
MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 112, OCTOBER 1970 

Optimal Approximation in Hilbert Spaces with 
Reproducing Kernel Functions 

By F. M. Larkin 

Abstract. Characterisations of optimal linear estimation rules are given in terms of the 
reproducing kernel function of a suitable Hilbert space. The results are illustrated by means 
of three different, useful function spaces, showing, among other things, how Gaussian 
quadrature rules, and the Whittaker Cardinal Function, relate to optimal linear estimation 
rules in particular spaces. 

1. Introduction. For the purpose of numerically estimating the value of a linear 
functional Lf, of some function f(x), it is very often convenient to compute an ap- 
proximation in the form of a linear combination of certain function values. Thus, 
we might consider that 

(1) ~~~~Lf EwAfX0) 

and, by judicious choice of the abscissae {x;; j = 1, 2, n} and the weights 
{w,; j = 1, 2, . , n}, hope to keep the magnitude of the error 

(2) Rf = Lf - E wAf(x0) 

tolerably small. A great many approximations of the form of (1) have been suggested in 
the case when L represents a process of definite integration; the methods of Chebyshev, 
Newton-Cotes and Gauss are classic examples, while Sard [7] has derived other 
formulae. 

Taking the problem of numerical quadrature as the typical example of linear 
estimation, two separate "best" approaches, which might be associated with the 
names of Gauss and Sard respectively, are discernible. In the Gaussian approach 
one considers a set of basis functions, for example {xi; j=0, 1, 2, . .. }, and tries 
to choose the 2n parameters { wi, xi j; = 1, 2, - - *, n} so as to make approximation (1) 
exact for the first 2n members of this set. For functions not treated exactly by the 
resulting approximation process it is a separate problem to discover bounds on the 
value of JRf j. 

In the approach of Sard one considers the totality of functions, for example, a 
real Hilbert space, to which the approximate formulae (1) might be applied; for 
any f in this class one derives a bound on jRfJ in algebraic form, which is then min- 
imised by appropriate choice of the parameters I w1 and/or x,; j = 1, 2, ... ,n)}. 
The resulting approximation formula is said to be "optimal"; with respect to weights 
and/or abscissae. 
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The purpose of this paper is to examine the relationship between the two above 
approaches to the problem of approximating bounded linear functionals in Hilbert 
spaces possessing reproducing kernel functions. Questions such as "Which functions 
are treated exactly by an approximation formula derived by means of Sard's ap- 
proach?" and "Is there a space of functions in which a Gaussian formula is optimal?" 
will be of interest. Also, simultaneous equations for the optimal values of { wi, xi, 
j = 1, 2, - , n} will be derived. 

2. Some General Results. Let D denote a point set contained in the space of 
a real, or complex, variable, and let XC be a Hilbert space of functions f(x), the domain 
of each f E SC being D. If there exists a function K(x, g), of two variables x, y E D, 
which satisfies the inner product relation 

(3) h(y) = (h(x), K(x, y)), for all h E JC 

and also, for any fixed y E D, K(x, y) E JC is regarded as a function of x, then K is 
said to be a reproducing kernelfunction for Xe. Here, the bar denotes "complex con- 
jugate". 

Not all Hilbert spaces possess reproducing kernel functions; those which do 
are characterised by the following property (Aronszajn, [1]):-A necessary and 
sufficient condition that SC possess a reproducing kernel function is that, for every 
fixed x E D, the linear functional Lf = f(x) is bounded. That is, there exists a finite 
constant C,, depending upon x, such that 

If(x)I-J C. II f I 1, for all f EC S. 

Furthermore, it turns out that the reproducing kernel function, if it exists, is unique 
and satisfies the relation 

(4) K(y, x) K(x, ;), for all x, y E D. 

The importance of Hilbert spaces possessing reproducing kernel functions stems 
from the desirability of estimating a function (and hence, functionals) from values 
of its ordinates at given abscissae. In order to localise the required function to a 
bounded region in the space, one can conveniently make use of values of the norm 
of the function and of bounded, linear functionals (Golomb and Weinberger, [2]); 
thus, it is important that ordinate values be bounded linear functionals, which implies 
that the space should possess a reproducing kernel function. 

Let L be a bounded linear functional in 5C with a representer g(.) and assume 
that the nodes { xi; j = 1, 2, * * *, n} always remain within D. From Eq. (2), applying 
(3) and the Riesz representation theorem, we see that 

Rf = If(y), g(y) - Pi K(y, gi 

hence, by Schwarz's theorem, 
2 

1R2 < I1f112. g(Y)- 
E 

K X) 

By definition, the approximation rule will be optimal if the parameters {w,, x,; 
j = 1, 2, - , n} are chosen so as to minimise the quantity 
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n ~~~~~2 
)S - A(Y)- fV wi K, xi)| 

We now minimise the positive definite quadratic form S using a standard varia- 
tional technique. Letting wk vary by a small amount 6wk, the corresponding small 
change in S is given by 

n \ 

_S ( k K(y, Xk), g(y) - K@y gj) 
(as),.k j= 

-(g(y) - Z w3K(y, s), 6Wk K(y, Xk))J 

i.e., 

- wk(g(xk) - W; K(Xk, Z0 
(6S)Wk - 

-awA(g(Xk) - w K(xb gi) 

Hence, (3S),, vanishes identically for any small 6wk, provided that 
n 

(6) f iWK(xk ,? ) = g(Xk). 

But 

g(xk) = (g(y), K(y, Xk)) = (K(y, X), g(y)) LVK(y, Xk) 

so that 
n 

(7) ? w3 K(xi, ,X) = Lv K(y, 9k), 
i-l 

where the superfix y indicates that L operates on K(y, :E) regarded as a function 
of its first argument. 

A stationary point of S with respect to small changes in the abscissae may be 
found in a similar fashion. The small change in S corresponding to a small change 
5x, in x, may be expressed as 

(8) (aS~- -axk 
f 

g(xk) - w3 K(x3, xk)) 

-5xl Wk( g(xk) - wa K(x3, xk))J 

if the appropriate derivatives exist. This expression vanishes identically for any 6Xk 
provided that 

(9) 2Zwi ~-a 
K(xi, 

Xh) = L aP K(y, x*) dx,, 

The matrix of the linear equations (7) is a Gram matrix, and so is nonsingular 
if the {x;} are distinct; we have thus proved the following results: 

THEOREM 1. If the distinct abscissae I xi; j = 1, 2, * * * , n } within D are prescribed, 
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the optimal approximation rule of the form (1) is characterised by the property that 
it treats the functions {K(y, x;); j = 1, 2, * , n} exactly. 

COROLLARY 1. Given the ordinates { fi3 j = 1, 2, * * * , n } corresponding to distinct 
abscissae I xi; j = 1, 2, *.. , n } within D, the optimal estimate of a bounded linear 
functional may be found by applying the functional to the function f(y) defined as that 
unique linear combination of thefunctions { K(y, xi); j = 1, 2, * , n} which interpolates 
the points {(xi, f7); j = 1, 2, * , n}. 

This result follows from noting that Eqs. (1) and (7) may be expressed in the 
determinant form 

fl f2 ..( J(y), g(y)) 

K(xl , xl) K(X2 xl 9) ... K(Xn5 xl1) (K(y5 xlj), g(y)) 

K(xl, x2) K(x2, x2) ... K(x., X2) (K(y, 2), g(y)) = 0, 

K(xl, 9.) K(x2, .?,) ... K(xn, 9.) (K(y, g,), g(y)) 

for any representer g(y). Clearly, this relation results from forming an inner product 
with g(y) and the relation 

f l2 
. 

n f&y) 

K(xl, Ixl) K(X2, xl) ... K(X., 91) K(y5 xl)1 

K(xl, x2) K(x9, x9) K * (x., x2) K(y, g2) = 0, 

which is the defining relation for f(y). 
COROLLARY 2. The representer r(y) of the bounded linear functional R in Eq. (2), 

vanishes at the distinct abscissae Ixi; j = 1, 2, * , n }, within D, if the weights are 
chosen optimally. 

This follows by inspection of Eq. (6), since 

(10) r(y) = g(y)- E wK(y, .?). 

THEOREM 2. If the weights {wk; k = 1, 2, ***, n} are prescribed, the optimal 
approximation of the form (1) has the property that it treats the functions, 

{(a/axk)K(y, :k); k = 1, 2, -.. , n} 

exactly, provided that the derivatives and distinct abscissae, within D, exist. 
COROLLARY 3. If the appropriate derivatives and distinct abscissae, within D, 

exist, the approximation of the form (1), which is optimal with respect to both weights 
and abscissae, treats the 2n functions {K(y, :), (O/OXk)K(y, Xk); k = 1, 2, * , n} 
exactly. 

COROLLARY 4. If the appropriate derivatives and abscissae, within D, exist dr(y)/dy 
vanishes at the distinct optimal abscissae {Xk; k = 1, 2, * , n}). 

This follows by inspection of Eqs. (9) and (10). 
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Existence of the appropriate derivatives is not a trivial limitation, as the following 
example illustrates. Consider the class of continuous, real-valued, piecewise differ- 
entiable functions of a real variable x E [0, 1], which vanish where x = 0. This 
becomes a Hilbert space if an inner product is defined by 

(f, g) = f f'g'.dx, 

and the corresponding reproducing kernel function in the completed space is given by 

K(x, y) = min (x, y). 

Optimality of the approximation rule can still be defined in terms of minimising S 
with respect to the { xi } but can no longer be expressed in terms of Theorem 2. 

The reason for this can be interpreted in several equivalent ways; for example, 
we have 

- K(x, y) =O; x < y, ay 
undefined; x = y, 

=1; x > y, 

which would be the representer of f'(x) if this were a bounded linear functional 
on the space. However, the discontinuity at x = y means that (a/ay)K(x, y) T S, 
corresponding to the fact that f'(x) is not a bounded functional, and also makes 
Eq. (9) meaningless, since (a/1Uk)K(x;, Sk) is not defined for j = k. 

If we now define the matrix G and vector h by means of the relations 

Gik = K(Xk, xj); k, j = 1, 2, **, n, 

hi = g(x,) = LMK(y, .?); j = 1, 2, **, n, 

the usual result for the minimal value of S may be expressed as 

(11) Smin = I gI 2 - h'G-1h, 

where the prime denotes "complex conjugate transpose". Hence, 

(12) < 
l1g 112 -h'G-'h = I 

-Ig 12-h'w, 111112 = jgj 

where, of course, w is the vector of optimal weight values. 
Introducing the matrix F and vector e defined by the relations 

a 
Fik = K- (xk, ?,); j, k = 1, 2, **, n, 

(13) _ _ _ 

e = L 
la 

K(y, ) = g(xi); i = 1, 2, ** , n, 

we see that Eqs. (7) and (9) may be expressed as 

(14) Gw =i, Fw=e. 

Eliminating w we obtain 

(15) FG-lfi = e 
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as a set of n simultaneous equations which the optimal values of the abscissae must 
satisfy. In many cases it may be sufficient to determine these optimal values nu- 
merically, either by solving Eq. (15) or by minimising the form 

S = Ijgj12 - h'G-'h 

with respect to { xi; j-= 1, 2, ..., n}. However, for purposes of comparison with 
known results, we shall proceed by studying certain special cases analytically. 

Notice that there is no a priori guarantee that Eq. (15) can be satisfied by distinct 
values of { xi; j = 1, 2, * * * , n} within D. Indeed, if Lf is chosen to be f(x0), f'(x0), 
or any higher derivative, for some fixed x0 E D, the only values satisfying (15) may 
(not unreasonably) be 

(16) xi = xO; 1= 1, 2,9 *,n. 

However, the above analysis is interesting particularly in connection with approximate 
quadrature-an application which we explore in the next section. 

Richter and Rabinowitz [10] have studied Bergman-Hilbert spaces, with inner 
product integration regions which are symmetric about the origin in the complex 
plane. For the case in which Lf is an integral along a finite segment (-d, d) of the 
real line, they have shown that the optimal abscissae are contained in [-d, d] and 
the optimal weights are all positive. 

3. Three Examples. As the first example we take SC to be the Hilbert space 
of functions of a complex variable x which are analytic within the region lxi < r 
and continuous where x = r, r being a positive, real number. The inner product 
will be defined as an integral around the circle, i.e. 

(17) (1' g) = f fg dxj, 

whence the reproducing kernel function is the Szeg6 kernel 

(18) K(y, x) = - (r -y). 

Further details may be found in Meschkowski [5]. 
From Corollary 1, we know that any optimal rule of the form (1) for estimating 

the value of a bounded, linear functional must be exact for the 2n functions: 

(r2_g. ry 2 2 
(19) r 

(r - yF k j- (r - yXJ2; k = 1, 2, ..., n, '27 

and hence, for any linear combination of these. 
In general, it will, be possible to express the 2n functions 

(20) qi(y) = y I(1 - k) ; j = 0, 1, 2, **, 2n- 1, 

as linear combinations of the above functions, so that {q3(y)} must also be treated 
exactly by the optimal approximation rule. However, as r- > c, 

(21) qi(y)-+ >y; j =0, 1, 2, ..., 2n -1, 
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and exact treatment of these limiting functions is the characteristic of quadrature 
rules of Gaussian type. Thus, for example, the classic Gaussian quadrature rules 
appear as the limit, when r -* a, of a sequence of optimal quadrature rules. 

Although, in principle, the asymptotic form of Smin may be determined for 
any given L, this information does not enable us to make use of (12) for the purpose 
of bounding the error of approximation, since I If I I increases without limit as r -o . 
This observation agrees with the fact that extra information, often in terms of deriva- 
tives of f, is necessary in order to obtain bounds on the error of Gaussian quadrature 
rules. It is of course, still possible to bound the error in terms of values of I f II and 
S computed in a space for which a Gaussian approximation rule is not optimal; for 
example, one could choose a fixed, finite value of r for this purpose. 

(ii) For the second example we consider the class of real valued functions of a 
real variable x which have square integrable second derivatives over the interval [0, 1]. 
With an inner product defined by 

(22) (Y. g) = af(O)g(O) + jf'(O)g'(O) + J i f g" dx, 

where a and fi are positive, real constants, this class becomes a Hilbert space pos- 
sessing the reproducing kernel function 

(23) K(x, y) = K(y, x) = -y3/6 + y2x/2 + yx/f + I/a; y < x, 

= -x3/6 + x2y/2 + xy/l + I/a; y _ x, 

From the previous theorems we know that an optimal linear approximation 
rule of the form (1) must be exact for any linear combination of the 2n functions 
{K(y, xi), J(y, xi); j 1, 2, * , n}, where 

(24) K(y, xi) = -y3/6 + y2xi/2 + yxi/i3 + I/a; y < Xi, 

= -4~i/6 + xj~y/2 + xiy/f + 1/a; y > xi, 

and 

(25) J(y, xi) = y 2/2 + y/1; y < Xi, 
= -Xj/2 + xjy + y/t; Y >xj. 

In particular, if we construct the 2(n- 1) functions 

M3(y) = K(y, xi+,) - K(y, xi) - (x+1 - xi) [ J(y, x+,) + J(y, x1)] 
(26) 2 

N3(y) J(y, x +1) - J(y, = 1, 2, * - 1, 
Xi+l -Xi 

independent of a and f, so that 

M1(y) = 0; y <x, 

- -y3/6 + y2(x1 + x+D)/4 - xjxj+jy/2 + xi(3xi+l - xi)/12; 

xi ? y ?< xi+, 

= (xi+l - xi)3/12; y > 
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and 

N7(y) = 0; y < i, 

= (y - Xi)21(Xi'l - Xi); Xi < y <Xi, 

= y - (xi + xi+1)/2; Y _x+,, 

these too must be treated exactly by the optimal approximation rule. 
Now notice that as a and j3 become very small the linear parts of K(y, xi) and 

J(y, xi) become dominant. Thus, in the limit where a and f3 separately approach 
zero, the optimal approximation must be exact for the functions f = I and f = y; 
indeed, this is the reason for being interested in the limiting case. These two condi- 
tions, together with the 2(n - 1) similar conditions on { Mi(y), Nj(y); j = 1, 2, 9*, 
n - I} from which a and A have been eliminated, will, in general, provide enough 
information to enable us to determine optimal values of the parameters {w, xi; 
j = 1, 2, *.. , n} in the limiting case. 

Specialising further, we consider the case where 

(27) Lf= f(y) dy. 

Application of the above exactness conditions then leads to the equations 

n 

1: E = 1, 
k-1 

n 

y: WkXk =2 
k=1 

(28) Mi(y): WA;(Xi+l - xi)3/12 - (x.+1 - x I) - x+ 
k-f 2 

j = 1, 2, n + 1, 

N,(y): a, -,(xk _ i +2xi)Xi = _ x+ + XXxi+i + x2.+1 

k-i 2 ) 2 2 6 

j = 1, 2, *,n - l 

for the required weights and abscissae. 
After some algebraic manipulation, it may be verified that Eqs. (28) are satisfied 

by the following values for Iwi, xi; j = 1, 2, ... , nI: 

(29) w, = I - (n/2- 1)h wn; wi = h; j = 2, 3, , n- 1, 

= 2- (n - 1)h/2; xi+l = xi + h; j = 1, 2, , n - 2; 

(30) x = 2 + (n - 1)h/2, 

where the "step-length" parameter h satisfies the equation 

(31) (3n2- 6n + 1)h2-6(n- 1)h + 3=0, 
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whence 

(32) h -1) 3n2 + -\V6 
3n -6n 1 

If the negative root is chosen in (32) all the abscissae lie within the support of the 
functions. Choice of the positive root in (32) leads to a situation wherein xl and 
xn lie just outside the interval [0, 1], which is unacceptable for functions defined 
only within that interval. The above results agree with those obtained, using special 
techniques, by Krylov ([4, p. 140], etc.) and Stern [8], although in the English trans- 
lation, there appears to be a misprint in the expression given by Krylov for the 
values of the weights. 

(iii) For the third example we consider the Paley-Wiener space (Payley and 
Wiener, [6D of entire functions f(z) whose restrictions to the real axis have finite 
bandwidth 2a, with inner product defined by 

(33) (f, g) = f f(t).g(t).dt < co. 

The finite bandwidth property means that, for any function f(z) in the space, 

F(w) =-f e" f(t)* dt 

exists for all w and vanishes for real w outside the interval [-a, a]. An alternative 
characterization of the space is that its members are entire functions of "exponential 
type at most a"; in other words, there exists a such that for all f(z) in the space, 

(34) lim sup log If)I] < a < X 

(de Branges, [3D. 
The reproducing kernel function for this space is given by 

(35) K(z, 9) - 
Sin [a(z - 9] 

ir(z -x 

Thus, if the abscissae { xi; j = 1, 2, * , n} are prescribed, Theorem 1 tells us that 
an optimal linear estimation rule must be exact for functions 

(36) Sin [a(z - ;)] ] = 1, 2, *.., n. 
7r(z - Xj) 

In particular, if the real { xi are equispaced with an interval ir/a, we find that the 
optimal weights are then given by 

(37) w = L(Sin [a(z- x)I) 

for any bounded linear functional L. For example, if we choose 

Lf = f(x), for some fixed, real x, 

we find that the optimal interpolation rule, in this Hilbert space with these pre- 
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scribed abscissae, may be written in the form 

(38) ftx) = z, On Sin [a(x - xi)] (38) AX) ~~~ a(x - xi) ' 

i.e., the optimal interpolating function is the well-known cardinal function! (Whit- 
taker, [9]). Optimal values of bounded linear functionals can now be found by 
applying the functionals to J(x) (cf. Corollary 1). 

Returning again to quadrature rules, if we attempt to choose 

Li = f(t) dt 

we find that the representer of L is unity over (- a, co); i.e., it is not strictly a mem- 
ber of the Hilbert space under consideration since its norm is not finite. However, 
for suitable f(t) and real e, we can write 

00 00~~I S in (et) 
(39) J(t).dt = lim , .f(t).dt = lim LI, say. 

co e--O co: et e--O 

Here L, is a bounded linear functional: since its representer (Sin (et))/et is a mem- 
ber of the space if e < a; hence, we can apply the results of Section 2. 

In this case the abscissae which are optimal for the purpose of estimating LJf 
are found by maximising the quantity 

(40) T = E E Sin (exi) Sin (exk).[G)1] 
i=j k=1 1 EX, EXk 

where the matrix G is given by 

(41) Gik S [a(x,-Xk)] jk= 1, 2, n. 

Now, although 

(42) IISin (Et) 2 = 
2 

d co as ( ? 

(42) ~~~ ~~et E--~a -O 

limiting values of the optimal abscissae may be found by maximising the sum of 
the elements of the inverse of the Gram matrix G. However, it is necessary to ob- 
serve that these limiting values will be arbitrary to the extent of an additive con- 
stant, in agreement with the fact that the integral of a function over the real line is 
unchanged by a finite shift of origin. Furthermore, it is clear by inspection of Eq. (40) 
that if the {x; j = 1,, 2, * } maximise T. so do the values {I; j = 12, , n} 
and hence, also the values {-xi; j = 1, 2, ..., n} and the values {xn- j+; j= 1, 
2, ... , n }. Thus, we can take the limiting optimal abscissae as real and symmet- 
rically distributed about the origin. 

A table of corresponding optimal values of weights and abscissae is given below, 
for various values of n. The maximisation of T was performed numerically, using 
a conjugate gradient method (Fletcher and Reeves, [11]). 

It is conjectured that, as n -- a, the optimal weights and the spacing between 
optimal abscissae all approach the value 2ir. 
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Table of Optimal Quadrature Constants in Paley-Wiener-Hilbert Space 

n ax, wi n ax, w; 

2 ==2.2467047 4.01344867 10 ?t2.9188177 5.77116011 
3 0.0 4.85312962 ?t 8.7426567 5.73687292 

?t 4.9049245 4.27649995 ?i 14.5180889 5.64933802 
4 ?t2.6463646 5.10581247 ?t20.1773847 5.43372596 

?t7.7109632 4.40320621 ==25.4895296 4.62744777 
5 0.0 5.35165706 11 0.0 5.81627482 

==?5.4422714 5.22869607 ==?5.8708587 5.80398102 
==?10.5936134 4.47811596 ?= 11.7198148 5.76213088 

6 ?=2.7932979 5.47077261 ?= 17.5152246 5.66962713 
?t8.3169775 5.30201789 ?t23.1910859 5.45055408 

?i 13.5233788 4.52780036 ?=28.5174116 4.64118298 
7 0.0 5.58754472 12 :i2.9517948 5.84866593 

?=5.6649413 5.54180744 ?t8.8472671 5.82879692 
?= 11.2404772 5.35102863 ?= 14.7156617 5.78195825 
== 16.4851663 4.56327339 ?t20.5270356 5.68600816 

8 ?=2.8706889 5.65704249 ?t26.2164566 5.46443334 
?t8.5854996 5.58931584 ?t31.5545963 4.65268310 

?i 14.1972269 5.38624824 13 0.0 5.88072356 
:419.4701975 4.58993178 ?t5.9278222 5.87314378 

9 0.0 5.72548305 ?i 11.8423367 5.84827293 
?= 5.7899561 5.70348109 ?t 17.7262660 5.79797010 

?= 11.5395763 5.62348848 ?t23.5507171 5.69953235 
?t17.1781264 5.41286087 ?t29.2514594 5.47609002 
?t22.4729048 4.61073592 ?434.5996047 4.66246074 
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