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Solution of Vandermonde Systems of Equations 

By Ake Bjorck* and Victor Pereyra 

Abstract. We obtain in this paper a considerable improvement over a method developed 
earlier by Ballester and Pereyra for the solution of systems of linear equations with 
Vandermonde matrices of coefficients. This is achieved by observing that a part of the 
earlier algorithm is equivalent to Newton's interpolation method. This allows also to 
produce a progressive algorithm which is significantly more efficient than previous 
available methods. Algol-60 programs and numerical results are included. Confluent 
Vandermonde systems are also briefly discussed. 

Introduction. In [1] an algorithm was derived for solving a Vandermonde system 
of equations 

(1) Vx b, 

where V = V(,, , an) is the Vandermonde matrix 

(2) V(aoo a, a n ) ao a?1 . 

n n n 
Lao a1 a., 

These systems, and the corresponding dual systems 

(3) VTa = f 

appear naturally, and have to be solved, in many applications. Some important 
examples are interpolation, construction of spline functions [3], approximation of 
linear functionals [1], [5], etc. 

In this paper a new algorithm for solving (1) will be developed which is faster, 
needs less storage and, from experimental results, is more accurate than that in [1]. 
Also, a progressive version of the algorithm will be given, allowing the updating 
of a solution x when a new value of a is added. Corresponding algorithms for the 
dual system (3) will also be given. They compare very favorably with the algorithm 
proposed in [4]. 

Only the nonconfluent case, ai i# at when i 5 j, will be treated in detail here, 
although the generalization to the confluent case will be outlined. In a separate 
paper Galimberti and Pereyra [8] consider in detail the general confluent case (of 
Hermite type) with an approach similar to [1]. The original matrix is reduced to 
block triangular form with diagonal blocks being nonconfluent Vandermonde systems 
to which the algorithm of this paper is applied. Also Galimberti and Pereyra in [7] 
use the method of this paper in the solution of multidimensional Vandermonde 
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systems. In [9], Gustafson develops algorithms and computer programs for the 
confluent case. 

1. Algorithms for Solving Vandermonde Systems. We will first derive an 
algorithm for the dual system (3). Let a be the solution to (3) and introduce the 
polynomial 

P(Z) = (1z, *,z)a. 

Then P(z) is the unique interpolating polynomial of degree at most n, such that 

P(axk) = fk, k = 0, 1, ** * , n. 

One of the most efficient ways to determine P(z) is by Newton's method. We 
introduce the polynomials 

k-1 

(4) QO(z) = 1, Qk(Z) = jf (Z - L ), k = 1, 2, .. n, 
i =o 

and write P(z) in the form 

(5) P(z) = (QO(Z), Q1(Z), Q.(z))c 

where ck, k = 0, 1, , n, are the divided differences of kth order, 

Ck = f [ao, al, . , aj ] 

It is well known that these divided differences can be recursively generated from 
the relation 

f[ai-k, ail, - 
f 

. . . , ai-1] (6) Aa?i-k-l, * ail ?j - (j (X-- 

When c is known, we can use, essentially, Horner's scheme to evaluate P(z). We have 
P(z) = q0(z), where 

(7) q.(z) = cn, qk(Z) = (z - ak)qk+1 + Ck, k = n- 1, * * , 1, 0. 

If we substitute here 

(8) qk(Z) = a k) + a i2Z + * * + a(k)Zn-k 

then we get a recurrence relation for computing the unknowns ak -a 

Now introduce, for k = 0, 1, , n, the vectors 

Ck = (CoX***XC ?1 ***X?k+l o,- t 

and 
a (k) (c0, , Ck , aM , ,a ) 

From these definitions it follows immediately that 

C'0? = f , c(n= an = c a'' = a( 

and from (6), (7) and (8) we get: 
Algorithm for the Dual System. 
Step (i). Put c?)- f and, for k = 0, 1 , n - 1, compute 

(9) cIc = (ca - CiX)/(ab - ik-1), I = n, n - 1, , k + 1, 

=Ic~k) j =k, ,1, 0. 
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Step (ii). Put a' = c and, for k = n 1, , 1, 0, compute 

(to) ~aik = a~k+ 1), 0, 1s,* k - 1, n, (I 0) ~ (,) (k1) 

(10) 
) - Actsak+ k, k + *, n 

Ik1 (kI).1 

Now define the lower bidiagonal matrix Lk(a) of order n + 1 by 

0 1 0 

0 

(1 1) Lk(a) = * - 

_~~~~kth row. 
-a 

0 1 

-a 

kth column 

It then follows from (9) that the vectors cot) are recursively generated by 

()= f C ) 
= Dk M (k) k 0, 1, ... , n - 1, 

where 

Mk = Lk(l), Dk = diag {I, , 1, (ak?+1 a0), , (an - 
n-k-1)) 

Also from (10) it follows that 

a(n) = C a T= Nf a(k+1) k = n 1, 0, 

where 

Nk = Lk(aAk). 

Collecting these results, we find that Newton's algorithm for solving (3) can be 
written in matrix form as 

(12) c= UTf, a= LTC, 

where 

(13) UT = D II M.-, ... Do1MO, LT = NT 

are lower triangular and upper unit triangular, respectively. Since a = V- Tf, we 
have V-T L T UT or 

-= UL, V = L1L P. 

Thus, we have found a factorization in bidiagonal factors of the unique triangular 
matrices in the UL-decomposition of the inverse Vandermonde matrix V-1. 

The factorization of V-1 can obviously be used to write down an algorithm for 
solving (1). From 

x l V'b = (MTDcj * MT lDn-l)(Nn-l ... N1No)b, 

we obtain the recurrence relations for computing x = x (0) 
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d'?' = b, d (+l) = Nkd(k), k = O, 1, , n- 1, 
(n) d(n) X (k) = MkT Dk (k+l) Ilk = n - 1. , 1, 0. 

Writing down these relations in component form we get: 
Algorithm for the Primal System. 
Step (i). Put d'0) = b and, for k = 0, 1, , n - 1, compute 

(14) d k+l) = d9k) - akdk) j = n, n - 1, * , k + 1, 

=d9;)s = k, *@,1, O. 

Step (ii). Put x) = d and, for k - n- 1, , 1, 0, compute 
X(k+1/2) X(+l) j =0, 1, - k, 

(1 5) =x xk+)/(a, - ai-k-1), j 
= 

k + 1, * n 1, n, 
X(k) X(k+1/2) j=, 1, I 

x - x, , = k, ,n 

2. Progressive Algorithms. We now consider the problem of updating the 
solution when a new value a is added. We write the systems (1) and (3) 

V = b, v 
T 
nan = f. 

where 

Vn = V(ao, a, a*n). 

From well-known properties of the LU-decomposition and triangular matrices it 
follows that the decomposition Vn1 = UnLn can be written in partitioned form as 

Vn-1 
n-1 

n n n 
_ o 

... 
an-1 atn 

= UL-l un~~ ~ ~ ~~~(n) L- 

O___ _ _ __ 0 

In Step (i) of the algorithm for the dual problem we have 

C (n) _uTf 

and thus, when an is added, the first n- 1 components in c'n) are unchanged and 
only cn") has to be computed. If the quantities cn(*), k = 0, 1, . , n - 1, have been 
saved, then (9) with .j = n can be used to compute C), k = 0, 1, 7 n. In part (ii) 
we have 

= = [an-1 + c(n)(m(n))T an nC 
n~ 
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where m(nL) is the last row in L4. Thus all components in a(') will change and Step (ii) 
requires greater modification. From (4) and (12) it follows that 

Q.(z) = MO + ml jz + * * * + m Z 

From this it is easy to derive a recursion formula to compute M'n', and we get: 

Progressive Algorithm for the Dual System. Put a(') = c => - o, m ?' = l and, 
for n = 1, 2, 3, ,compute 

c() - Cn = (cn - )/(n - at-k-1), k = 0, 1, n - 1, 

(16) in7- 1, a = Cn , 
= 01 

m(n m(n-1) _ (n-1) a(n= a(n 1) + mn)c" =k Mk.1 a-, xMk =k ak + t 

k = n- ,* 1, 0. 

For the primal system we have in Step (i) of the algorithm 

d (n) = Lnbn . 

Again, the first n - 1 components are unchanged. Provided dn '), k = 0, 1, , n - 1, 
have been saved, d(k), k = 0 1, ... , n, can be computed by taking] = n in (14). 
In Step (ii) we have 

In = Und = [Xn- + d(n)U(n) 

where u(') is the last column in Un. Thus all components in x, change, and we must 
find a way to generate u(), n = 0, 1, 2, Taking the last component of the rela- 
tion c( = Unfn we get 

n 
f[ao, a1, , an] = Ej 

k=O 

Thus use) are coefficients which express the divided difference of nth order in terms 
of function values. It is a well-known result that these coefficients are 

Uk 
= [(ak - ao) . (k - ak-1)(ak - ak+l) . . (ak - ) 

Using this expression we easily derive: 
Progressive Algorithm for the Primal System. Put x(?) = d = bo, ut) = I and, 

for n= 1, 2, 3, ,compute 

dn= bn, dnk~l) dk) - ak dk, k = 0, 1, ***, n - 1, 

(17) U [(an - ao)(an - a1) . . (a. - a1i)E x = d u 

(n) (n-1) ( a X(n) = X(n- ) + dno Uk (n -n , 
Uk = Uk (ak- an), Xk Xkk k=n ,0 

3. Efficiency. In the nonprogressive algorithms for the primal and dual system 
we transform the right-hand side, by a sequence of simple transformations, into 
the solution vector. If the components are modified in a suitable order, then each 
new quantity can over-write an old one, and no extra storage is needed. The number 
of operations required by the nonprogressive primal and dual algorithms is by 
construction exactly the same. It is easily verified that this number is 

,n(n + 1) (3A + 2M), 
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where A stands for one addition or one subtraction and M for one multiplication 
or one division. 

In the progressive versions, the storage of two extra (n + 1)-vectors is needed. 
The required number of operations, when the points ao, a1, , an are introduced 
one at a time, is for the 

primal algorithm: 2n(n + 1)(3A + 4M), 

dual algorithm: n(n + 1)(4A + 3M). 

This is only slightly more than for the nonprogressive versions and compares fairly 
well with the number of operations required in [4] (see [1, p. 300]). 

If the points ai are symmetrically situated around zero, then the amount of 
work can be halved by first applying the preliminary transformation given in [4]. 
This transforms by simple row and column operations the Vandermonde matrix 
V = V(- an ... , -a1, a1, ... , an) to a 2 X 2 block-diagonal form 

| VI ? VI = VWOb a 
2 

t). 

0 VI, 

This means that two problems, each with only half the number of points, have to 
be solved. 

We note that it is possible to compute V1 by applying the primal or dual algorithm 
to the unit matrix. This will, however, be an n'-process. Since in [5] Traub has given 
an algorithm which computes V1 in (1 /2)n(7n - 9)M and (5/2)n(n - 1)A, this 
is clearly inefficient. 

Note also that even when V1 is explicitly known it takes n2(M + A) to compute 
x = V-b in the ordinary way. This is only slightly fewer operations than for our 
nonprogressive algorithms. Since also n2 memory locations are needed to store V-1, 
it may often be better not to handle it explicitly. 

4. Confluent Vandermonde Systems. Let us replace, in the Vandermonde 
matrix V(ao, ao + E, a2, . * * , an), the second column by the difference of the second 
and first column, divided by E. In the limit, when E -> 0, we obtain the confluent 
Vandermonde matrix 

1 0 1 1 1 

ao 1 a2 ... 
n . 

V(ao, 2; a2, * an) 2 2 2 
a0 2ao a2 

. 
An 

n n-1 n n Laog nao a2 
.. 

In the same way, in the Vandermonde matrix V(ao, * , ap-1, asp, i, an), where 
a; = ao + jE, j = 0, 1, * * * , p - 1, we can replace column (j + 1) by E-' times the 
jth order difference of the first (j + 1) columns. In the limit when e -> 0 we get the 
Vandermonde matrix V(ao, p; ap, * i, an), where the order of confluency at a0 
is(p- 1). 

In the general case, the order of confluency is (-yi - 1) at the (m + 1) points 
A3, j 0, 1, *., m, and we denote the corresponding Vandermonde matrix by 

(18) V. = V;|3o 70; As, 71; * * ; Om, 'Ym) 
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This matrix has (n + 1) columns, where 
m 

n = (hi) - 1, 
j =o 

and the elements in the yj columns corresponding to A3 are given by 

(19) Vini+nk = (ndlck3)) fl = Eli, k = O. 1, j- 1. 

We now want to find out rules on how to modify our algorithms for solving (1) 
and (3) in the confluent case. To do this we again start from the dual system (3), 
where V now is the matrix (18). The polynomial P(z) defined by (4) now solves the 
interpolation problem 

p~k~j) =f~k), k= O. I, * * 
ie - 1, j = O 1, * , m 

where the right-hand side of (3) has been denoted by 

f = (fo If (, or -1 ) ( .. . f 
- 1 ) , . Am . (7 -l T. f = (to, , 1 A, ,i , fin, , m 

It is well known that Newton's method of interpolation can be generalized to the 
confluent case. An excellent survey is given in an appendix in [6]. If we let a,, +k= 

0B , k = O 1, ... , yj - 1, j = 0, 1, ... , m, then the fundamental polynomials Qk(Z) in 
(4) are unchanged and only the divided differences have to be generalized. As long 
as a divided difference has at least two different arguments, (6) can be used to reduce 
the order. When a divided difference with all arguments equal is reached this is 
defined by 

f[J3j, k + 1] = fj, ,j] = f k)lk!. 

(k + 1 times) 

From this we deduce the important rule: if the maximum order of confluency is 

q = max Ti - 1, 

then in the dual algorithm only Step (i) for k = 0, 1, ... , q- 1, (in the primal 
algorithm only Step (ii) for k = q - 1, ..., 1, 0) is modified. To simplify the dis- 
cussion we restrict ourselves in the following to the case when only one point fi is 
confluent i.e., y= 1 if j 5 i, y= q + 1. We then have FT = LTUT,9where the 
factorization of LT is given by (13) but that of UT is modified to 

UT = n1 nl***D ('1 '1***(DO)'Mo a U -= ... 1M l 
, 

... ( l_ 
O 

Here the matrix Ml is equal to Mk except in the rows i + k, ... , i + q. These 
(q - k + 1) rows are now of the form 

... 1 
*.. . 0 i +k 

0 
1** 

_0 *c -1 ....... 0 1 .. 01 i+q. 

i +k 
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The matrix D* is changed in the rows i + k, * * , i + q - 1, where the diagonal 
entries now should be (k + 1). Thus, in the dual algorithm, (9) is modified for k = 
0, 1, .., q - I so that 

a 
1) (C ) - ,+k)/(ai a-k-1), = i + q + 1 

- c'k)/(k + 1), j =i+ q, i + q-1, , i + k + 1. 

For all other values of j the formula (9) can still be applied. The changes in the 
primal algorithm can easily be deduced from this. 

The general case can be treated by superposing changes from single points of 
confluency. The corresponding formulas are, however, rather awkward to write 
down, and there seems to be no point in doing this. Many important special cases can, 
however, easily be treated, e.g., that with only the two endpoints of confluency 
greater than one, or that with all points of the same order of confluency. For some 
more results on this subject, see [9]. 

5. Test Results. To test the accuracy of the given algorithms, a few test ex- 
amples have been run on an IBM 360/50. The programs used were FORTRAN- 
versions of the Algol-procedures 'pvand' and 'dvand' given in the appendix. They 
were run in double precision, which corresponds to 14 hexadecimal digits in the 
mantissa, or a unit of precision equal to u = 16-13 = 2.22 X 10-16. 

For the primal algorithm, test systems were chosen with ai = 1 /(i + 3), bi = 

1/2t, i = 0, 1, ... , n. The exact solution can be shown to be 

xi =(-li(.+ 1)l+ +2 
I 

. 

Let xi be the computed solution and take as a measure of the relative error 

en = max lxi - xI/jxI. 

The results from runs with n + 1 = 5(5)30 are summarized in the following table: 

n + 1 5 10 15 20 25 30 

en/u 4 5 10 54 81 280 

The same systems were also solved with the algorithm described in [1]. The solution 
then deteriorated completely after n = 15. In fact, considering the ill-conditioned 
nature of the test systems, the observed errors for the new algorithm are surprisingly 
small. 

It seems as if at least some problems connected with Vandermonde systems, which 
traditionally have been considered too ill-conditioned to be attacked, actually can be 
solved with good precision. 

For the dual algorithm, test systems were solved for n + 1 = 5(5)30 with aci= 
1 /(i + 2), fi = T.(ati) i = 0, 1 ... , n, where Tn(x) is the Chebyshev polynomial of 
order n. Thus, the problem is to retrieve the coefficients of Tn(x) from function values 
at the points ac. Here, however, the solutions from the dual algorithm deteriorated 
completely after n = 10. The systems were also solved with a dual version of the 
algorithm in [1]. The errors now showed the same behaviour, and were only slightly 
larger than for the new algorithm. 
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Appendix. Below we give Algol procedures for the derived algorithms. The 
direct versions are named "pvand" and "dvand", the progressive versions "pvandprg" 
and "dvandprg". 

procedure pvand(nalpha,x,b); 
value n; integer n; array alpha,x,b; 

comment The procedure pvand solves the system of equations Vx =b,, 

where V is the non-confluent Vandermonde matrix V(alpha [0o]..., 
alpha[n]). The right hand side b is left unchanged, unless the 

formal parameters x end b correspond to the same actual parameter; 

begin integer j,k; 

for k:= 0 st 1 until n do xjjk] : ro 

for k:= 0 step 1 until n- 1 do 

for j:= n s -1 until k+1 do 

x[ij] := x[ji - alpha kM x xj-1]; 

for k:= n-1 step -1 until 0 do 

b for j:- k+1 stej 1 until n do 

xfj] := x[j]/(al~pha[jj - a1phafj-k-13); 

for j:= I step 1 until n-1 do 

x[j] := AJ] - X[j+1] 

end 

end 

procedure dvand(n,alpha,a,f); 

value n; integer n; array alpha,af; 

comment The procedure dvand solves the system of equations V a = f, 

where V is the non-confluent Vandermonde matrix V(alphaEoJt,.. 

alpha[n]). The right hand side f is left unchanged, unless the 

formal parameters a and f correspond to the same actual parameter; 

begin integer j,k; 

for k:= 0 s 1 until n do a[k] :f k1; 

for k:= 0 s 1 until n-1 do 

for j:=n step 1 until k+1 do 

a[jJ :=(ajj] - a j 11)/(alpha ij] alpha[j -k--j]); 

for k:= n-1 step -1 until 0 do 

for j:= k step 1 until n-1 do 

a [jJ a[j] - alpha[k] x a[j+1] 

end; 
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procedure pvandprg(n,alpha,d ,u,x,b); 

value n; integer n; array alpha,d,u,x,b; 

comment The procedure pvandprg updates the solution to the system 

of equations Vx = b, where V is the non-confluent Vandermonde matrix 

V(alpha[01,...,alpha~n-11), when the value alpha~n] is added. The 

procedure must be called successively with n = 0,1,2,... The content 

of the arrays d,uE0:nma2x], which are used as working storage, must 

not be changed between calls; 

[b integer j; real delta,dn; 

d [n] := bEn]; 

for j:= n1 step -1 until 0 do 

d[jl := drjvl] - alphe,[n-j-11 x drj3; 

dn := dr; u :=i 1; 

for j: = step 1 until n-1 do 

begin delta := alpha n] - alpha[j]; 

ur : u[j] x delta;u[n] := utnl x delta; 

x[j] : xP] + In/u[j] 
end; x[n] = dn/u[nj 

end; 

procedure dvandprg(n,alpha,c,m,sf); 

value n; integer n; array alpha,c,m,a,f; 

comment The procedure dvandprg updates the solution to the system 

of equations v Ta = f, where V is the non-confluent Vandermonde matrix 

V(alpha OJ,... alpha [n-1j) when the value alpharn] is added. The 

procedure must be called successively Mith n = 0,1,2,... The content 

of the arrays c,mfo:nmaxj, which are used as working storage, must 

not be changed between calls; 

b integZer j; real cn; 

c H : = f En] ; 
for j:= n1 ste -1 until 0 do 

c jj :=(c[j+1J - crj])/(alpha n] - aLphaj])); 

m~n] :=if n=0 then 1 else 0; cn := afn] := c ; 
for j: n steP -1 until 1 do 

begin mj]: mD] - alpha[n-1] x m~j-1]; 
a n-j: an-j + mWj] x cn 

end 

end; 



SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS 903 

Acknowledgment. We are indebted to Professor Gene H. Golub of Stanford 
University for stimulating conversation on this subject and for making the two 
authors aware of each other. 

We also thank Professor Gustavo Galimberti of the Universidad Central de 
Venezuela for his help in the preliminary testing of the algorithms. 

Department of Applied Mathematics 
University of Linkoping 
S-581 83 Link6ping, Sweden 

Departamento de Computacion 
Universidad Central 
Caracas, Venezuela 105 

1. C. BALLESTER & V. PEREYRA, "On the construction of discrete approximations to linear 
differential expressions," Math. Comp., v. 21, 1967, pp. 297-302. MR 37 #3751. 

2. W. GAurscHI, "On the inverses of Vandermonde and confluent Vandermonde matrices. I, 
II," Numer. Math., v. 4, 1962, pp. 117-123; ibid., v. 5, 1963, pp. 425-430. MR 25 #3059; MR 29 #1734. 

3. J. W. JEROME & L. L. SCHUMAKER, A Note on Obtaining Natural Spline Functions by the 
Abstract Approach of Laurent, MRC Technical Report #776, University of Wisconsin, Madison, 
Wis., 1967. 

4. J. N. LYNEss & C. B. MOLER, "Van der Monde systems and numerical differentiation," 
Numer. Math., v. 8, 1966, pp. 458-464. MR 34 #956. 

5. J. F. TRAUB, "Associated polynomials and uniform methods for the solution of linear 
problems," SIAM Rev., v. 8, 1966, pp. 277-301. MR 34 #7054. 

6. J. F. TRAUB, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic 
Computation, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 #6607. 

7. G. GALIMBERTI & V. PEREYRA, "Numerical differentiation and the solution of multidimen- 
sional Vandermonde systems," Pub. 69-07, Dep. de Comp., U. Central de Venezuela, Caracas, 1969; 
Math. Comp., v. 24, 1970, pp. 357-364. 

8. G. GALIMBERTI & V. PEREYRA, Solving Confluent Vandermonde Systems of Hermite Type, 
Pub. 70-02, Dep. de Comp., U. Central de Venezuela, Caracas, 1970. 

9. S.-A. GusrAFSON, Rapid Computation of Interpolation Formulae and Mechanical Quadrature 
Rules, Technical Report CS #70-152, Stanford University, Stanford, Calif., 1970. 


