration cannot occur earlier than at N. If we exclude 
values of 0, for which sin 0 = 0 (which is a reasonable policy), then there cannot 
be a premature degeneration. This follows from the fact that for each z1, of which 
there are at most k - 1, there exists at most one 0; such that cos Oi = z3. Since we 
excluded the possibility that sin Oi = 0 it follows that 4k(0) cannot vanish more 
than k - 1 times in I'. 

II. In many applications it will not be a reasonable policy to select X in such a 
way that the length of I' exceeds 2ir, and we now assume that the length is strictly 
less than 2ir. In this situation we can guarantee that, for k < N/2, Ok is not degenerate. 
Furthermore, if for all distinct i, j, cos 0i 0 cos 0, we can guarantee that ON-2 is 

not degenerate. If we impose the additional (reasonable) restriction that sin Oi A 0 
then AN will not be degenerate. This may be argued as follows: There are at most 
k - 1 values zi; to each of these there will generally correspond two values of 0 
such that cos 0 = zj, but in view of our restrictions at most one of these can be a 
data point. Since we excluded the possibility that sin 0 = 0, it follows that Pk vanishes 
at most k - 1 times in I', and ON is, therefore, not degenerate. 

Once the orthogonal functions {pr} have been constructed, the nth degree least- 
squares approximation is given in the usual way by f(0) - J_0 brr where b, = 
(f(0) 4r)/(r Or). The occurrence of a premature degeneration does not imply that 
the algorithm will fail to produce the least-squares solution; it implies that the least- 
squares error has reached a lower bound (which may or may not be zero) beyond 
which it cannot be further reduced regardless how many additional functions are 
adjoined to the space of the approximants. In short, it is a signal to stop augmenting 
the degree of the approximant. 

If we wish to generate orthogonal cosine polynomials, we can use the same 
recursion (4) except that we initialize with p0 = 1, P1 = cos 0 - (cos 0, 1)/(1, 1). 
Having generated the orthogonal trigonometric polynomials, we find the nth degree 
trigonometric approximant to be f(x) r- l tr,4(wx), where the lower summation 
limit is 0 for cosine and 1 for sine approximation, and 

N 

tr = E Wif(Xi)4r(WXi)/(kr,4 Or), 
ill 

Constrained Least-Squares Curve-Fitting. In the case of sine and cosine ap- 
proximation we are able to incorporate exact constraints on ordinates and derivatives 
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just as Klopfenstein did in the algebraic case [6]; by this we mean that certain con- 
straints are to be met exactly, while others are to be satisfied in a least-squares sense. 
Let L(0) be the sine (or cosine) polynomial of minimal degree satisfying all the exact 
constraints on ordinates and possibly on derivatives. Conditions under which L is 
constructible and an algorithm for constructing it are given in [1]. Let 11(0) be a 
cosine polynomial of minimal degree satisfying corresponding homogeneous con- 
ditions, e.g., if L(63), L'(03) are specified to be fi and f' then 111(0), 11'(03) have to 
be zero by construction. If we approximate f(0) by L(0) + ll(0)G(0), where L and G 
are trigonometric polynomials of the same kind (both sine or both cosine), then by 
construction we are meeting all the exact constraints; it only remains to determine 
G(0) in such a manner as to match the remaining constraints optimally in a weighted 
least-squares sense. We have, therefore, to minimize the squared residual E given by 

N 

E = WJ[L(6i) + H(0i)G(0i) - f(Xi)]2 

(5) i1 

- E Will (0i)[G(Oi) - (f(xi)- L(0i))/I-(0i)] 

where ? denotes summation over subscripts which are not exactly constrained. 
Assuming there is no vanishing denominator in the last expression (5) we now have 
reduced the constrained problem to a standard unconstrained problem of the kind 
considered above, with modified approximand and weight function. Two observations 
can be made concerning the case where a denominator in (5) vanishes. Firstly, if 
the problem is normalized in such a way that i A j implies cos Oi 5 cos 0 then 
there can be no vanishing denominator; the function 11(0) would not vanish at 
data points other than those which are exactly constrained, and these are explicitly 
excluded from the summation. Secondly, in the event of a denominator vanishing, 
if we look at the limiting form, i.e., the second expression in (5), we find that at one 
abscissa Oi, G(0,) is multiplied by zero. Whatever choice of coefficients we may 
make for G(O), our decision can therefore have no effect at that abscissa. If we delete 
that abscissa entirely, the deletion can have no effect on the optimal choice of co- 
efficients. It will affect the value of E in a determinable manner, but it will not affect 
the variation of E. It is the variation of E and not the value which defo, -nines the 
optimal coefficients of G(0). 

Least-Squares Approximation by a Balanced Trigonometric Series. Let Ba(O) 
denote a trigonometric polynomial of the form 

P ~~~~~q 
E s, sin rO + E c, cos rO. 

r=O r=O 

We shall need to construct an orthogonal sequence Boo, Bol, Bll, B21, B22, *.* , Bkk, 

Bk+ e e . The inner product defining the orthogonality is 
N 

(Bpa s Br.) -EWiBpJ(0iBr.(f0i) 

Let it be assumed that we have constructed the orthogonal sequence as far as Bkk, 

and the normalization convention is that 
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Bk = s, sin kO + cs kO + Sk-l sin (k - 1)0 + 6..1 cos (k -1)0 + , 

Bk;,* = sin kO + Sk-l sin (k - 1)0 + ck-l cos (k - 1)0 + 

In order to construct Bk+l,k, Bk Ik+lwe shall apply a variant of the Gram-Schmidt 
procedure as follows: 

(i) For k > 0 define the polynomials Ck+l,k+le 2 cos 0 Bkk and Sk+l,k+la 
2 sin 0 Bkk. Note that both these polynomials are orthogonal to B2,_k_2 and all 
earlier members of the sequence. For instance, (Ck+l,k+l, Bk-2,k-2) = (2 cos 0 Bkk, 

Bk-2,k-2) - (Bkk, 2 cos 0 Bk-2,,k2), and this is the inner product of Bkk with a linear 
combination of polynomials Bk-,,k-1, Bk-l,k-2, ** *, Boo. This inner product vanishes 
by hypothesis. For k = 0 the initialization procedure is described later. 

(ii) Orthogonalize Ck+,k+1 and Sk+l,k+l with respect to each of the polynomials 
Bk-lk-2. Bk-1,k-1, Bk,k-,, Bkk. Call the resulting polynomials Ck+1 +l, 8+k+I* 

Specifically, 

(6) Ck++l,+l 
= Ckl,+ l 

Brs(Ck+lk+li, Brs)/(Brs, Brs), 

Sk+l ,k+l = S.+l,.k+l EBr.(Sk+l ,k+l Brs)/(Br s, Br8), 

where r, s take the four value-pairs mentioned. 
(iii) Define Bk+l,k to be that combination of Cf+lk *+1 Sk+l *+l for which the 

coefficients of sin (k + 1)0 and cos (k + 1)0 are one and zero respectively. 
(iv) Define Bk+,,k+l to be that combination of Ck+l *+ll Sk+l k+l which is or- 

thogonal to B,,+,, kand which is normalized to make the coefficient of cos (k + 1)0 one. 
If the above algorithm is executable, then clearly it must give rise to polynomials 
with the desired orthogonality and normalization properties. It remains to examine 
situations in which the algorithm might not be executable. Stage (ii) could fail if 
(Brs, Bra) = 0. This could only occur if Br,(Oi) = 0 at every data point Oi, i.e., Br, is 
"degenerate" in the sense mentioned earlier. We may note that under the restriction 
(which can often be reasonably assumed) that the length of I' is less than 27r, Bkk 

cannot have more than 2k zeros in I'. It cannot, therefore, be degenerate unless 
2k > N, and this would mean that the problem is under-determined, since Bk, has 
2k + 1 coefficients. Ordinarily therefore, the nonexecutability of stage (ii) will imply 
an impror-, problem formulation. Be that as it may, the algorithm should be ter- 
minated because the degeneracy of Bkk implies the degeneracy of all subsequent 
functions, so that no further error reduction can be achieved, regardless of how 
far the space of the approximants may be extended. In order to verify that stage (iii) 
is executable, we need to find the leading terms, i.e., coefficients of sin (k + 1)0 and 
cos (k + 1)0 in Ck+lk +,, Sk+l,+l. Since the leading terms of Bkk are Sk, 1, then those 
Of Ck+l,k+l are Sk 1 and those of Sk+l,k+l are 1, -Sk. Since stage (ii) has no effect 
on the leading terms, the above value-pairs also hold for Ck+lk+l and Sk+l,k+l. The 
required linear combination (iii) is, therefore, B,,+,,k = (Sk+l ,k++SkCk+l,k+l))!(l +Sk) 

In stage (iv) both Ck+l ,+l and Sk+l ,t+l are, in principle, subjected to one more 
orthogonalization process, which will affect the high-order sine coefficients but not 
the high-order cosine coefficients. Since the high-order cosine coefficient of Ckf+,A+l 
already has the desired value of unity, there is no need to perform the additional 
orthogonalization on Sk+lk+l and stage (iv) can, therefore, be replaced by: 

(iV) Bk+l,k+l = Ck,+lk+l - Bk+l.k(Ck++l.k+l , Bk+lk)/(Bk+l,k, Bk+l,k). 
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The algorithm is initialized by setting Boo = 1, and treating all negative-subscripted 
functions as identically zero. Furthermore, when k = 0, step (i) is replaced by C11 = 
cos 0, S11 = sin 0. Thereafter, one obtains Blo B11 by applying steps (ii), (iii), (iv)' 
with s0 = 0. 

Now that the orthogonal functions have been generated, the rest of the curve- 
fitting process will follow the conventional pattern. 

In studying the computational cost of the algorithm, it will generally be fair 
to assume that this is concentrated in the inner products. This is equivalent to as- 
suming that the number of points greatly exceeds the number of free coefficients 
in the approximant. A formal count of inner products shows twelve in stage (ii) and 
two in stage (iv)'. However, by taking account of duplications and other relationships, 
the count can be reduced to seven. All self-inner-products of the form (B7,, Brr) 
and (Bra+l,r Br+ir) are needed, and these make up two of the seven. Some relations 
which may be used to economize in stage (ii) are for k > 1, 

(Ck+l k+l, Bk-IA 12) = (2 cos OBkk, Bk-l,k-2) = (Bkk, 2 cos OBk-l ,k-2) = 0, 

(Ck+l,+l, Bk-1,k-1) = (Bkk, 2 cos M-1,k-2) = (Bkk, Bkk), 

(Sk+l,k+l, Bk-l,k-2) = (Bkk, 2 sin OBk-l,k-2) = -(Bkk, Bik), 

(Sk+l ,+l, Bk-lc-1) = (Bkk, 2 sin OBk-lk-1) = Sk-l(B, Bkk) - 

This leaves five more inner products to be explicitly computed, four for stage (ii) 
and the last for stage (iv)'. These are: 

(Ckk, Bkck-1) = 2(cos OBkk BkA-, (Ckk, Bkk) = 2(cos 0Bkk, Bkk), 

(Skk, Bkck-1) = 2(sin OBIck, Bk,k-1), (Sck, Bkk) = 2(sin OBk, BA), 

(C'+l 1,k+ 1, Bk+l *) = 2(cos OBkk, Bk+l ,k)- 

If the computational cost of constructing the orthogonal functions is truly reflected 
by the number of inner products, then our average cost is 32 inner products for 
each single augmentation of the set of orthogonal functions. The comparative cost 
for generating orthogonal algebraic polynomials is 3 inner products per augmentation. 
Since, in each case, it can ordinarily be assumed that at least one Fourier coefficient 
will be required corresponding to each orthogonal function, the cost ratio will ordi- 
narily be no worse than 4- : 4. In principle, one can also build on ordinate and 
derivative constraints to this algorithm as was done in the case of the pure sine 
and cosine polynomials, but the details of this will not be discussed here. 

Experimental Results. In order to test the capabilities of the above algorithm 
for least-squares approximation by balanced trigonometric polynomials, the following 
experiment was run: 

(A) Define f(x) = 1 + Isin xj + 1cos 2xj. 
(B) Define 60 equal spaced abscissas in the interval (0, 3r/2) and delete 10 of 

them randomly. Call this set of abscissas X. 
(C) Let a number p take consecutively the five values .2, .4, . , 1. For each 

p value generate 10 sets of 50 random numbers uniformly distributed in (-p, p). 
Add the 50 random numbers to the 50 evaluations of f(x) on X. Thus, for each p 
we have ten "noised-up" data sets generated by f(x). 
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(D) Since the period of f(x) is or, we infer that the "best" value of Cl in the equal- 
weighted least-squares sense should be around 2. We wish to determine how far 
this fact may be verified by the algorithm in the presence of increasing noise. For 
each "noised-up" data set we try five values of co, namely, 2 -i4 5% and 2 i 10%, 
and we observe how often it happens that the value co = 2 is best of the five in the 
least-squares sense. The approximant went as far as terms involving 20. The results 
are given in the table below, which indicates the ranking of the value X = 2 for 
the various p-values. For example, when p = .6 the value co = 2 was the best of the 
five co-values on seven of the ten "noised-up" data sets. 

1 st 2nd 3rd 4th 5th 

p= .2 10 0 0 0 0 
.4 8 2 0 0 0 
.6 7 1 2 0 0 
.8 5 3 2 0 0 

1. 4 3 3 0 0 

From these figures it is seen that the ir-periodicity is still detectable, though not 
very strongly, even at the highest noise level of p = 1. It should be noted that in 
two respects the test may be considered as fairly stringent; firstly, the undifferentiable 
function f(x) is not readily approximated by a low-order Fourier series, and secondly, 
the data were spread over only one-and-a-half periods. Thus, there was only one-half 
of a period during which any evidence of periodicity could be gathered. In view of 
these inherent difficulties and of the noise level imposed, it would seem that this 
algorithm has quite a high potential for detecting harmonic periodicities against a 
background of noise. 

In conclusion, it should be observed that in all the algorithms discussed above 
it is possible, with minor changes, to read 'sinh, cosh' for 'sine, cos' and thus to 
produce corresponding algorithms for interpolation and approximation in terms 
of hyperbolic functions. 
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